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Abstract

  The  Qinghai-Tibetan  Plateau  (QTP)  is  one  of  the  amplifiers  of  global  climate

change. The headwater area of the Yellow River Basin (HYRB) on the QTP is the

dominant water source region for the whole Yellow River Basin (YRB). However, the

sensitive responses of hydrological processes to the intensifying climate change are

exerting high uncertainties to the water cycle in the HYRB. The aim of this study was

to investigate the potential climate change under three Representative Concentration

Pathways (RCP 2.6, 4.5, and 8.5) and their hydrological impacts in this region using

the ensemble climate data from eight general circulation models (GCMs) and the Soil

and  Water  Assessment  Tool  (SWAT).  Compared  to  the  baseline  (1976–2015),  the

projected climate indicated a rise of 7.3–7.8% in annual precipitation, 1.3–1.9°C in

maximum air temperature, and 1.2–1.8°C in minimum air temperature during the near

future period (2020–2059), and an increment of 9.0–17.9%, 1.5–4.5°C, and 1.3–4.5°C

in  precipitation,  maximum and minimum temperature,  respectively,  during  the  far

future period (2060–2099). The well-simulated SWAT modeling results suggested that

due to a wetter and warmer climate, annual average actual evapotranspiration (AET)

would increase obviously in the future (31.9–35.3% during the near future and 33.5–

54.3% during the far future), which might cause a slight decrease in soil water. Water

yield  would  decrease  by  16.5–20.1%  during  the  near  future period,  implying  a

worsening  water  crisis  in  the  future.  Till  the  end  of  this  century,  driven  by  the

increased  precipitation, water  yield  would  no longer  continue  to  decrease,  with  a

decline  by  15–19.5%.  Overall,  this  study  can  not  only  provide  scientific
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understanding of the hydrological responses to the future climate in both semi-arid

and  alpine  areas,  but  also  contribute  to  the  decision  support  for  sustainable

development of water resources and protection of eco-environment in the HYRB.

Keywords: Climate change; Hydrological components; Representative Concentration

Pathways; SWAT

1 Introduction

Global warming is one of the most important threats to human society. Indeed, it

has  already  begun  to  threaten  the  sustainability  of  Earth’s  life  support  systems

(Lubchenco, 1998). According to Intergovernmental Panel on Climate Change (IPCC)

reports, the global average air temperature has increased by 0.85  °C from 1880 to

2012, and the situation might get worse as temperature are anticipated to rise by 1–5

°C by the end of the 21st century (Holden et al., 2018; Lin et al., 2018; Stocker et al.,

2013). Recent studies have pointed out that high-altitude regions, such as the Qinghai-

Tibetan Plateau (QTP), were the amplifier of global climate change  (Giorgi et al.,

2010;  Jian et  al.,  2014;  Liu  and  Chen,  2015).  Due  to  the  high  altitude,  low

temperature, and slow vegetation growth, the ecosystems in these regions are fragile

and difficult to be repaired once damaged (Wang et al., 2007). Thus, these regions are

experiencing  much  more  changes  and  uncertainties  caused  by  the  global  climate

change than other regions.

Global warming could affect the water resources and complicate their assessment

and management (Christensen et al., 2004; Oki and Kanae, 2006; Zhou et al., 2011).

 5 / 40

69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

9
10



The  increase  of  temperature  has  made  the  spatial  and  temporal  variability  of

precipitation increase, which caused more frequent drought and flood events and more

serious economic losses  (Piao et al., 2010;  Trenberth et al., 2014). Associated with

global warming, the actual  evapotranspiration (AET) has also changed significantly

during the past several decades, resulting in the loss of soil water and runoff (Berg et

al., 2017; Donnelly et al., 2017). Coles et al. (2017) assessed trends in climatological

and hydrological variables of hillslopes on Great Plains, and found that snowmelt-

runoff and spring soil water content all decreased. In the future, a warming climate

would  accelerate  multiphase  water  transformation  processes  and  increase  the

uncertainty  of  water  cycle  prediction,  preventing  us  from making firm statements

(Meaurio et al., 2017; Wu et al., 2016; Zhang et al., 2016). Liu et al. (2017) examined

the  impacts  of  1.5  and  2  °C  global  warming  on  water  cycle  and  indicated  drier

springs, and more severe floods over long return periods (25 and 50 years) for Yiluo

and Beijiang River catchment.Yang et al. (2014) reported that the weakened water

vapor  exchange  led  to  less  precipitation  in  the  monsoon-impacted  southern  and

eastern  Plateau,  but  the  warming  enhanced  land  evaporation.  An  in-depth

understanding of the future climate change impacts on water cycles is hence of great

significance for the water resource management and associated policy formulation,

which has also been an important concern in the field of global change studies.

Various methods have been proposed and utilized to disentangle climate change

impacts  on  watershed  hydrology  (Zhang et  al.,  2018),  such  as  paired  catchment

approach,  hydrological  modelling  approach,  conceptual  approach,  empirically
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statistical method, and hydrological sensitivity method (Gao et al., 2016; Zhang et al.,

2017). Because hydrological models relate model parameters directly to physically

observable  land  surface  characteristics,  this  method  can  effectively  extract  a

significant amount of information from limited existing data (Yang et al., 2017). Lu et

al. (2018) used Variable Infiltration Capacity (VIC) model and RegCM4 and found

that evapotranspiration would increase by 10–60% in the source regions of Yellow

and Yangtze rivers due to  the temperature rise.  Recently,  a common approach for

assessing future hydrological conditions is to use General Circulation Model (GCM)

projections in combination with hydrological models (Chen et al., 2012). The Soil and

Water Assessment Tool (SWAT), a physical-based, semi-distributed, and bio-physical

model,  is  suitable  to  investigate  the  response  of  simulated  streamflow to  climate

change,  especially  with  the  help  of  projected  climate  data  from  various  GCMs

(Arnold et al., 1998; Zhao et al., 2018). For example, using SWAT and outputs from

20 GCMs to estimate the potential hydrological changes, Neupane et al. (2019) found

that the mean annual streamflow would decrease under the worst-case Representative

Concentration Pathways (RCP) 8.5 during the 2080s in the Suwannee River Basin in

the United States. 

The headwater area of the Yellow River Basin (HYRB) on the QTP is the source

region of the Yellow River, the second largest river in China. The HYRB is crucial to

the Yellow River Basin (YRB), as it contributed nearly 40% water to the whole YRB

with an area of only about 16% (Chu et al., 2018). It was reported that the HYRB is

one of the high-altitude regions with the richest biodiversity in the world (Guo et al.,
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2004). Therefore, the specific ecosystem in this region is valuable and critical for the

YRB, and even for the whole globe. The unique geographical location and climate

conditions make the ecosystem of the HYRB fragile and sensitive to environmental

changes  (Sun et al., 2019;  Zhang et al., 2013;  Zhou et al., 2005). In the context of

global  climate  change,  the  HYRB  is  experiencing  a  much  more  intense  climate

change  and  associated  effects,  thus  greatly  increasing  the  uncertainties  of  water

resources in this region. The annual average flow of the HYRB has decreased over the

past 50 years  (Cuo et al., 2013). What is worse, the runoff in the 1990s suffered a

serious  decrease  and  the  zero-flow  days  at  the  most  upstream  gauging  station

(Huangheyan station) increased  (Chen et  al.,  2007;  Hu et  al.,  2011;  Zhang et  al.,

2004), which, in long term, could influence the ecological environment and socio-

economic  development  in  the  HYRB  (Lin et  al.,  2012).  Besides,  due  to  the

characteristics of water shortage in semi-arid areas, comprehensive research including

climate and hydrology needs to be used to evaluate possible strategies in order to

make these  areas  less  affected  by  the  changing  climate  (Patel et  al.,  2020).Thus,

accurately assessing the potential impacts of climate change on the key hydrological

processes  in  the  HYRB  is  an  urgent  and  important  task  for  water  resources

management. 

Our modeling result will provide a proper perspective for investigating the main

influencing climate factors of the hydrological components, which is not only useful

for people to formulate suitable strategies and policies in semi-arid area, but also key

to the sustainable development of the eco-environment in the YRB. With this in mind,
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the goal of the present study was to assess the hydrological responses to the future

projected climate in the HYRB  during the near-future period (2020–2059) and far-

future period (2060–2099). The assessment was made for three RCP scenarios (RCP

2.6, 4.5, and 8.5) using an ensemble of eight downscaled GCMs and SWAT modeling.

The specific objectives were: (1) to validate the suitability and performance of the

SWAT model in simulating the hydrological processes in the HYRB; (2) to predict the

characteristics  of  air  temperature  and precipitation  from CMIP5 GCMs under  the

above three scenarios; and (3) to investigate the spatiotemporal patterns of the key

hydrological components (including AET, soil water, and water yield) over the whole

basin  and  across  the  21st Century.  The  outcomes  of  this  study  are  anticipated  to

provide a good scientific basis for the sustainable management of the HYRB.

2 Materials and methods

2.1 Study area

The HYRB, well known as the ‘water tower’ of the Yellow River basin, is located

in the Qinghai Province and the northeastern part of the QTP with an area of 118,000

km2, accounting for 16.2% of the YRB (Figure 1). The average annual precipitation

(based on observations over the period 1956–2015) is approximately 497 mm and the

average  annual  temperature  is  about  1.8C.  The  average  annual  runoff  (based  on

observations over the period 1956–2012) is 19,800,000,000 m3, which is as much as

about 42% of the runoff of the Yellow River Basin in the corresponding period. In
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comparison with the middle and lower reaches, the upper reach of the HYRB is less

affected by anthropogenic activities. So, the response of hydrological components to

climate change could be reflected objectively in the HYRB. 

2.2 Model description

The SWAT model was developed by the United States Department of Agriculture,

Agricultural Research Service (USDA-ARS), and has been widely used to predict the

impact  of  climate  change  and land use  change on water,  sediment,  and chemical

components (Arnold et al., 1998). The hydrological components in the SWAT is based

on the water balance equation (Gassman et al., 2007):

SW t=SW +∑
i=1

t

(Ri−Qi−ET i−Pi−QRi ) (1)

where SW is the soil water content, i is the time t (days) for the simulation period, R

(mm),  Q  (mm),  ET  (mm),  P  (mm),  and  QR  (mm)  are  the  daily  amounts  of

precipitation,  runoff,  evapotranspiration,  percolation,  and  return  flow,  respectively.

Hydrological Response Unit (HRU) is the basic unit in SWAT. The HRU is defined as

a  unique  aggregation  of  land  use,  soil  properties,  management,  and  terrain  slope

(Flügel, 2010; Patel and Srivastava, 2013). In the modeling process, we facilitated the

elevation band to discretize the topographic effects of temperature and precipitation

into snow melting and runoff (Hartman et al., 1999).

2.3 Model input data

The  monthly  streamflow  data  observed  over  the  period  1970–2010  at  the
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Tangnaihai  gaging  station  were  provided  by  the  Yellow  River  Conservancy

Commission  of  the  Ministry  of  Water  Resources  (http://www.yrcc.gov.cn/).

Meteorological data observed over  the period 1951–2015 at  16 stations,  including

daily maximum temperature (TMAX), minimum temperature (TMIN), precipitation,

wind speed, solar radiation, and relative humidity, were provided by the Data Center

of the China Meteorological Administration (CMA, http://data.cma.cn/). The input data

also included digital elevation model (DEM), soil type, and land use. The 90 m × 90

m Shuttle Radar Topography Mission (SRTM) DEM were used to extract the flow

direction and accumulation, create streams, delineate the watershed, and calculate the

subbasin parameters. Land use data of the year 1980 (1 km × 1 km) and soil data with

a 1:1 million scale were provided by the Ecological and Environmental Science Data

Center for West China (http://westdc.westgis.ac.cn). Land use data were reclassified into

seven  major  classes  including  mid-density  and  sparse  grassland  (56.9%),  dense

grassland (19.0%), barren or sparsely vegetated land (14.4%), forest (7.3%), water

bodies (2.8%), cropland (0.4%) and urban, industrial and residential land (0.03%).

2.4 Model setup, calibration, and validation

The  HYRB was  divided  into  157 subbasins  based  on DEM and digital  stream

network information, and the subbasins were further divided into 2205 HRUs using a

threshold of 5% for each of land use, soil class, and slope.  The monthly streamflow

data from the Tangnaihai gauging station at the watershed outlet was used to calibrate

and validate the SWAT model. In this study, SWAT-CUP (Calibration and Uncertainty
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Procedures)  was  used  to  identify  the  set  of  parameters  based  on  the  sensitivity

analysis and generate the optimized values of the parameters (Abbaspour et al., 2007;

Andrianaki et  al.,  2019;  Xu et  al.,  2009) (listed  in  Table  2).  The  Sequential

Uncertainty  Fitting  version  2  (SUFI-2)  algorithm  was  adopted  for  the  parameter

optimization in this  study  (Yang et  al.,  2008).  The monthly streamflow data were

available for 40 years (1971–2010), from which a twenty-year (1981–2000) record of

monthly  streamflow  was  used  to  calibrate  the  model,  and  the  other  twenty-year

(1971–1980 and 2001–2010) record  was used for  validation.  We used a  series  of

numeric  criteria  to  evaluate  the  model  performance,  including  the  Nash-Sutcliffe

efficiency (NSE),  coefficient  of  determination  (R2),  and percentage  bias  (PBIAS).

Details of these are presented in Appendix 1.

2.5 Future climate scenarios

In this study, eight General Circulation Models (GCMs) were selected for climate

change  projections.  The  data  were  downloaded  from  the  ESGF’s  website

(http://pcmdi9.llnl.gov/). Details of the data sources used in this study are presented in

Table 1. The daily data sets (precipitation, maximum and minimum temperatures) of

the  above  three  GCMs  were  selected  under  RCP  2.6,  4.5,  and  8.5  scenarios

(representing a very low forcing scenario, medium stabilization scenario,  and very

high  emission  scenario,  respectively)  to  predict  the  future  climate  scenarios.  Two

future  periods  were  considered  to  study  the  temporal  change  of  hydrological

components:  near  future:  2020–2059  and  far  future:  2060–2099.  The  impacts  of

climate  change  on  hydrological  components  were  investigated  by  comparing  the
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yearly  and  monthly  difference  between  the  baseline  (1976–2015)  and  the  future

projections  from  the  model  outputs.  Specifically,  we  used  absolute  changes  to

evaluate future maximum and minimum temperature, and relative changes to evaluate

future precipitation, AET, soil water, and water yield.

Before implementing the GCM output data in SWAT modeling, it is necessary to

downscale the raw data to get a fine resolution (Wilby et al., 2002). In this study, we

used  bilinear  interpolation  to  obtain  high-resolution  data  that  could  be  used  in

hydrological models (Bae et al., 2015; Sun et al., 2016); see Appendix 2 for details.

Then we used a simple bias correction method to correct the downscaled data. The

correction of precipitation used the relative change between the monthly observed and

simulated  data  of  the  historical  period  (1971–1990),  while  temperature  used  the

monthly absolute change for the historical period.  These biased climate data were

calculated as follows:

Pfm=(1+αm )×P fm0

(2)

αm=
Phm−Phm0

Phm0

(3)

T fm=βm+T fm 0 (4)

βm=T hm−T hm0 (5)

where  m is  the  month  m,  Pfm and  T fm are  the  corrected  GCMs precipitation  and

temperature,  Pfm 0 and  T fm 0 are initial GCMs precipitation and temperature,  Phm and

T hm are GCMs precipitation and temperature data in historical period,  Phm0 and T fm0

are CMA precipitation and temperature data.
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The  GCMs  data  were  evaluated  by  comparing  with  the  CMA data  during  the

historical  period (1986–2005) (Figure 2).  Although the downscaling procedure for

precipitation  underestimated  some  peaks,  the  downscaled  data  were  generally

consistent with the CMA-based observations, with R2 being 0.87 (Figure 2a). For the

monthly maximum and minimum temperatures, the downscaled data were in much

closer agreement with the observed data than the case for monthly precipitation, as

shown in  Figure  2b  and  c.  The  R2 between  monthly  temperature  (maximum and

minimum) derived from the downscaled GCMs and CMA exceeded 0.95 (0.96 for

maximum  and  0.98  for  minimum).  Generally,  both  the  simulated  downscaled

precipitation and the temperature values were in close agreement with the observed

ones, suggesting that the real climate conditions of the study area (HYRB) could be

fairly accurately reflected by the downscaled climate data derived from the GCMs.

2.6 Statistical analysis

In  this  study,  the  unitary  linearity  regress  method  was  used  to  fit  the  relation

between variables. The prediction model of the univariate linear regression analysis

method is as follows:

Y t=ax t+b (6)

b=
∑ Y i

n
−a

∑ x i
n

(7)

a=
n∑ xiY i−∑ x i∑ Y i

n∑ x i
2−(∑ x i)

2 (8)

 14 / 40

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

27
28



where  x t represents the value of independent variable in t period,  Y t represents the

value of dependent variable in t  period,  a and b represent the parameter of linear

regression equation.

We  also  used  Mann-Kendall  nonparametric  rank  test  to  analyze  the  trend  of

hydrological and meteorological elements  (Kendall and MauriceG, 1979). The rank

correlation test  for two sets  of observations  X=x1 , x2 ,… xn and  Y= y1 , y2 ,… yn is

formulated as follows. The statistic S is calculated as follows:

S=∑
i< j

aij bij (9)

where

a ij=sgn (x j−x i)={
1 xi< x j

0 x i=x j

−1xi>x j

(10)

and b ij is similarly defined for the observations in Y. Under the null hypothesis that X

and Y are independent and randomly ordered, the statistic S tends to normality for

large n, with E(S)=0 and variance given by:

var (S )=
n(n−1)(2n+5)

10
(11)

The significance of trends is tested by comparing the standardized test statistic Z

with the standard normal variate at the desired significance level. Z is calculated as:

Z={
(S−1)

√var (S)
S>0

0S=0
(S+1)

√var (S)
S<0

(12)

|Z|≥1.64  means  that  the  confidence  level  in  the  current  test  is  more  than  95%
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(p<0.05).

3 Results

3.1 Model evaluation

A visual  comparison  of  the  monthly  simulated  streamflow  values  against  the

monthly observed streamflow values for the calibration (1981–2000) and validation

(1971–1980 and 2001–2010) periods is shown in Figure 3. Although there were three

peak flows (e.g., 1981, 1983, and 1999) underestimated and two peak flows (e.g. 1995

and 2007) overestimated during extreme high-water years, the monthly streamflow

simulations  generally  matched  well  with  the  observations.  The  results  from  the

statistical evaluation were presented in Table 3. For the calibration period, the model

performed efficiently with the NSE of 0.85, R2 of 0.86, and PBIAS of -0.3%. As for

the validation periods, the NSEs were 0.87 and 0.82,  R2 were 0.88 and 0.89,  and

PBIAS were -0.3% and 11.3% for validation period I  (1971–1980) and validation

period II (2001–2010), respectively. Based on the performance ratings of assuming

typical  uncertainty  in  observations  given by  Pereira et  al. (2016),  the  streamflow

simulation in this study could be evaluated as ‘good’ (|PBIAS| ≤ 15%, 0.8 ≤ NSE, and

R2 ≥ 0.85). These results indicate that the SWAT model performed well in the HYRB

and can be used to  investigate  the future climate change impacts  on hydrological

processes.
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3.2 Historical spatiotemporal characteristics of key hydrological components

Figure 4 showed that the average annual AET was about 292 mm during 1976–

2015, with a range of 250 mm in 1997 to 329 mm in 2012. SD (standard deviation) of

AET was 19.46 mm, which means AET fluctuated greatly during the study period.

The linear fitting results showed that AET in the whole region increased significantly

with  a  rate  of  0.93  mm/yr,  which  was  due  to  the  increase  of  precipitation  and

temperature in this region (Figure S1). Spatially, in comparison with the northwestern

part, the southeastern part of the basin had a higher AET value (Figure 5 a). From

1976 to 2015, AET increased mainly in the southeast, central and western parts of the

basin, and the change in most areas is significant. While it decreased slightly in the

northeast  (Figure 5 d and g).  Table 4 showed that 84.2% of the basin experienced

increased AET with a rate ranging from 0.1 to 2.0 mm/yr, with significant increasing

portion detected for 74.0%.

The basin-average soil water approximately amounted to 120 mm during 1976–

2015 (Figure 4). During the study period, the minimum soil water was 116 mm, which

appeared in 1988, and the maximum value was 126 mm, which appeared in 1983. Soil

water  in  the whole region showed a slightly decreasing trend with a  rate  of 0.05

mm/yr during the 40-year period. Soil water showed an increasing gradient from the

northwest  to the southeast  with a  range of 0 to 578 mm (Figure 5 b).  There was

abundant rainfall and high coverage grassland in the southeast, which could increase

the retention time of rainwater on the land surface and increase the infiltration of

rainwater, so the soil water in this area was higher.  Figure 5 h showed that the area
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with decreased soil water was greater than the increased one, and we could also find

the same result from Table 4. 

Water yield refers to the capacity of a catchment to supply water  (Arnold et al.,

1998). The average water yield in study area was 205 mm with a range of 147 to 305

mm during 1976–2015 (Figure 4). The SD of water yield was 35.65 mm, and the

linear  fitting results showed that the water yield decreased by 0.02  mm/yr, and the

downward trend was insignificant. From Figure 5 c, we found that water yield of the

basin  had  obvious  spatial  heterogeneity,  that  is,  water  yield  of  the  eastern  and

southern region was much higher than that in the western and northern area. During

the study period, water yield mainly showed a decreasing trend in the south of basin

(about 51.8% of the whole basin), while the western and northern regions showed an

increasing trend (48.2% of the whole basin) (Figure 5 i and Table 4). Besides, there

was  no  statistical  significance  in  the  trend  of  water  yield  in  both  increasing  and

decreasing areas.

3.3 Projected climate over the 21st century

The downscaled data were analyzed for the two future time periods: near future

(2020–2059) and far future (2060–2099).  The future bias-corrected scenarios RCP

2.6, RCP 4.5, and RCP 8.5 were then compared with the observed climate data from

the historical period (1976–2015).

Figure  6 showed  that  during  the  near  future period,  the  annual  increases  in

precipitation were found to be 7.3%, 7.6%, and 7.8% under RCP 2.6, RCP 4.5, and
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RCP  8.5,  respectively.  The  annual  precipitation  was  projected  to  continuously

increase in the HYRB under three RCPs during the far future period. From the Table

5, we found that the CV (coefficient of variation) of  far future period precipitation

was higher than that of near future period precipitation. Figure 7 (a) showed that the

precipitation in the HYRB mainly concentrated from May to September every year

during the historical period. The rainfall in the study area would increase in every

month,  while  the  changes  in  monthly  projected  rainfall  showed  large  differences

(Figure 7 b). The precipitation increased most obviously in January and November. In

particular, it was anticipated to increase by 63% and 63.3% in these two months under

RCP 8.5 scenario during the far future period. These results indicated that the future

precipitation changes had temporal heterogeneity under different scenarios.

Both annual and monthly temperatures showed a significant warming trend across

the HYRB (Figure 6 and Figure 7). Under RCP 2.6, the increment of temperature was

similar during the  near future and  far future periods. Under RCP 4.5 scenario, the

maximum temperature increased by 1.6 °C and the minimum temperature increased

by  1.5  °C  in  the  near  future period.  The  maximum  temperature  and  minimum

temperature increased by 2.6 °C and 2.4 °C respectively in the far future period. The

HYRB was projected to experience the warmest period at  the end of this century

under RCP 8.5, in which period the maximum temperature and minimum temperature

were expected to increase by 4.5 °C. Table 5 indicated that the CV of far future period

temperature  was  higher  than  that  of  near  future period  temperature.  Figure  7 (a)

showed that the maximum values of the maximum and minimum temperature in the
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HYRB appear  in  July and the minimum values appear in January.  The maximum

temperature increased the most in October (by 5.2 °C), and the minimum temperature

increased the most in March (by 6.4 °C), which occurred in the RCP 8.5 scenario at

the end of this century (Figure 7 c and d). 

3.4 Hydrological responses to projected climate change

  We analyzed the effects of climate change on several key hydrological components

in the HYRB, including actual evapotranspiration (AET), soil water, and water yield.

Figure 8 and  Figure 9 showed the annual and monthly change, respectively, of the

future AET, soil water, and water yield.

Figure 8 indicated that AET was sensitive to climate change. During the near future

period, the increment of AET in the three RCPs was similar, ranging from 31.9% to

35.3%.  During  the  far  future  period,  AET continued  to  increase,  with  the  most

dramatic increase under RCP 8.5 scenario, which might be related to obvious increase

of precipitation and temperature in the HYRB. From the Figure 9 (a), we found that

the AET in historical period reached its maximum in July. During the near future and

far future period, AET showed an increasing trend (Figure 9 b). AET was projected to

increase  greatly  in  March,  April,  October,  and  November,  and  the  maximum

increment occurred under RCP 8.5 scenario at the end of this century, with a change

rate of 174%. Figure 10 showed the spatial changes of AET compared with historical

periods. The AET of the whole basin would increase in the future, while it increased

more obviously in the eastern and southern part of the basin, indicating more water

 20 / 40

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

39
40



loss in this region in the future. Compared with RCP 2.6 and RCP 4.5, AET increased

most under RCP 8.5, which was related to the different temperature changes under the

three scenarios.

Soil  water  decreased  slightly  during  near  future  period,  by  3.1%  in  RCP 2.6

scenario, 6.1% in RCP 4.5, and 8.5 scenarios (Figure 8). By the end of this century,

soil  water decreased more obviously, by 13.3% under RCP 8.5 scenario compared

with  base  period,  which  could  affect  the  absorption  of  water  by  vegetation  The

monthly variation of soil water was shown in Figure 9 (c). Under different scenarios,

soil water decreased most obviously in April and May. The change of soil water was

similar to that of temperature, which meant that although the rainfall increased in this

region, the increase of ET due to raise of temperature played a greater role. Figure 11

showed that the decrease of soil water was predicted to be mainly in the west, middle

and export areas of the basin, while it  would increase slightly in the southeastern

region. Compared with the near future period, the increment of soil water in southeast

may decrease during the far future period, and even turn to a decrease.

Under  the  combined  effects  of  increased  temperature  and  variations  in

precipitation,  the water  yield  showed a  decrement  of  16.5–20.1% during  the near

future  period  (Figure  8).  At  the  end  of  this  century,  due  to  the  increase  of

precipitation,  the  water  yield  would  be  no  longer  continuously  reduced,  and  the

decline rate was similar to that the near future period (15–19.5%). Table 6 indicated

that water yield had a larger range of variation and correlation than AET and soil

water. Figure 9 (a) showed that during the base period, the lowest level of water yield
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occurred in January, and then increased sharply in May. Water yield peaked in July

and decreased after September. From Figure 9 (d), we found that the water yield in

February, March and November showed an obvious increasing trend compared with

the historical period. The highest change was in February, with a change rate of 39.1–

129%. The relative changes were also obvious because of the small value of absolute

water yield in winter. Besides, water yield was projected to decrease from May to

August in each scenario.  Figure 12 was the change of water yield during two future

periods. We found that water yield in most HRUs would decrease under three RCPs,

which was related to the obvious increase of AET. The water yield was predicted to

increase only in a few areas, mainly distributed in the southeast of the basin, with the

variation range of 1–70 mm. Compared with the near future period, the decline of

water yield at the end of this century was reduced, which might be caused by the

increase of rainfall. 

4 Discussion

4.1 Intense climate change and potential threats

Our study found that the climate in HYRB would become wetter in terms of the

changes  of  precipitation,  especially  during  far  future period  under  the  RCP 8.5

scenarios.  The rainfall  was  projected  to  increase  by  7.3–7.8% for  the  near  future

period and 9.0–17.9% for the  far future period. Increased precipitation will  have a

positive effect on AET, soil water, and water yield in study area. The result of the

increases in precipitation was generally in line with Feng et al. (2016) and Li et al.

(2008).  Compared with summer (June, July, and August), the monthly dynamics of
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precipitation  in  other  months  was  more  obvious,  which  may  affect  the  monthly

variation of hydrological components in HYRB.

For temperature, the results suggested an increase in both maximum and minimum

temperature in the future, and this increasing trend of future temperature is consistent

with that in the historical period (Figure S1). During the near future period, the raises

of temperature were projected to be substantially similar under RCP 2.6, RCP 4.5, and

RCP  8.5,  indicating  that  the  different  emissions  scenarios  would  not  lead  to

significantly different temperature responses. However,  the increase in temperature

began to diverge under different emission scenarios during the far future, since the

temperature increase was generally 3 °C more under RCP 8.5 than under RCP 2.6.

Furthermore,  Figure  7 showed that  projected  increment  of maximum temperature

were slower than that of minimum temperature, which is consistent with most areas

around the world and might lead to a decline in diurnal temperature range (DTR) and

considerably affect the growth of vegetation  (Donat et al., 2013;  Feng et al., 2018;

Morak et al.,  2013).  According to the fifth assessment report (AR5) of IPCC, the

simulation results showed that the global average temperature rise could reach 2.6–4.8

°C by the end of the 21st century (Stocker et al., 2013), with the temperature projected

to increase more at higher elevations and latitudes (Hu et al., 2014; Luo et al., 2019).

Previous  studies  have shown that  the temperature  changes  in  the  Qinghai-Tibetan

Plateau region and the polar regions were more severe than that in other areas (Gao et

al.,  2012;  Overland et  al.,  2014).  As  it  is  climatically  sensitive  and  ecologically

fragile,  the HYRB region and its  environment have been significantly affected by
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climate  change.  For  example,  the  wetland  ecosystem  in  the  HYRB  plays  an

irreplaceable role in water source conservation, run-off adjustment, and biodiversity

maintenance. Climate change will make future efforts to restore and manage wetlands

more complex  (Erwin, 2008). Consequently, the increasing temperature may cause

serious  disturbances  to  the  ecological  structure  and  degradation  of  ecosystem

functions, posing a threat to the safety of ecosystems in the middle and lower reaches

of the Yellow River Basin. 

4.2 Projected hydrologic changes and influencing climate factors

Quantifying the influence of climate factors on hydrological processes is essential

for  water  resources  management,  especially  in  semi-arid  region.  The  AET  was

projected to increase by 31.9–35.3% for the near future period and up to 33.5–54.3%

for the far future period, which was relative to the combined influence of precipitation

and temperature. While as for monthly change, the increase in AET in May, June,

July, and August was less than other periods. This was due to the reason that the

change in precipitation in same period was small, although the temperature increment

was similar to other periods. Therefore, the change in temperature made the AET in

whole area increase, but the monthly scale change of AET would be greatly affected

by precipitation. The warm and wet climate could lead to a downward trend in soil

water in the future. The raise of rainfall might have a positive effect on soil water, but

the increment of AET due to temperature would result in a decreasing trend of it.

Also, due to severe temperature rise, soil water was predicted to continue to decline
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during  far future period, which meant that in the study area, temperature dominated

changes in soil water. 

The water yield would reduce by 16.5~20.1% for the near future period, which may

imply that the HYRB would be under a severe water stress during the mid-century

period. The magnitude of the decline in water yield obtained from this study was a

little higher than that from Lin et al. (2012), who reported a decrease of about 9.5%

(2020s) under the A2 scenario in the HYRB. We found that the water yield showed a

decreasing trend from May to August both in two periods. The decline of water yield

was due to the increase in AET caused by warming, even if the precipitation was also

raising during the same period. So  the increase in ET would be the main cause for

water yield decrease. Meng et al. (2016) found that runoff in the HYRB decreased by

about 20% in the 2000s, during which precipitation contributed for 3% to the runoff

reduction,  while  the  increase  in  AET accounted  for  97%.  Besides,  due  to  strong

warming over the region, AET has been playing an increasingly important role in

influencing runoff changes in recent decades. In the end of this century, driven by the

increased  precipitation,  water  yield  would  no  longer  continue  to  decrease,  with  a

decline by  15–19.5% for the  far future period. Hence the variation of temperature

would dominate the changes in water yield in the HYRB, while rainfall can affect it to

some extent. 

4.3 Implication

The climate warming has been regarded as an undoubted fact and could further

 25 / 40

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

49
50



exert adverse effects on the soil water yield, which can alert decision makers for the

potential risks, including drought. For example, the reduction of water yield in May to

August due to the increment of temperature in the HYRB could be an indicator of

reduced water  availability  in  the  growing season.  Therefore,  there  was  a  concern

about steady water supply for industrial purposes and crop irrigation not only in the

HYRB, but also in the whole Yellow River Basin. Besides, the raising AET and the

resulting decline of soil water, especially in irrigation period (May to August), would

cause an increasing potential of water stress on crop growth and a resulting increase in

water demand for irrigation. Therefore, the reduction in water yield in the HYRB and

the increase in irrigation demand require watershed managers to pay attention to the

more  effective  water-use  schemes  and optimizing  effective  water-saving irrigation

equipment. 

Many semi-arid regions have the characteristics of water shortage, fragile natural

resources,  obvious  climate  change,  and  great  social  pressure  (Krol et  al.,  2006).

Integrated  studies  including  climatology  and  hydrology  are  required  to  evaluate

possible strategies to make semi-arid areas less susceptible to current and changing

climate. Our modeling study provided a proper perspective for investigating the main

influencing climate factors of the hydrological components in semi-arid area. This is

certainly  informative  and valuable  for  people  who are  interested  in  the  modeling

research  related  to  water  cycles  and  its  response  to  climate  change,  and a  better

understanding  of  climatic  and  hydrological  changes  in  semi-arid  areas  is  highly

required to formulate specific and suitable strategies in water resources management
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(Shen et  al.,  2019).  Besides,  climate  change dominated  the  hydrological  shifts  in

alpine region (Yang et al., 2019). Considering the co-effects of both climate and land

cover  changes  on  the  hydrological  cycle,  such  a  headwater  area  with  minimal

disturbance  by  human  activities  is  suitable  for  diagnosing  the  historical  changes

without the challenge of disentangling the land cover changes. In general, although

this research is a case study, out results can not only be helpful for understanding the

hydrological responses to climate change in semi-arid areas and alpine areas, but also

demonstrates the necessity to predict future climate and water cycle changes at local

areas, especially when seeking decision support, which can help managers to develop

adaptive strategies to mitigate risks and benefit the public.

4.4 Limitations and uncertainties

The soil  type,  land use,  and anthropogenic  activities  have  a  great  influence  on

hydrological  components,  and  this  may  lead  to  over/under-estimation  of  the

hydrological components. Besides, previous studies have indicated that high-altitude

catchments  would  experience  more  complex  hydrological  changes  because  of  the

important role of glaciers,  snowmelt,  and freeze-thaw process of soil  in the water

balance (Wang et al., 2015), while we did not take these processes into account in this

study because of the model simulation ability. In the future, we will carry out relevant

researches.  Furthermore,  there  are  inherent  uncertainties  in  the  GCMs  processes

(Zhou et  al.,  2015).  Although out study adopted the arithmetic ensemble averages

from the hydrological model outputs that are driven by the eight GCMs to address this

 27 / 40

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

53
54



uncertainty,  due  to  the  complexities  involved in  the  climate  change phenomenon,

accurately predicting future climate change is  very difficult  (Knutti  and Sedláček,

2012).

5 Conclusions

In this study, we investigated the projection of future climate and its impacts on key

hydrological components in the HYRB. The SWAT was calibrated and evaluated for

the HYRB. The model performed successfully with satisfactory NSE, R2, and PBIAS

values. Temporally, AET showed an significantly increasing trend during 1976–2015,

while soil water and water yield decreased slightly. Spatially, these key hydrological

components  exhibited  a  substantial  heterogeneity.  The  precipitation  projections

indicated that there would be a slight increase of 7.3–7.8% during the  near future

period  and  an  increase  by  9.0–17.9%  during  the  far  future period.  The  climate

projections showed a warming of 1.3–1.9 °C for the near future period and 1.5–4.5 °C

for the far future period for the maximum temperature. The corresponding values for

the minimum temperature were 1.2–1.8 °C and 1.3–4.5 °C. And the projected changes

in the maximum temperature were slower than those in the minimum temperature in

January, February, March, November, and December. Due to the wetter and warmer

climate,  AET was predicted  to  increase dramatically  under  three RCPs,  and there

would be an increment in the whole basin compared with historical period. As for soil

water, there would be a slight decline of 3.1–6.1% during the near future period and a

decrease of 4.2–13.3% during the  far future period. The spatial  changes would be
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much  complicated,  but  soil  water  in  most  HRUs  would  show a  decreasing  trend

mainly caused by warming. The synergistic effect of the climate change would result

in a 16.5–20.1% reduction in water yield during the near future period. In the end of

this  century,  driven  by  the  increased  precipitation,  water  yield  would  no  longer

continue to decrease, with a decline by 15–19.5%. So in the HYRB, the variation of

temperature would dominate the changes in water yield in the HYRB, while rainfall

can affect it to some extent. Besides, the obvious reduction of water yield from May

to August would lead to more severe water crisis not only in study area, but also in the

whole Yellow River basin.

Our study examined the spatiotemporal hydrological dynamics in the HYRB under

future  climate  change  conditions.  The  prediction  facilitates  the  development  and

implementation  of  an  effective  water  management  plan  in  advance  to  minimize

potential negative water resources issues in the Yellow River basin. To achieve even

more reliable results, future research should consider other factors besides climate

change, such as land use changes and increased CO2 concentrations due to human

activities. We will address this in our future studies.

6 Acknowledgments

This study was funded by the National Key Research and Development Program of

China  (2019YFC0507403),  the  Strategic  Priority  Research  Program  of  Chinese

Academy of Sciences (XDB40020205), the National Science Foundation of China

(31961143011),  and  National  Thousand  Youth  Talent  Program of  China.  We also

 29 / 40

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

57
58



thank the HPCC Platform in Xi’an Jiaotong University for computing equipment and

computer maintenance.

Data Availability Statement

The  data  that  support  the  findings  of  this  study  are  available  from  the

corresponding author upon reasonable request.

Appendix 1. Model performance assessment
  To  measure  the  model  performance,  the  Nash-Sutcliffe  Efficiency  (NSE)

(Mandeville et al., 1970), the coefficient of determination (R2) , and the percentage

bias (PBIAS) were used in this study. These criteria were calculated as follows:

NSE=1−
∑
i=1

n

(Qm.i−Qs ,i)
2

∑
i=1

n

(Qm.i−Qm,avg)
2

(5)

R2=¿¿¿ (6)

PBIAS=
∑
i=1

n

(Qs .i−Qm,i)

∑
i=1

n

Qm. i

×100% (7)

where Qm. i and Qs , iare measured and simulated streamflow at each time step i; Qm, avg

and Qs , avg are the mean measured and simulated streamflow; and n is the number of

time steps.

  The NSE describes the explained variance for the observed values over time that is

accounted for by the model  (Green and Griensven, 2008). The PBIAS measures the
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average difference between observation and simulation. The closer NSE and R2 are to

1, and PBIAS to 0, the better the SWAT model performs.

Appendix 2. Bilinear interpolation downscaling method
Bilinear interpolation, as an extension of linear interpolation, is used to interpolate

functions of two variables (e.g.,  x and y) on a rectilinear 2D grid in mathematics

(https://en.wikipedia.org/wiki/Bilinear_interpolation). The method is described as follows:

Suppose get the value of the unknown function f  at point P=(x , y ). It’s assumed

that  we  know  the  value  of  the  four  points  of  the  function  f  at  Q11=(x1 , y1),

Q12=( x1 , y2)
, 
Q21=(x2 , y1)

, 
Q22=(x2 , y2)

 (Figure S2).

  First, linear interpolation is performed in the x-direction:

f (R¿¿1)≈
x2−x

x2−x1
f (Q¿¿11)+

x−x1
x2−x1

f (Q¿¿21)¿¿¿ (2)

where, R1=(x , y1),

f (R¿¿2)≈
x2−x

x2−x1
f (Q¿¿12)+

x−x1
x2−x1

f (Q¿¿22)¿¿¿ (2)

where, R2=(x , y2).

  Then, linear interpolation is performed in the y-direction:

f (P)≈
y2− y

y2− y1
f (R¿¿1)+

y− y1
y2− y1

f (R¿¿2)¿ ¿ (3)

  Finally, the desired estimate of f (x , y ):

f ( x , y )≈
f (Q¿¿11)

(x2−x1) ( y2− y1 )
(x2−x ) ( y2− y )+

f (Q¿¿21)

(x2−x1 ) ( y2− y1 )
(x−x1 ) ( y2− y )+

f (Q¿¿12)

(x2−x1 ) ( y2− y1 )
(x2−x ) ( y− y1 )+

f (Q¿¿22)

(x2−x1 ) ( y2− y1 )
(x−x1 ) ( y− y1 )¿¿¿¿(4)
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Table captions

Table  1. Information of the eight General Circulation Models (GCMs) used in this

study.

Table  2. Calibrated  parameter  values  for  the  headwater  area  of  the  Yellow River

Basin.

Table  3. Evaluation of model performance in monthly streamflow simulation at the

Tangnaihai gaging station during the twenty-year (1981–2000) calibration and

twenty-year (1971–1980, 2001–2010) validation periods.

Table  4.Area  percentage  of  the  changing  trends  of  the  three  key  hydrological

components during 1976–2015.

Table  5. Variations in annual precipitation, maximum air temperature (TMAX), and

minimum air temperature (TMIN) during the near future (NF, 2020–2059)

and far future (FF, 2060–2099) periods under RCP 2.6, RCP 4.5, and RCP

8.5  compared  with  the  baseline  period  (1976–2015).  CV  denotes  the

coefficient of variation of model annual averages.

Table 6. Variations in annual AET, soil water, and water yield during the near future

(NF, 2020–2059) and far future (FF, 2060–2099) periods under RCP 2.6,

RCP 4.5, and RCP 8.5 compared with the baseline period (1976–2015). CV

denotes the coefficient of variation of model annual averages.
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Figure captions

Figure 1. The location and brief description of the headwater area of the Yellow River

Basin, China.

Figure  2. Comparison of observed and GCM-derived (a) monthly precipitation, (b)

maximum and  (c)  minimum temperature  in  the  HYRB during  1986 and

2005.

Figure 3. Monthly streamflow simulation at the Tangnaihai gaging station during the

calibration  period  (1981–2000)  and  the  validation  periods  (1971–1980,

2001–2010).

Figure  4. Temporal changes in annual AET (actual evapotranspiration), water yield,

and soil water during 1976–2015. SD means standard deviation.

Figure 5. Spatial distributions of (a-c) annual mean key hydrological components, (d-

f)  annual  trends  of  key  hydrological  components,  and  (g-i)  probability

density  distribution  of  trends  in  the  HYRB  during  1976–2015  on  the

Hydrologic Response Unit  (HRU) level.  "///"  indicates that  the trend has

passed the significance test (p<0.05).

Figure 6. Ensemble values of annual mean precipitation, maximum and minimum air

temperature under three RCPs during the future period of 2020–2099. The

blue, green, and red lines represent the historical period, near future (NF,

2020–2059), and the far future (FF, 2060–2099) periods, respectively. The

shading  area  denotes  the  ±1  standard  deviation  range  of  model  annual
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averages.

Figure  7. (a) Monthly mean precipitation,  maximum and minimum air temperature

during  baseline  period  (1976–2015).  (b)  Projected  changes  in  ensemble

monthly mean precipitation, (c) maximum and (d) minimum air temperature

during  the  near  future  (NF,  2020–2059)  and far  future  (FF,  2060–2099)

periods under RCP 2.6, 4.5, and 8.5 relative to baseline.

Figure  8. Ensemble  values  of  annual  mean  AET (actual  evapotranspiration),  soil

water, and water yield under three RCPs during the future period of 2020–

2099. The green and red lines represent the near future (NF, 2020–2059) and

the  far  future  (FF,  2060–2099)  periods,  respectively.  The  shading  area

denotes the ±1 standard deviation range of model annual averages.

Figure  9.  (a)  Monthly AET (actual  evapotranspiration),  soil  water and water yield

during the baseline period (1976–2015) and the projected monthly changes

in (b) AET, (c) soil water, and (d) water yield during the near future (NF,

2020–2059) and the far future (FF, 2060–2099) periods under the RCP 2.6,

4.5, and 8.5 relative to baseline in the HYRB.

Figure  10. The difference  of AET (actual  evapotranspiration)  between near  future

(2020–2059)  and  historical  period,  far  future  (2060-2099)  and  historical

period under the RCP 2.6, 4.5, and 8.5.
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Figure  11. The  difference  of  soil  water  between  near  future  (2020–2059)  and

historical period, far future (2060–2099) and historical period under the RCP

2.6, 4.5, and 8.5.

Figure  12. The  difference  of  water  yield  between  near  future  (2020–2059)  and

historical period, far future (2060–2099) and historical period under the RCP

2.6, 4.5, and 8.5.

Figure  S1. Temporal  changes  in  annual  precipitation,  maximum  temperature,

minimum temperature, wind speed, relative humidity, and solar radiation in

the headwater area of the Yellow River Basin (HYRB) during 1966–2015.

Figure S2. Bilinear-interpolation schematic diagram.
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