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Abstract

The paper investigates the exponential stability criterion for an axially moving

string system driven by a nonlinear partial differential equation with nonlinear bound-

ary feedback. The control criterion based on a sector condition contains a large class

of nonlinearities, which is a negative feedback of the velocity at the right boundary

of the moving string. By invoking nonlinear semigroup theory, the well-posedness

result of the closed-loop system is verified under the sector criteria. Furthermore, a

novel energy like function is constructed to establish the exponential stability of the

closed-loop system by using a integral-type multiplier method and the generalized

Gronwall-type integral inequality.
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1 Introduction and Main results

In the past ten years research of axial motion systems has received much attention, such as

in paper sheets, conveyor belts, fiber, magnetism tapes and robotic arms, etc. However,

these systems are all affected by transverse vibration. This encouraged researchers to

explore different control methods to suppress vibrations in these systems. One of the

most powerful mechanical devices used in this area is feedback control at the boundary

due to the ease of implementation, for example, see [1, 2, 3, 4]. For a recent review of

axially moving systems, we refer the reader to [5]. Most controllers are designed for linear

models of axially moving strings [6, 7, 8, 9], including linear discrete systems, passive

control laws with linear damping, or different active control laws.

To the best of our knowledge, there are few papers which are relaxed to the design

criteria of the controller for axially moving strings described by nonlinear partial differen-

tial equations. It is worth mentioning that, [10] and [11] provided two kinds of nonlinear

models to reflect the dynamic behavior of axially moving strings, based on the different

tension structures of string. The motivation of this paper is to propose a more general

nonlinear mathematical model of string and make a design criteria of the controller. In

this paper, we consider a nonlinear axially moving string, which can be expressed by the

following nonlinear partial differential equation (PDE)

ztt(x, t) + 2vzxt(x, t) = [zx(x, t)h(z2x(x, t))]x, x ∈ (0, L), t > 0,

zx(L, t)h(zx(L, t))− vzt(L, t) = U(t),

z(0, t) = 0,

z(x, 0) = f(x), zt(x, 0) = g(x), x ∈ [0, L],

(1.1)

where z(x, t) stands for the transversal deflection at the position x and at time t, v is

the speed of the moving string, L denotes the length of string, h is a continuous function

related to the tension of string, [·]x represents ∂[·]
∂x , U is the boundary control input, f, g

denote the initial displacement and velocity of the string.

When h(z2x(x, t)) ≡ const in (1.1), the exponential stability of the linear control system

where the damping term zt + zx is added in the first equation of (1.1) is established

in [12] with the linear boundary feedback using the Lyapunov method combined with

semigroup theory. When h(z2x(x, t)) = T0 + EA
2 z

2
x(x, t) with initial tension T0 > 0 and U
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is a mass-damper-spring controller, applying semigroup theory the asymptotical stability

of the axially moving control system (1.1) is analyzed in [13]. In this case, based on

the direct Lyapunov method, the exponential stabilization of this control system (1.1) is

established in [14] by means of the linear speed feedback (U = −kzt(L, t) with k > 0).

On the other hand, when h(zx(x, t)) = b − v2 + (1 − b)/
√

1 + z2x(x, t) with b ≥ 1 > |v|,

via linear negative velocity feedback at the right boundary of the string, the exponential

stabilization of the nonlinear axially moving string (1.1) is investigated by the direct

Lyapunov method in [10], where the well-posedness of the system is not provided due to the

fact that the nonlinearity leads to the invalidation of some commonly used approaches like

Faedo-Galerkin method and frequency domain methods. In addition, for related research

of another kind of nonlinear strings (Kirchhoff strings), we refer the reader to Shahruz

and Krishna [15], Shahruz [16], to name a few.

In this paper, the exponential stabilization of the nonlinear axially moving string (1.1)

is considered under the nonlinear controller U(t) = −G(zt(L, t)) where the nonlinear func-

tion G is nondecreasing continuous and satisfies the following sector condition [17]

G(0) = 0, b1 ≤
G(s)

s
≤ b2, ∀ s ∈ R \ {0}, (1.2)

for any given constants b1, b2 > 0. Here the constants b1 and b2 are regarded as the lower

and upper bounds of the sector, respectively. Actually, it is easy to find that a large class

of functions satisfy the sector condition, such as G(s) = 3s+ cos(s) + ln(1 + s2), ∀s ∈ R,

or

G(s) =



2s+ e2 − e+ 4 + ln(s− 1), s > 2,

es − s− e+ 8, 1 < s ≤ 2,

5s+ 2s2, 0 < s ≤ 1,

5s− 2s2, − 1 < s ≤ 0

−e−s + s+ e− 8, − 2 < s ≤ −1,

2s− e−s + e− 6 + ln(−s− 1), s ≤ −2,

(1.3)

with the lower bound b1 = 1 and upper bound b2 = 10, which therefore presents more

flexible choices of actuators in real dynamic systems [17, 20]. The stability of dynamic

system when the nonlinear controller satisfies the sector condition is referred to as absolute

stability, and it was proposed in [18], which mainly concentrated on finite dimensional
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linear systems, for example, [19, 20]. It is worth emphasizing that, to the authors’ best

knowledge, there are few results on the absolute stability of infinite dimensional systems

[21, 22, 23]. The main difficulty in extending the absolute stability of lumped-parameter

systems to that of PDE systems is that the classical methods, the circle criterion and

the Popov criterion, are to some extent ineffective. Moreover, it is another challenge to

complete the well-posedness of nonlinear axially moving strings, including the literature

[10].

Motivated by [27], we apply nonlinear semigroup theory to prove the well-posedness

of the resulting closed-loop system. Furthermore, using the generalized Gronwall-type

integral inequality instead of the Lyapunov direct method, the absolute stability for an

axially moving string system is established under the sector criterion.

We now introduce the following spaces. Let ‖ · ‖ and 〈·, ·〉 denote the norm and the

inner product of L2(0, L). Set H1
e = {z ∈ H1(0, L) : z(0) = 0}. It is clear that H1

e is

a closed subspaces of H1(0, L). Then substituting (1.2) into (1.1) yields the closed-loop

system:

ztt(x, t) + 2vzxt(x, t) = [zx(x, t)h(z2x(x, t))]x, x ∈ (0, L), t > 0,

zx(L, t)h(z2x(L, t))− vzt(L, t) = −G(zt(L, t)),

z(0, t) = 0,

z(x, 0) = f(x), zt(x, 0) = g(x), x ∈ [0, L].

(1.4)

To achieve our objective, we still assume that h is a non-decreasing continuous function

such that

• 0 < α ≤ h(s), ∀ s ∈ R+,

• |s1h(s21)− s2h(s22)| ≤ T0|s1 − s2|, ∀ s1, s2 ∈ R, (1.5)

where the constant α is referred to the initial tension of the string, and T0 is a constant. It

is worth noting here that when h(z2x(x, t)) = b−v2 +(1−b)/
√

1 + z2x(x, t) with b ≥ 1 > |v|

in [10], assumption (1.5) on h is obviously satisfied.

Let

E(t) =
1

2

∫ L

0
z2t (x, t)dx+

1

2

∫ L

0
ĥ(zx(x, t))dx (1.6)
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denote the string energy where ĥ(s) =
∫ s2
0 h(τ)dτ. The following lemma is given to show

that the energy function E(t) is non-increasing.

Lemma 1.1 Suppose that assumption (1.5) and the sector condition (1.2) hold. Then,

the derivative of the energy function along the solution of (1.4) satisfies

d

dt
E(t) ≤ −b1z2t (L, t). (1.7)

As a result, E(t) ≤ E(0) for all t ≥ 0.

By using nonlinear semigroup theory (see Barbu [24] or Komornik [25]), the well-

posedness result of the closed-loop system (1.4) is provided by the following theorem.

Theorem 1 If the assumptions of Lemma 1.1 and z0, z1 ∈ H1
e are satisfied, the system

(1.4) admit a unique weak solution such that z ∈ C([0,∞),H1
e).

To obtain the absolute stability for the closed-loop system (1.4), a generalized Gronwall-

type integral inequality [26, p. 24] is presented in the following.

Lemma 1.2 Assume that there exists a constant ρ > 0 such that∫ ∞
T
Yp+1(s)ds ≤ 1

ρ
Y(T ) for all T ≥ 0,

where Y : [0,+∞)→ [0,+∞) is a non-increasing real valued function. Then, the following

inequality holds:  Y(t) ≤ Y(0)e1−ρt, if p = 0,

Y(t) ≤ Y(0)(1+ppρt )1/p, if p > 0.
(1.8)

Now, we illustrate the absolute stability of the closed-loop system (1.4).

Theorem 2 Under the assumptions of Theorem 1.1, the energy function E(t) along the

solution of the closed-loop system (1.4) decays exponentially:

E(t) ≤ µe−ρt, (1.9)

for all t > 0, where

µ = E(0)e, ρ−1 = δ + L2(v+b2)2+αL
2b1α

, (1.10)

with δ = max
{
L2+2vL

α , 1
}

and b1, b2 > 0 given by (1.2).
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Finally, the exponential stability of displacement response z of string and the uniform

boundedness of the control input U for the closed-loop system (1.4) are established.

Corollary 1 Under the assumptions of Theorem 1.1, the displacement response z of the

closed-loop system (1.4) decays exponentially and∫ +∞

0
G2(zt(L, t))dt ≤

b22
b1
E(0), (1.11)

where b1, b2 are given by (1.2).

2 Proof of main results

Proof of Lemma 1.1. From (1.6), the derivative rule gives,

d

dt
E(t) =

∫ L

0
ztt(x, t)zt(x, t)dx+

∫ L

0
zx(x, t)h(z2x(x, t))zxt(x, t)dx. (2.1)

Now, we introduce the variational structure associated with (1.4), provided by∫ L

0
zttudx+ 2v

∫ L

0
zxtudx+

∫ L

0
zxh(z2x)uxdx = [vzt(L, t)− G(zt(L, t))]u(L), (2.2)

for any u ∈ H1
e. Taking u = zt in (2.2) together with (2.1) leads to

d

dt
E(t) =v[zt(L, t)]

2−2v

∫ L

0
zxt(x, t)zt(x, t)dx− G(zt(L, t))zt(L, t). (2.3)

Note z(0, t) = 0, and thus zt(0, t) = 0, and it is easy to see that∫ L

0
zxt(x, t)zt(x, t)dx =

1

2
z2t (L, t). (2.4)

Hence, the equation (2.3) becomes

d

dt
E(t) = −G(zt(L, t))zt(L, t). (2.5)

Taking account of G(zt(L, t))zt(L, t) ≥ b1[zt(L, t)]2, it follows from (2.5) that

d

dt
E(t) ≤ −b1[zt(L, t)]2, (2.6)

which means E(t) ≤ E(0) for any t > 0. This completes the proof.

6



Proof of Theorem 1. Here, the idea from [27] will be used. First, set H := L2(0, L),

and V := H1
e with dual space V ′ where the norm on V is given by

‖z‖2V =

∫ L

0
|zx(x)|2dx, ∀z ∈ V.

The variational structure shown by (2.2) is equivalent to the following equation

〈ztt +Az +B1zt −B2zt, u〉V ′,V = 0, ∀u ∈ V, (2.7)

where the mappings A,B1, B2 : V → V ′ are defined by

〈Az, u〉V ′,V =

∫ L

0
zxh(z2x)uxdx,

〈B1zt, u〉V ′,V = 2v

∫ L

0
zxtudx,

〈B2zt, u〉V ′,V = [vzt(L, t)− G(zt(L, t))]u(L). (2.8)

Then the existence of weak solutions of the system (1.4) is equivalent to

ztt +Az +B1zt −B2zt = 0, in V ′. (2.9)

Set H = V ×V . Let W = (z, y) := (z, zt)
>, and then AW := (−y,Az+B1y−B2y)> with

domain

D(A) = {(z, y) ∈ V × V ;Az +B1y −B2y ∈ H}, (2.10)

which is dense in V ×H (Lemma 7.7, [25]). Hence, Eq. (2.9) can be be written as

Wt = AW, t ≥ 0, (2.11)

with the initial data W (0) = (f, g)>. For any Wi = (zi, yi) ∈ D(A), i = 1, 2, from (2.8),

one has

〈AW1 −AW2,W1 −W2〉

= −
∫ L

0
(z1x − z2x)(y1x − y2x)dx+

∫ L

0
[z1xh(z21x)− z2xh(z22x)](y1x − y2x)dx

− [v(y1(L)− y2(L))− G(y1(L)) + G(y2(L))](y1(L)− y2(L))

+ 2v

∫ L

0
(y1x − y2x)(y1 − y2)dx. (2.12)

Due to the sector condition (1.2), it follows that

[G(y1(L))− G(y2(L))](y1(L)− y2(L)) ≥ 0. (2.13)
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Notice y1(0) = y2(0) = 0, then

2v

∫ L

0
(y1x − y2x)(y1 − y2)dx = v(y1(L)− y2(L))2. (2.14)

The assumption (1.5) implies∫ L

0
[z1xh(z21x)− z2xh(z22x)](y1x − y2x)dx ≤ T0

2
[‖z1x − z2x‖22 + ‖y1x − y2x‖22]. (2.15)

The substitution of (2.13)− (2.15) into (2.12) yields

〈AW1 −AW2,W1 −W2〉 ≤
T0 + 1

2
(‖z1 − z2‖2V + ‖y1 − y2‖2V )

=
T0 + 1

2
‖W1 −W2‖2H, (2.16)

where T0 is the constant stated in (1.5). Hence, T0+1
2 I − A is monotone where I is

the identity mapping on H. Now, we prove that λI − A : D(A) → H is surjective

for λ > T0+1
2 , which implies that for arbitrary given X = (x1, x2)

> ∈ H there exists

W = (z, y)> ∈ D(A) such that (λI − A)W = X with λ > T0+1
2 . It suffices to show that

the mapping λI−A−B1 +B2 : V → V ′ is onto where I is the identity mapping on V . For

this, let z = 1
λ(x1 − y), and clearly (z, y)> ∈ V × V, then Ãy +B1y −B2y = λy − x2 ∈ H

where Ãy := A(x1−yλ ).

In order to prove the subjectivity of the mapping λI − A − B1 + B2 : V → V ′, fix

x2 ∈ V ′, x1 ∈ V arbitrarily, and we define the functional F : V → R by

F(y) =
λ

2
‖y‖2 +

1

2
Â(y)− 1

2
〈B1y, y〉+G(y)− 〈x2, y〉, ∀y ∈ V, (2.17)

where the nonlinear functional Â : V → R is defined by

Â(y) =

∫ L

0

∫ (
y(x)−x1

λ
)2

0
h(s)dsdx

and the map G : V → R is given by

G(y) =
v

2
y2(L)−

∫ y(L)

0
G(ρ)dρ.

Using assumption (1.5) and the sector condition (1.2), we can check easily that the map

F is well-defined, continuously differentiable and that

〈F ′(y), v〉V ′,V = 〈(λI − Ã−B1 +B2)y − x2, v〉V ′,V , ∀y, v ∈ V. (2.18)
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Furthermore, it is easy to deduce that

F(y) ≥ C[
λ

2
‖y‖V − ‖x2‖V ′ ]‖y‖V , (2.19)

where C > 0 is a constant, which leads to that F(y) → +∞ as ‖y‖V → ∞, i.e. F is

coercive. It follows that the infimum of F is attained at some point y ∈ V . Therefore

F ′(y) = 0, i.e. (λI − Ã−B1 +B2)y = x2. The proof of Theorem 1 is completed.

Proof of Theorem 2. Take the inner product with xzx on both sides of the system

equation (1.4) to obtain

W1(t) +W2(t) =W3(t) (2.20)

where W1(t) := 〈xzx, ztt〉, W2(t) := 2v〈xzx, zxt〉, W3(t) := 〈xzx, [zxh(z2x)]x〉. Based on the

derivative rules and the boundary value condition zt(0, t) = 0, for W1 we have

W1(t) =

∫ L

0
[xzx(x, t)zt(x, t)]tdx−

∫ L

0
xzxt(x, t)zt(x, t)dx

=

∫ L

0
[xzx(x, t)zt(x, t)]tdx−

1

2

∫ L

0
[xz2t (x, t)]xdx+

1

2

∫ L

0
z2t (x, t)dx

=

∫ L

0

(
1

2
z2t (x, t) + [xzx(x, t)zt(x, t)]t

)
dx− L

2
z2t (L, t). (2.21)

Likewise as in (2.21), we can deduce

W2(t) = 2v

∫ L

0
xzx(x, t)zxt(x, t)dx = v

∫ L

0
[xz2x(x, t)]tdx. (2.22)

Due to the boundary value condition z(0, t) = 0 for any t ∈ [0,∞), we have from integration

by parts that

W3(t) =

∫ L

0
xzx(x, t)[zx(x, t)h(z2x(x, t))]xdx

= Lz2x(L, t)h(z2x(L, t))−
∫ L

0
[z2x(x, t)h(z2x(x, t)) + xzx(x, t)zxx(x, t)h(z2x(x, t))]dx

= Lz2x(L, t)h(z2x(L, t))−
∫ L

0
z2x(x, t)h(z2x(x, t))dx

−1

2

∫ L

0
[xĥ(zx(x, t))]xdx+

1

2

∫ L

0
ĥ(zx(x, t))dx

= Lz2x(L, t)h(z2x(L, t))−
∫ L

0
z2x(x, t)h(z2x(x, t))dx

−L
2
ĥ(zx(L, t)) +

1

2

∫ L

0
ĥ(zx(x, t))dx, (2.23)
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where ĥ is defined in (1.6). Since h is a non-decreasing function, due to assumption (1.5),

one has
∫ L
0 z2x(x, t)h(z2x(x, t))dx ≥

∫ L
0 ĥ(zx(x, t))dx for any t > 0. Then it follows from

(2.23) that

W3(t) ≤ Lz2x(L, t)h(z2x(L, t))− L

2
ĥ(zx(L, t))− 1

2

∫ L

0
ĥ(zx(x, t))dx. (2.24)

The substitution of (2.21), (2.22), (2.24) into (2.20) yields

1

2

∫ L

0
z2t (x, t)dx+

1

2

∫ L

0
ĥ(zx(x, t))dx

≤ −
∫ L

0
[xzx(x, t)zt(x, t) + vxz2x(x, t)]tdx+ Lz2x(L, t)h(z2x(L, t))

+
L

2
z2t (L, t)− 1

2
ĥ(zx(L, t)). (2.25)

Following zx(L, t)h(z2x(L, t))− vzt(L, t) = −G(zt(L, t)), the sector condition (1.2) together

with Young’s inequality implies that

Lz2x(L, t)h(z2x(L, t)) ≤ |Lzx(L, t)[vzt(L, t)− G(zt(L, t))]|

≤ L(v + b2)|zx(L, t)zt(L, t)|

≤ Lηz2x(L, t) +
L(v + b2)

2

4η
z2t (L, t), (2.26)

where η > 0 is the Young’s parameter. The insertion of (2.26) in (2.25) gives

E(t) =
1

2

∫ L

0
z2t (x, t)dx+

1

2

∫ L

0
ĥ(zx(x, t))dx

≤ −
∫ L

0
[xzx(x, t)zt(x, t) + vxz2x(x, t)]tdx+

L[(v + b2)
2 + 2η]

4η
z2t (L, t)

+Lηz2x(L, t)− 1

2
ĥ(zx(L, t)). (2.27)

Note ĥ(zx(x, t)) ≥ αz2x(x, t) by assumption (1.5), then inserting this into (2.27) yields

E(t) ≤ −
∫ L

0
[xzx(x, t)zt(x, t) + vxz2x(x, t)]tdx+

L[(v + b2)
2 + 2η]

4η
z2t (L, t)

−α
2
z2x(L, t) + Lηz2x(L, t). (2.28)

Since η > 0 can be arbitrary, we can choose it so that η = α
2L . Then, using Lemma 1.1 we

have z2t (L, t) ≤ − 1
b1

d
dtE(t). It then follows from (2.28) that

E(t) ≤ −
∫ L

0
[xzx(x, t)zt(x, t) + vxz2x(x, t)]tdx−

L2(v + b2)
2 + αL

2b1α

d

dt
E(t). (2.29)
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On the other hand, in light of (1.5) and (1.6), we have that∫ L

0
xzt(x, t)zx(x, t)dx+ v

∫ L

0
xz2x(x, t)dx

≤ 1

2

∫ L

0
z2t (x, t)dx+

L2 + 2vL

2α

∫ L

0
αz2x(x, t)dx

≤ δ
(

1

2

∫ L

0
z2t (x, t)dx+

1

2

∫ L

0
ĥ(zx(x, t))dx

)
≤ δE(t), (2.30)

for all t ≥ 0, where δ = max{L2+2vL
α , 1}. With the help of Lemma 1.1, integrate (2.30)

over (T, S) (S ≥ T ) to obtain

−
∫ S

T

∫ L

0
[xzt(x, t)zx(x, t) + vxz2x(x, t)]tdxdt ≤ δ(E(T )− E(S))

≤ δE(T ). (2.31)

Integrating (2.30) from T to S (S ≥ T ), and it follows from Lemma 1.1 that∫ S

T
E(t)dt ≤ δE(T ) +

L2(v + b2)
2 + αL

2b1α
(E(T )− E(S)) ≤ 1

ρ
E(T ), (2.32)

where the parameters δ, ρ are given by (1.10). Passing to the limit as S → +∞ shows∫ +∞

T
E(t)dt ≤ 1

ρ
E(T ).

Lemma 1.2 then can be applied to give inequality (1.9), which completes the proof of

theorem 2.

Proof of Corollary 1.1. Due to z(0, t) = 0, for all t ≥ 0, it holds that

|z(x, t)| =
∣∣∣∣∫ x

0
zx(s, t)ds

∣∣∣∣ ≤ ∫ L

0
|zx(x, t)|dx ≤

√
L‖zx(·, t)‖ ≤

√
2L

α
E(t), (2.33)

where we have used the fact that α
2 ‖zx‖

2 ≤ 1
2

∫ L
0 ĥ(zx(x, t))dx, for all t ≥ 0 and x ∈ [0, L].

Invoking Theorem 2 to (2.33) we conclude our desired result.

For any S > 0, integrating over (0, S) on (1.7) of Lemma 1.1 gives

b1

∫ S

0
z2t (L, s)ds ≤ E(0)− E(S) ≤ E(0),

which shows that ∫ +∞

0
G2(zt(L, t))dt ≤ b22

∫ +∞

0
z2t (L, s)ds ≤ b22

b1
E(0),

using the sector condition (1.2).
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3 Concluding remarks

First a general mathematical model of axially moving string which covers the model of

[10] is proposed. Second, under the sector criteria, nonlinear semigroup theory is applied

to establish the well-posedness result of the closed-loop system. Finally, the absolute

exponential stability of the closed-loop system is established by applying the generalized

Gronwall-type integral inequality (Lemma 1.2) instead of the Lyapunov approach ([10,

11]), and less regularity of the integrand is required as one of the merits of the approach

adopted in this paper. In addition, when v = 0 in (1.1) for the nonlinear non-moving string,

all the results obtained in this paper are still valid along this line. It is an interesting

question whether this stability standard can be obtained by the current method when

internal interference occurs in the system, which is the focus of our future work.
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