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Abstract15

Much of modern science takes place in a computational environment, and, increasingly,16

that environment is programmed using R, Python, or Julia. Furthermore, most scien-17

tific data now live on the cloud, so the first step in many workflows is to query a cloud18

database and load the response into a computational environment for further analysis.19

Thus, tools that facilitate programmatic data retrieval represent a critical component20

in reproducible scientific workflows. Earth science is no different in this regard. To ful-21

fill that basic need, we developed dataRetrieval, dateretrieval, and DataRetrieval.jl:22

R, Python, and Julia packages, respectively, that provide multi-language access to hy-23

drologic data from the U.S. Geological Survey’s National Water Information System database24

and the multi-agency Water Quality Portal.25

1 Introduction26

R, Python, and Julia are open-source languages with large communities of scien-27

tific users and developers, which have become the lingua franca—the common language—28

of the open science movement. Notably, all three can run within Jupyter Notebooks, a29

web-based interactive computing platform that scientists increasingly use to explore data30

and communicate their findings (Granger & Pérez, 2021), create and share reproducible31

workflows (Beg et al., 2021), and access data in the cloud (Abernathey et al., 2021).32

Open data initiatives have pushed most scientific data to the cloud to ease acces-33

sibility, so a typical scientific workflow begins by querying a cloud database and load-34

ing the response into the computational environment for further analysis. In that paradigm,35

data are accessed using either some kind of graphical user interface (GUI) or by writ-36

ing code to retrieve data via an application programming interface (API). Non-programmers37

find GUIs more intuitive, but their manual nature creates barriers to reproducibility and38

scalability because it can be difficult to record the exact sequence of steps within a GUI,39

and GUIs often change. In contrast, APIs are typically versioned, which means that code40

written to programmatically access an API can be executed repeatably, shared, tracked41

in version control, and run through automated tests, all of which are tenets of compu-42

tational reproducibility and open science.43

The U.S. Geological Survey (USGS) operates the largest water-monitoring network44

in the United States, whose data are widely used for research, as well as operationally45

for modeling, flood forecasting, water resources management investigations, etc. Thus,46

there is a great benefit to science and society in having standardized and reusable pack-47

ages for programmatically accessing USGS data using widely used data science languages48

(i.e., R, Python, and Julia), ensuring that the first step in many workflows—loading USGS49

data from the cloud—is reproducible. To that end, we developed R, Python, and Julia50

packages providing programmatic access to data from any streamflow gage, water qual-51

ity monitoring station, or groundwater well, as well as other datasets available via USGS’s52

National Water Information System database (U.S. Geological Survey, 2023) and the multi-53

agency Water Quality Portal (National Water Quality Monitoring Council, 2023).54

2 Sharing Scientific Knowledge as Reproducible Workflows55

Given that this paper presents relatively simple utilities for retrieving data, we re-56

flect on their role within the broader scientific enterprise. Fundamentally, these utilities57

facilitate the development of reusable packages and reproducible workflows. There is grow-58

ing awareness of a reproducibility crisis in science (e.g., Baker, 2016): by one estimate,59

95 percent of recent hydrology and water resources publications cannot be reproduced60

(Stagge et al., 2019). In response, many within the scientific community are advocat-61

ing for greater transparency and reproducibility of research results. Journals increasingly62

require submissions to be accompanied by data, code, and other research artifacts that63
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enable the reproduction of the analyses and results. But the original code and data are64

insufficient to ensure reproducibility; one also needs the original computational environ-65

ment, or at least the means to recreate it.66

A package is an archive of software along with metadata intended to make the soft-67

ware more easily shared and reused by others (Hillard, 2023). It is essentially a set of68

software tools that may be reused to accomplish different computational tasks, either69

by expanding the functionality of other packages or by performing a particular task, such70

as in a workflow.71

A workflow is a sequence of steps that produce a particular result. A recipe for bak-72

ing bread is a workflow, but in this context, we mean workflows that run in a compu-73

tational environment, known as computational workflows. Often, workflows that begin74

as notebooks or scripts go on to be developed into packages that more formally organize75

and codify a set of functionality along with scientific knowledge for reuse by others. Just76

as in open-source software development, packages are fundamental organizational units77

within open science, where researchers contribute expertise to help develop packages, then78

use and combine those packages to create flexible and reproducible workflows. In this79

regard, one might consider the development and availability of scientific code packages80

to be a revolution in scientific philosophy (metascience). Recent advances in machine learn-81

ing, data science, and many other domains have been accelerated through the availabil-82

ity of open-source packages (Nguyen et al., 2019; Langenkamp & Yue, 2022)83

The principal purpose of a package is reusability: If one researcher writes a pack-84

age to accomplish X, then another researcher can use that package to accomplish X with-85

out having to write the code themselves. There is also an expectation that packages evolve86

as code and knowledge are contributed over time. A workflow is, in essence, another type87

of package but its purpose and lifecycle differ. Once published, a workflow is intended88

as a static archive; its principal purpose is to ensure reproducibility. To achieve that, work-89

flows adopt many of the same tools and practices used in software packaging, such as90

dependency resolvers to reproduce a particular computation environment, version con-91

trol, automated testing, and open web-based publication platforms, etc.92

A packaged workflow combines both concepts by using computer science tools and93

practices in a manner that allows it to easily migrate from one computational environ-94

ment to another. Such workflows are becoming an increasingly important component of95

scientific communication. An example is HydroShare (Tarboton et al., 2014; Horsburgh96

et al., 2016), which is an online repository that supports sharing and publication of pack-97

aged workflows. Using HydroShare, a researcher can upload a Jupyter Notebook con-98

taining their workflow and then share it publicly or permanently publish it with a citable99

digital object identifier (DOI). Anyone can then rerun the notebook using HydroShare’s100

linked JupyterHub environment. The importance of data retrieval packages like the three101

in this paper, HyRiver (Chegini et al., 2021), and others is that they facilitate program-102

matic data access, which is a key component in creating and simplifying packaged work-103

flows.104

2.1 Examples105

For each language—R, Python, and Julia— we provide a brief demonstration show-106

ing how the data retrieval packages can be used to build other packages or workflows.107

For many more examples and tutorials see the links to the package documentation in the108

Open Research Section.109

2.1.1 R110

Of the three packages, the R version, dataRetrieval was developed first and has111

been downloaded over 174,000 times (as of May 2023; De Cicco et al., 2023). Along with112
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simplifying workflows, its functionality has become integral in other packages like EGRET113

(Exploration and Graphics for RivEr Trends), which provides utilities for the analysis114

of long-term changes in water quality and streamflow (Hirsch et al., 2010). Several EGRET115

functions use dataRetrieval to retrieve data, then preprocess the output into an analysis-116

ready format. A typical EGRET workflow retrieves data, calibrates a model, and displays117

long-term trend calculations. Here we use it to retrieve orthophosphate data from a USGS118

monitoring location (01631000), then model and plot the orthophosphate load through119

time (Figure 1). Using dataRetrieval, both EGRET and the workflow are simpler and,120

therefore, easier to understand, use, and maintain.121

library(EGRET)122

site <- "01631000"123

parameter <- "00660" # USGS code for orthophosphate124

Sample <- readNWISSample(site, parameter)125

Daily <- readNWISDaily(site,126

startDate = min(Sample$Date))127

INFO <- readNWISInfo(site, parameter,128

interactive = FALSE)129

eList <- mergeReport(INFO, Daily, Sample)130

eList <- modelEstimation(eList, verbose = FALSE)131

plotConcHist(eList, printTitle=FALSE)132
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Figure 1. EGRET generated timeseries of flow-normalized concentration of orthophosphate

(PO4) in miligrams per liter (mg/L) for the South Fork Shenanndoah River at Front Royal,

Virginia. Dots depict the annual mean concentration.

2.2 Python133

A strength of Jupyter is that it allows for fast prototyping of code and data explo-134

ration. Here, we demonstrate using dataretrieval to query sites with total phospho-135
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rus measurements in the state of Illinois, then creating an interactive webmap using hvplot136

(Figure 2).137

from dataretrieval import nwis138

import geopandas as gpd139

import hvplot.pandas140

141

parameter = ’00665’ # USGS code for total phosphorus142

df, meta = nwis.what_sites(stateCd=’IL’, parameterCd=parameter)143

geometry = gpd.points_from_xy(df.dec_long_va, df.dec_lat_va)144

gdf = gpd.GeoDataFrame(df, geometry=geometry)145

146

gdf.hvplot.points(geo=True, hover_cols=[’site_no’, ’station_nm’],147

tiles=True, width=300, size=3)148

Figure 2. Interactive web map displaying locations in Illinois with phosphorus samples.

2.3 Julia149

As the youngest programming language and data retrieval package, our Julia demon-150

stration is more introductory. We use DataRetrieval.jl to retrieve annual groundwa-151

ter levels from a single site in Delaware, then compute summary statistics on an annual152
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basis using the Statistics package (JuliaStats Contributors, 2023) and format the out-153

put for publication using Latexify (Korsbo & other contributors, 2023) (Table 1).154

using DataRetrieval, Dates, Statistics, DataFrames, Latexify155

156

site = "393617075380403"157

parameter = "72019" # USGS code for depth to water level158

df, response = readNWISdv(site,159

parameter,160

startDate="1776-07-04",161

endDate="2022-12-31",162

format="json");163

df.datetime = Dates.DateTime.(df.datetime, "yyyy-mm-ddTHH:MM:SS.SSS");164

df.year = Dates.year.(df.datetime);165

df2 = combine(groupby(df, :year),166

parameter => minimum => :Minimum,167

parameter => maximum => :Maximum,168

parameter => mean => :Mean;169

170

latexify(df2, env=:table) |> print171

Table 1. Annual (calendar year) summary statistics for groundwater levels (depth to water

level in feet below land surface) at U.S. Geological Survey site 393617075380403 in Delaware.

Y ear Minimum Maximum Mean

2012 -0.27 -0.0 -0.11
2015 -1.2 -0.03 -0.26
2016 -0.6 0.01 -0.2
2020 -0.6 0.12 -0.22
2021 -0.38 0.1 -0.16
2022 -0.44 0.15 -0.045

3 Use Cases172

The data retrieval packages are basic utilities that support a range of uses. For sci-173

entific research and publishing, they automate hydrologic data retrieval in workflows such174

that data access can be encoded in scripts or notebooks that can be shared, re-run, and175

built upon by other researchers. These packages reduce the time and effort required for176

retrieving and loading data into performant, analysis-ready data structures, like “data177

frames.” This lowers barriers for novice users who may struggle to identify the best data178

structures to use and reduces time spent learning how to parse and load data, allowing179

users to more quickly delve into discovery and understanding.180

Beyond scientific research and academic publishing, water resources professionals181

use USGS hydrologic data for operational purposes including flood forecasting, opera-182

tion of dams and hydraulic control structures, design of bridges and flood control projects,183

implementing flood warning systems, allocating irrigation water, planning for energy de-184

velopment, assessing water quality and pollution, and others. While our focus has been185

on the reproducibility of scientific work, these packages have similar utility for practi-186

tioners who need to build transparent, reliable, and repeatable modeling and analysis187

workflows. The availability of the tools in multiple languages provides options for use188
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in different computational environments across platforms ranging from personal com-189

puters to on-premise or cloud-based computing clusters.190

In the classroom, instructors use these packages to teach data science and hydroin-191

formatics concepts, which are becoming increasingly important skills as scientific and en-192

gineering work becomes more data-intensive. Indeed, a growing part of hydrologic sci-193

ence is shifting from collecting data for testing or supporting existing conceptual mod-194

els toward analyses based on models derived from observational data (Chen & Han, 2016).195

In a recent survey, Jones, Horsburgh, Pacheco, Flint, and Lane (2022) found that most196

instructors who offer a course in hydroinformatics or water data science at the college197

level include basics of coding/scripting; data formatting, manipulation, and wrangling;198

visualization and plotting; and other data science topics. Nearly all of these instructors199

used Python or R in their course materials, and multiple instructors reported using one200

of the data retrieval packages directly. Feedback from that survey was used in develop-201

ing the Hydroinformatics and Water Data Science module on HydroLearn, which uses202

the Python dataretrieval (Jones, Horsburgh, & Pacheco, 2022).203

4 Conclusions204

R, Python, and Julia are used extensively in scientific computing and data science,205

and all three support Jupyter notebooks, a computing platform used for teaching and206

scientific discovery. The data retrieval packages provide programmatic access to USGS207

hydrologic data in these languages, thereby making that data accessible from notebooks208

or other programs, and, ultimately, making those research and analysis workflows more209

reproducible. The usage examples in the paper are nowhere near comprehensive of what210

the packages can do, especially when combined with functionality from other packages.211

To learn more, refer to the code repositories in the Open Research Section.212

Open Research Section213

The R version is available at https://github.com/DOI-USGS/dataRetrieval, as214

well as via CRAN. The Python version is available at https://github.com/DOI-USGS/215

dataretrieval-python, as well as via PyPI and conda-forge. The Julia version is avail-216

able at https://github.com/DOI-USGS/dataretrieval.jl and can be installed using217

Pkg, Julia’s built-in package manager.218

Please cite this paper when discussing the software in an abstract sense or other219

ideas from the paper. When using the software, we recommend citing the specific ver-220

sion and its associated software release. For example, the R, Python, and Julia versions221

used in the paper are available as software releases (De Cicco et al., 2023; Hodson et al.,222

2023; Hariharan, 2023, respectively),223

The Python example was created using the package versions on conda-forge:224

conda create -n dataretrieval geopandas hvplot cartopy geoviews jupyterlab dataretrieval225

conda activate dataretrieval226

jupyter lab227

and run in Jupyter on Windows Subsystem for Linux 2 (WSL2) with an Intel proces-228

sor. Alternatively, the supplemental environment.yml contains all the necessary pack-229

age metadata to reproduce our Python computational environment (https://raw.githubusercontent230

.com/DOI-USGS/dataretrieval-python/paper-env/demos/webmap/environment.yml).231

As with all the examples, different package managers, operating systems, and hardware232

may yield different results. If you are unable to reproduce the examples, please raise an233

issue on the relevant GitHub repository.234
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