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1 Introduction

Our goal is efficient and robust numerical evaluation of Fourier integrals of the
form

f(~r) = Nn(a, b)

∫
dnk e+bi(

~k·~r) f̃(~k) , f̃(~k) = Ñn(a, b)

∫
dnr e−bi(

~k·~r) f(~r) ,

(1)
with normalization factors

Nn(a, b) = |b|n/2(2π)−n(1+a)/2 , Ñn(a, b) = |b|n/2(2π)−n(1−a)/2 , (2)

where the constants a and b establish our choice of Fourier convention1. We
focus on two- and three-dimensional (n = 2, 3) transforms of functions that can
be adequately represented with a small number of (not necessarily low order)
multipoles. Specifically, for n = 2, we expand

f(r, ϕr) =

+∞∑
m=−∞

fm(r) Φm(ϕr) , f̃(k, ϕk) =

+∞∑
m=−∞

f̃m(k) Φm(ϕk) , (3)

using the polar basis functions

Φm(ϕ) ≡ 1√
2π

eimϕ (4)

with orthonormality2 (δD and δ are the Dirac and Kronecker delta functions,
respectively):

+∞∑
m=−∞

Φm(ϕ)Φ∗m(ϕ′) = δD(ϕ− ϕ′) (5)

1Use a = 1 and b = 1 for the convention of references [1, 4].
2http://dlmf.nist.gov/1.17E12
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and ∫ 2π

0

dϕΦm(ϕ)Φ∗m′(ϕ) = δmm′ . (6)

Similarly, for n = 3, we expand

f(r, θr, ϕr) =

∞∑
`=0

+∑̀
m=−`

f`m(r)Y`m(θr, ϕr) , f̃(k, θk, ϕk) =

∞∑
`=0

+∑̀
m=−`

˜f`m(k)Y`m(θk, ϕk) ,

(7)
using the spherical-harmonic basis functions3 (with associated Legendre poly-
nomials Pm` )

Y`m(θ, ϕ) ≡

√
2`+ 1

2

(`−m)!

(`+m)!
Pm` (cos θ)Φm(ϕ) (8)

with orthonormality4

∞∑
`=0

+∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′) = δD(cos θ − cos θ′)δD(ϕ− ϕ′) (9)

and5 ∫
dΩY`m(θ, ϕ)Y ∗`′m′(θ, ϕ) = δ``′δmm′ . (10)

In the special case of a three-dimensional f(~r) that is cylindrically symmetric,
i.e. has no φr dependence, only m = 0 terms contribute to the multipole
expansion equation 7. Since

Y`0(θ, ϕ) =

√
2`+ 1

4π
L`(µ) (11)

with L` the Legendre polynomial and µ ≡ cos θ, it is then convenient to replace
equation 7 with the equivalent expansion

f(r, µr) =

∞∑
`=0

f
(µ)
` (r)L`(µr) , f̃(k, µk) =

∞∑
`=0

f̃
(µ)
` (k)L`(µk) , (12)

in which the coefficient functions are simply rescaled

f
(µ)
` (r) =

√
2`+ 1

4π
f`0(r) , f̃

(µ)
` (k) =

√
2`+ 1

4π
f̃`0(k) . (13)

Our general approach is to translate the multi-dimensional Fourier trans-
form, equation 1, into a small number (one per multipole) of one-dimensional

3http://dlmf.nist.gov/14.30E1
4http://dlmf.nist.gov/1.17E25
5http://dlmf.nist.gov/14.30E8
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Hankel (n = 2) or spherical Bessel (n = 3) transforms between the weight func-
tions fm(r) and f̃m(k) or f`m(r) and ˜f`m(k). We derive these transforms below
then, in the following sections, describe our numerical algorithm for calculating
them. Note that we rely on the fact that the Fourier transform does not mix
the multipoles, so that there is a one-to-one correspondence between modes in
r-space and k-space.

Using equation 6, we find for n = 2

fm(r) =

∫ 2π

0

dϕr f(r, ϕr) Φ∗m(ϕr) , f̃m(k) =

∫ 2π

0

dϕk f̃(k, ϕk) Φ∗m(ϕk)

(14)
and similarly for n = 3 using equation 10

f`m(r) =

∫
dΩr f(r, θr, ϕr)Y

∗
`m(θr, ϕr) , ˜f`m(k) =

∫
dΩk f̃(k, θk, ϕk)Y ∗`m(θk, ϕk) .

(15)
In the case of n = 3 cylindrical symmetric, equations 11 and 13 yield the
equivalent

f
(µ)
` (r) =

2`+ 1

2

∫ +1

−1
dµr f(r, µr)L`(µr) , f̃

(µ)
` (k) =

2`+ 1

2

∫ +1

−1
dµk f̃(k, µk)L`(µk) .

(16)
Next, we replace f(r, ϕr) or f(r, θr, ϕr) in these equations with their Fourier
expansions of equation 1, obtaining

fm(r) = Nn(a, b)

∫ ∞
0

kdk

∫ 2π

0

dϕr

∫ 2π

0

dϕk e
+bi(~k·~r) f̃(k, ϕk) Φ∗m(ϕr) (17)

and

f`m(r) = Nn(a, b)

∫ ∞
0

k2dk

∫
dΩr

∫
dΩk e

+bi(~k·~r) f̃(k, θk, ϕk)Y ∗`m(θr, ϕr) .

(18)
Substituting the multipole expansions of f̃ from equations 3 and 7, we find

fm(r) = Nn(a, b)

∫ ∞
0

kdk

∫ 2π

0

dϕr

∫ 2π

0

dϕk e
+bi(~k·~r)

+∞∑
m′=−∞

˜fm′(k) Φm′(ϕk) Φ∗m(ϕr)

(19)
and

f`m(r) = Nn(a, b)

∫ ∞
0

k2dk

∫
dΩr

∫
dΩk e

+bi(~k·~r)
∞∑
`′=0

+`′∑
m′=−`′

˜f`′m′(k)Y`′m′(θk, ϕk)Y ∗`m(θr, ϕr) .

(20)
Finally we expand the plane wave factor in terms of polar (n = 2) basis functions

e+bi(
~k·~r) = 2π

+∞∑
m=−∞

(bi)m Jm(kr) Φ∗m(ϕr) Φm(φk) (21)
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or spherical harmonic (n = 3) basis functions

e+bi(
~k·~r) = 4π

∞∑
`=0

+∑̀
m=−`

(bi)`j`(kr)Y
∗
`m(θr, ϕr)Y`m(θk, ϕk) , (22)

where Jm and j` are the Bessel and spherical Bessel functions, respectively.
Using equations 5 or 9 to simplify the resulting expressions, we find that the
moments of f and f̃ are related by a scaled Hankel transform when n = 2,

fm(r) = c

∫ ∞
0

kdk Jm(kr) f̃m(k) , c = 2πNn(a, b)(bi)m , (23)

and by a scaled spherical Bessel transform when n = 3,

f`m(r) = c

∫ ∞
0

k2dk j`(kr) ˜f`m(k) , c = 4πNn(a, b)(bi)` . (24)

Substituting f ↔ f̃ , k ↔ r, Nn → Ñn, and b → −b, we find similar results for
the inverse transforms

f̃m(k) = c

∫ ∞
0

rdr Jm(kr) fm(r) , c = 2πÑn(a, b)(−bi)m , (25)

and

˜f`m(k) = c

∫ ∞
0

r2dr j`(kr) f`m(r) , c = 4πÑn(a, b)(−bi)` . (26)

The n = 3 cylindrically symmetric f ′`(r) and f̃ ′`(k) transform identically to

f`m(r) and ˜f`m(k), as given in equations 24 and 26, since they are simply
related by an `-dependent rescaling factor.

2 Spherical Bessel Transforms

Our algorithm for evaluating the scaled spherical Bessel transform equations 24
and 266 follows earlier work in references [3, 2].

With the change to dimensionless variables

κ = log(k/k0) , ρ = log(r/r0) , (27)

we can write equation 24 as a convolution suitable for FFT evaluation

(r/r0)α · f`m(r) =

∫ +∞

−∞
G(ρ+ κ)F (κ)dκ (28)

with dimensionless functions

G(s) = eαs j`(k0r0e
s) , F (s) = c e(3−α)s k30

˜f`m(k0e
s) , (29)

6Since these are simply related by the substitution r ↔ k, we use the notation of equation 24
in the following, without any loss of generality.
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where the r-weighting parameter α is arbitrary at this point. The function F
depends on f , but G(s) depends only on the values of k0r0 and α (see Fig. 1),
and has asymptotes

G+(s) =
1

k0r0
e(α−1)s , G−(s) =

2−(`+1)
√
π

Γ(`+ 3/2)
(k0r0)` e(α+`)s , (30)

whereG+ is the envelope of oscillations with a rapidly decreasing period 2πe−s/(k0r0).
In order to simplify the calculations, we use our freedom to chose k0r0 and

α to symmetrize G(s) via

α =
1− `

2
,

(
k0r0

2

)`+1

=
Γ(`+ 3/2)√

π
, (31)

which yields

G+(s) = G−(−s) =
1

2

[ √
π

Γ(`+ 3/2)

]1/(`+1)

· exp (−(`+ 1)s/2) . (32)

We can write this using

s0 =
2

`+ 1
, G0 =

1

k0r0
, (33)

as
G+(s) = G−(−s) = G0e

−s/s0 . (34)

Figure 1: Plots of f(s) · (`+ 1)/2 with α = 0, k0r0 = 1 and ` = 0, 2 (dashed),
4 (dotted). Fainter curves show the large-s asymptotic forms. Left- and right-
hand plots are for the spherical Bessel and Hankel transforms, respectively.
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3 Hankel Transforms

We use a similar algorithm to calculate the scaled Hankel transforms of equa-
tions 23 and 25, using primes to denote cases where the n = 2 and n = 3 cases
differ.

We can transform eqn. 23 to the convolution equation 28 using

G′(s) = eαs J`(k0r0e
s) , F ′(s) = ce(2−α)s k20

˜f`m(k0e
s) , (35)

where, as above, the r−weighting parameter α is arbitrary at this point. Fig. 1
compares this f(s) with the spherical Bessel transform case and shows that they
have similar asymptotic behavior:

G′+(s) =

(
2

πk′0r
′
0

)1/2

e(α
′− 1

2 )s , G′−(s) =
2−`

Γ(`+ 1)
(k′0r

′
0)` e(α

′+`)s . (36)

Again, we symmetrize via

α′ =
1− 2`

4
,

(
k′0r
′
0

2

)`+1/2

=
Γ(`+ 1)√

π
, (37)

which yields

G′+(s) = G′−(−s) =
[
π` Γ(`+ 1)

]−1/(2`+1) · exp (−(2`+ 1)s/4) . (38)

We can rewrite this using

s′0 =
4

2`+ 1
, G′0 =

(
2

πk′0r
′
0

)1/2

, (39)

as
G′+(s) = G′−(−s) = G′0e

−s/s′0 . (40)

4 Discretization

In order to perform the convolution using FFT, we discretize sn = n∆s with
|n| ≤ N , and require that both F and G go to zero outside of the sampled
interval (large sN = N∆s) and are sampled sufficiently finely (small ∆s).

We then pick sN so that G(sN ) ' εG(0), i.e.,

sN = −s0 log ε+ δ , (41)

where ε is a numerical precision parameter that specifies the fractional level at
which we truncate G(s) and we choose δ > 0 so that sN lands at the next zero
of the oscillation (in the limit of small ε)

eδ = dY e/Y , eδ
′

=
d1/8 + Y ′/4e − 1/8

Y ′
, (42)
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where dY e is the smallest integer ≥ Y with

Y ≡ k0r0
2π

ε−s0 . (43)

We meet the second condition by requiring ns samples7 of the large-s oscillation
at sN . We accomplish this using ∆s ≤ ∆smax with

∆smax = h εs0 , h ≡ 2π

nsk0r0
. (44)

In order to preserve the node at sN and ensure that N is integral, we pick

NG = dsN/∆smaxe , ∆s = sN/NG . (45)

Fig. 2 shows examples of G(s) tabulated with these prescriptions. Note that the
symmetrized G(s) peaks at small positive s but that the oscillations for s > 0
lead to a negative first moment.

We now turn to the discretization of F (s), which depends on an unknown f .
Since s = κ when evaluating F (s), our choice of ∆s above directly determines
the sampling of ˜f`m(k). To ensure that f is sufficiently sampled, we take

∆smax = min(
log 10

N10
, cεs0) (46)

where N10 is the minimum allowed sampling per decade of ˜f`m(k).
In practice, we want to know f`m(r) over some range rmin < r < rmax.

Therefore, we set
r0 =

√
rminrmax (47)

and calculate the corresponding k0 using the value of k0r0 obtained in eqn. (31)
or eqn. (37). We want a result that is free of aliasing artifacts over 2NF samples
where

2NF = log(rmax/rmin)/∆s , (48)

so we pad the tabulated G(sn) with 2NF zeros and perform transforms of length
2(NF +NG). The resulting range of k used in the calculation has limits

kmin = k0 exp(−(NF +NG)∆s) , kmax = k0 exp(+(NF +NG)∆s) . (49)

5 Errors

We have framed our discretization in terms of ε but, in practice, a better choice
would be ε = ∆s/smax since this more directly correlates with the processing

7Nyquist limit sampling corresponds to ns = 2.
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Figure 2: Tabulated values of the symmetrized functions G(s) for ` = 0 (top-
left), 2 (top-right), 4 (bottom-left), and 6 (bottom-right). Curves show the
functions G(s) on a log scale, using dashing for negative segments of the oscil-
lation, and points show the discretization |G(sn)| for |n| ≤ N , using ns = 2 and
ε = 0.01 (ε ' 1.1× 10−1, 4.7× 10−3, 3.2× 10−4, 3.0× 10−5 for ` = 0, 2, 4, 6.)

and memory requirements. Therefore we convert a specified ε into a value of ε
by inverting

ε = h εs0/ log ε−s0 , (50)

which can either be done numerically or else using the approximation

εs0 ' − L0

6L3
1

[
6L4

1 + 6L2
1L2(L1 + 1)− 3L1L2(L2 − 2) + L2(2L2

2 − 9L2 + 6)
]
,

(51)
where

L0 ≡ ε/h , L1 ≡ log(L0) , L2 ≡ log(−L1) , (52)

which is valid for L0 . 0.35. The discretizations in Fig. 2 are calculated with a
fixed ε = 0.01, and so have corresponding values of ε that increase with `.

In order to provide more direct control of the transform accuracy, we imple-
ment a driver routine that starts from some initial ε (nominally 0.01) and then
reduces its value by factors until8

|f`(rj ; ε)− f`(rj ; 2ε)| < max
(
eabs,` · rpj , erel,` · |f`(rj ; ε)|

)
(53)

for all j, where the rj are equally spaced over the range rmin ≤ r ≤ rmax and p
allows for an r-weighing of the ‘constant’ error criterion (but we normally use
p = 0). We abandon the halving of ε once it reaches some prescribed minimum
value (nominally 10−6), to protect against pathological cases.

8We assume n = 3 with spherical symmetry here for notational convenience.
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For the purposes of transforming a set of multipoles that are subsequently
recombined using equation 3, 7, or 12, we require that9

erel,` =
erel
M

|
∑
`′ f`′(r)L`′(µr)|
|f`(r)L`(µr)|

, eabs,` =
eabs
M

, (54)

for all (r, µr) on a grid covering the region of interest, where M is the number
of multipoles included in the expansion.
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