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Abstract: This paper mainly studies the average sampling and reconstruction in shift-
invariant subspaces of mixed Lebesgue spaces LP4(R%1), under the condition that the gener-
ator ¢ of the shift-invariant subspace belongs to a hybrid-norm space of mixed form, which is
weaker than the usual assumption of Wiener amalgam space and allows to control the orders
p,q. First, the sampling stability for two kinds of average sampling functionals are estab-
lished. Then, we give the corresponding iterative approximation projection algorithms with
exponential convergence for recovering the time-varying shift-invariant signals from the average
samples.
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1 Introduction

In the practice, some signals are time variant and mixed Lebesgue space is a suitable
tool for modeling and measuring such signals. Mixed Lebesgue spaces arise for considering
functions that depend on independent quantities with different properties, which were first
described in detail in [1] and were furtherly studied in [2, 3, 4, 5, 6, 7, 8, 9] from the view of
harmonic analysis and operator theory. The flexibility for the separate integrability of each
variable plays an important role in the study of time-based partial differential equations.

The mixed Lebesgue space LP?(R%!) consists of all measurable functions f = f(x,%)
defined on R x R? such that

<00, 1<p,q< 0. 1.1
gy < 1EPa<o0 (1.1)
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The corresponding sequence spaces are defined by

b d+1 — . —
() = {es lllna = |IHeths b ez acanlly ol ) <0} L pa <00 (12
Obviously, LPP(R¥*H!) = LP(RI*TY) and ¢PP(Z3H1) = (P(Z70H1).
Sampling in mixed Lebesgue spaces will be significant for processing time-varying signals.
In fact, sampling for band-limited signals in a mixed Lebesgue space had been studied in [10].

Moreover, nonuniform sampling in shift-invariant subspaces

{Z > elkr ka)p(z — i,y — ko) : {C(klka)}hEZszZdeepq(Zd+1)} (1.3)

k1E€Z ko

were discussed in [11, 12]. In [11], the generator ¢ was assumed to be in the classical Wiener
amalgam space W (L')(R%*+1) defined by

wehE) = {7 Wy = X s 15+l <o)
nezd+1 TE[0,1]4+1
The reference [12] weakened the condition in [11] and assumed that ¢ belongs to a mixed

Wiener amalgam space

WEHE) = {1 Wl = 3 sw 3 sup 1oty + 0] <oc .
nez,*€01] yczaq ye[0,1]¢

In realistic applications, samples are often not exactly obtained on the sampling positions due
to the physical limitation of measuring equipments, which leads to the wide interests in average
sampling, such as [13, 14, 15]. For average sampling, the actual measured samples are the local
mean of the signal near the sampling points, which can be realized by suitable average sampling
functionals. If the generator ¢ € W (LY!)(R% 1), average sampling schemes had been studied
in shift-invariant subspace V,, 4(¢) [16]. In this paper, we mainly study the average sampling
and reconstruction for time-varying signals in V,, 4(¢) under a weaker condition that ¢ belongs
to a mixed hybrid-norm space WP4(R41), which generalizes the semi-average sampling in [17]
to average sampling under the same conditions.

For 1 < p,q < 00, the mixed hybrid-norm space Wp’q(RdH) is defined as the linear space
of all functions f(z,y) for which

Z H Z |f(x+ki,y + k) |’

k1€Z  koezd

Hf”qu = < Q. (1.4)

ez ((o,)

Li([0,1)¢

In fact, it is a generalization of hybrid-norm space in [18]. It is obvious that W4 (R%1) c
LP4(R¥H1), Moreover,

WP (R ¢ WP (R 1 < g < g < 00



and
WPz R € WPLURIY) 1 < py < py < oo

Therefore, W (Lb1)(R4HY) ¢ Woeoo (R ¢ Wra(RIHD).
We always assume that the generator ¢ satisfies

(A1) ¢ € WP4(R¥), where p = max{p,p'} and § = max{q,q'}.

(A2) %in% llws(@)|lwr.a = 0, where the modulus of continuity is defined by
—>

ws(p)(m,y) = sup  [p(z+s,y+1t)—p(z,y)l|

V824 (t]2<6

(A3) [Jwi(p)llwra < oco.

(A4) There exist positive constants A and B such that for any ¢ = {c(k1,k2) }y, ez ppezd €
(P9(Z91) | one has

Allellra < H S elhi k)pla — Eryy - kg)HLP,q < Bllc|gwa. (1.5)
klEZk’QEZd

The sampling set I' = {v; 1 = (xj,yx) 1 ; € R,y € R% 5 € J1,k € Jo} € RH! is assumed

to be relatively-separated for both variables x and y, that is,

Br w(él) = sup Z XB(z;, (51)( ) < 00
xER]EJ

and

Br y(d2) = sup Z XB(yi.82) (Y) < 00
yER? kels

for some §; > 0 and d2 > 0. Furthermore, §; > 0 and ds > 0 are said to be the gaps of I" if

AF:(: 51 = 1nf Z XB Ig,51)
j€J1

and

Ary(62) = inf Z XB(yr02)(Y) = 1.
yeR kEJz

Here, J; and Jo are countable index sets, B(z, ) and B(y, §) are balls in R and R?, respectively.

Given a relatively-separated sampling set I', the first average sampling scheme is

<f7wj,k> :/]R/Rd f('rvy)d}j,k(may)dxdya J E«Ul,keﬂza
where the average sampling functionals {1;; : j € J1,k € J2} satisfy

1) [z Jga Vik(z,y)dedy =1 for all j € J; and k € Ja;
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(ii) There exists a M > 0 such that [ [pa [¥)k(@, y)|dedy < M for all j € J; and k € Jo;
(ili) supp;r C B(vjk,a) for some a > 0.

Note that the first sampling scheme requires the sampling functionals to have compact support,

we also consider the second average sampling scheme which is defined as
<fa %ZJa(‘ - 7],k‘)> = f * ¢Z(7],k)>] S Jla ke J27

where ¢ € L'(R¥™) satisfies [ [pa ¥(z,y)dady = 1, 1o(-) = ad%w(a) and (1) = a(—).
This paper is organized as follows. In section 2, some lemmas are given. In section 3, the

sampling stability for two kinds of average sampling functionals are established. Section 4 is

devoted to demonstrating two iterative reconstruction algorithms for recovering the signals in

Vp,q() from the corresponding two kinds of average samples.

2 Some lemmas
In this section, we will give some lemmas which provide theoretical basis for sampling
stability and reconstruction algorithms.

Lemma 2.1 [11] Let 1 < p,q < 0o. If o € WP(RL) and ¢ € P9(Z9FY), then

| X2 3 b badete — iy = ko), < lellmalleliwna.

k1€Z koc7d
Lemma 2.2 Suppose that ¢ € WP4(R1L) satisfies the assumption (A3), then
lwm (P)lwra < flwr(@)lwea + 2l @llwra

hold for any positive integer m € N.

Proof For any positive integer m € N and (s,t) € R x R? satisfying \/s2 + [t|2 < m, there
exist my € Z and mso € Z% such that \/(5 —mq)?+ [t —me|?> < 1. Then

|wm (@) lwra <

S sw lete syt kb

k1€Z  koeZd \/ng Lg([0,1]¢) L2([0,1])
+ H \<P(33+k1,y+k2)|’ ,
k1z€:Z kzze;d Ly([o»l]d) Lg([O,l])
= ZHZ sup  |p(z + ki +my+ s —my,y+ ke +ma +1—ma)—

Ki1€Z  koezd \/S2+[tP<m

Lp($+k1+m1,y+/€2—|—m2)|’

Ly([0,1]%)

Z H Z !(p(x+k1,y+k2)!‘

k1€Z  koezd
< lwi(@)lwe.a + 2[[@llwea.

Lz([0,1])

+2

L0091 12 (j0,1))



Lemma 2.3 Suppose that ¢ € WP4(RI) satisfies the assumptions (A2) and (A3). If i €

LY (R*Y) satisfies
/ / Y(z,y)dzdy = 1,

then hm le®lwea =0, where o*(z,y) = p(x,y) — @ * Vi(z,y).

Proof Note that

lp®(z, )| < lo(@,y) — oz + s,y +t)||vha(s, t)|dsdt

</\/WN " /\/Wq)
s h(x,y) + I(z,y). (2.1)

Now, we estimate ||I;||w».q and ||I2]|we.q, respectively. It follows from Lemma 2.2 that

Il = klzezz‘ kﬁ%d /\/WN \/W( )@tk y o+ k)la(s,) ’det’ Ly (0D [ £2j0,1))
S m=1 klZEZHk‘ ezd/ \/Wﬁm+1wm+l((p)(x+kl YRl U9 22 (po,17)
< g Jona(@lhwna | L
< (Jlwr (@) |lwea + 2[|llwea) /\/Wzl/a |t(s,t)|dsdt — 0, as a — 0. (2.2)

Since %iH(l) llws(@)|lwr.a = 0, then for any € > 0, there exists a dp > 0 such that
—
lws (@) lwea <€, V&< do.

Now, we begin to estimate || I2|[yr.a.

el <) \/qum«o)(x,y)\wa@,t)rdsdtuwm

= H/ V522 <o w\/m(gp)(%y)’%(37t)|d8dtHW ,
H/ ST () (x,y)tha(s, ) |dsdtH

< €[]l + [Jwi(e) [ (s,t)|dsdt.

fwoa |
\/ 82+|t]2>d0/a

Since hm f\/m>50/ |t(s,t)|dsdt = 0, then il_r% ||II2||wre = 0 and the final result follows
from (2 1) and (2.2).

Lemma 2.4 Let ¢ and ¢ be as in Lemma 2.3. Then

li “ a = 0.
(o) e



Proof Direct computation gives

sl ) Sws@)an)+ sw [ et st uy ) oot uy o) |[bate )| duds

NEER
<ws(@e)+ [ [ wsleatuy+ o)l o)]duds

Swzs(ﬁp)(w,y) +/]%/Rd w5(¢)(x7y)\¢a(u,v)]dudv
+/R/Rdw\/m(wé(@))(w,y)|¢a(u,v)\dudv. (2.3)

Then, we can obtain
s (e lwna < (14 16]1) lws(@) lwoa + | /R /R w0 @s(@) @ (e, o) dudo|

Now, it is enough to prove that

| [ oo, <0 ey
Restricting § < 1, then we can obtain
wi(ws())(z,y) < wa(p)(z,y) + wi(p)(z,y) + ws(¢)(z,y). (2.5)

By Lemma 2.2, it is similar to (2.2) that

| s v tenteDe vt duae |

< (||W1(W6(<P))||vaq+2||W6(90)||vaQ)/\/W>l/ [ (s, 1) |dsdt

< QCllellwra + 2[wi(@)lwea + 3llws(@) lwea / |9 (s, 1)|dsdt
( ) \/82+|t[2>1/a
— 0, asa— 0. (2.6)
Since %irr(l) lws(®)|lwr.a = 0, then for any € > 0, there exists a dy > 0 such that
—

lws(@)lwea <€, V&< do.

Restricting 6 < min {%’, 1}, then we can obtain

e IR W
< / — (w3(e) @) +w (@)@ y) + o (@)@ y) ) Wa(w,v)ldudo|

1 s (@) 4 a(@ ) Wt ia]

3 2 , 3 , t)|dsdt.
<3l + @lellwea + 3l () lwre) / e 1Pl

This together with (2.6) proves (2.4).



3 Sampling stability

In this section, we will establish the sampling stability for two kinds of average sampling

functionals.

Theorem 3.1 Let 1 < p,q < oo, ¢ satisfy the assumptions (A1) — (A4). Suppose that I' =
Vi = (xj,u) 125 € Ry € R% j € J1,k € Jo} is a relatively-separated set with gaps 61 and
o for both variables, and {11, : j € J1, k € Ja} is the first kind of average sampling functionals

with support radius a. If 61, 62 and a are chosen such that

r1 o= MA™Y|warsy 16, (@) lwra < 1, (3.1)

then any signals f € Vj, 4(p) can be stably reconstructed from the samples {(f, wj7k>}jeq]]17keq]]2,

and
20 ~Up s Vgod -V
(i) (k) @l ise < MU serskesll e <
20 -1/ Vi6¢ -1/
<m) p(BFZ&)) ") fllzea, (3.2)

where Vg = F(”d/Z is the volume of d-dimensional unit sphere.

Td/z+1)
Proof For any « € B(z;,01) and y € B(ys, d2), one has

i) — flayy)] < / F(5,8) — (@, ) |lja (5. ) dsdt

B(’Yj,lma)
< Mways,+6,(f) (2, y) = Fi(,y). (3.3)

Furthermore, for any f(z,y) = Y. > clki,k2)p(z —ki,y — k) € Vp4(p), it follows from
K1E€EZ kyeZd
Lemma 2.1 that

IFillzna < M| 37 D7 lelhn ko)lwarsy s (9)(@ — ki, y = ko)

Lpa
k1€Z koc74d

< M|ellepal|wats,+8, () [lwra

< MA™Y|war 5,46, (@) lwral fll Lra

=71l fllzea. (3.4)

Define @)
XB(z;,00) (T XB(yx,62)(¥)
uj (2, y) = a;(2)Br(y) = ’ : : (3.5)
! ’ 2 XB(a00)(T) 2 XB(y.6s) (W)
j'eln k'ela

Let 1 < p,q < co. The case p = 0o or ¢ = oo can be proved similarly. It follows from (3.3) that
1 1 1 1 1 1
(i)l @)8, 7 (9) < (@, y)log " @)8, " (9) + | Fa(@. )l (@) (). (3.6)
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Taking ¢?-norm for variable k € Jo on both sides of (3.6), applying triangular inequality and

then taking L9-norm for variable y € R%, one has

(X 1wl 8sl1) P @) < 0P @ @ ) ro + P @A s (3

kel2
Taking /P-norm for variable j € J; on both sides of (3.7), and then taking LP-norm for variable

x € R, applying triangular inequality can obtain

/ /
[ (S 1wkl ) sl ] < Wflleva + 1 zme < () leme. (35)

jel1  kel2

It is easy to verify that

201By ,(01) < [ljllpr < 261A55,(61), j €T
and

Vady By (62) < |1Bellpr < Vad§ Ap ) (62), k € Ja.

Then the right hand side of (3.2) follows from (3.8). The left side can be proved by the same
method from the inequality

1 1 1 1 1

[ wlog " (@) () < 1(F. ) o) (@) B (v) + [Fa(,9) o) ()8 (v)-

Theorem 3.2 Let 1 < p,q < o0, ¢ satisfy the assumptions (Al) — (A4). Suppose that T' =
{vjk = (xj,ur) : 7 € Ryyr € RY, j € J1,k € Ja} is a relatively-separated set with gaps d3 and
84 for both variables, and ¢ € L*(R¥1) satisfies [p [pa ¥(2,y)dady = 1. If 03, 04 and a are

chosen such that

g1
roi= A7 ([l @) lwoa + 1o mmm @ lns + 16 lwoa) <1, (3.9)
then any signals f € V,, 4(p) can be stably reconstructed from the corresponding average samples

{f * V5 (vjk)Yien kels, and

26 1/ Vadd N1/
(=) (2 ) =) e < 45 * 02 Yiens ket g <

Ar »(63) Ar (04
203 Up, Vyod \—1/a
— 1 a. 1
Gy)  (Gogg) G+l (3.10)
Proof For any x € B(xj,01) and y € B(yk, 02), if f(z,y) = > > clki,k2)p(x — ki,y —
k1€Z kyeZd
k2) € V, 4(p), then we can obtain
IEXACDE <SS etk k)| — kryy — k) — @5 (x5 — ku,yk — Ko
k1E€Z kyeZd
<D0 lelka ko)l (@ /(@) (@ = kay — ko)
k1€7Z koeZ4d

+tw /5§+5z(</7a)(x —ki,y — ko) + ¢%(x — k1,y — kg))
=: Fy(z,y).



Furthermore, one has

[ F2|| e < [[c]lera <Hw\/5§T55(80)HWp,q + HWW(W)HWM + H<Pa||WM>
< Ail(HW\/W(SO)HWp,q + HW\/W(SOG)HWM + HSDa||WP7<I> | £l zoa

= 1o f||Lr.a.

The remained proof is similar to that of Theorem 3.1.

4 Iterative reconstruction algorithms

In this section, we will give the iterative approximation projection algorithms for recovering
the signals in V,, 4(¢) from two kinds of average samples. For two kinds of average sampling

functionals, we define the pre-reconstruction operators
Anf =0 (fobin) s
j€l1 k€ela

and

Arof = Z Z I a (V0w ks

j€l1 kel2
where u; . is defined by (3.5). Let P be a bounded projection from LP4(R%*1) onto V,,(¢).
Then the corresponding approximation projection algorithms are given as

Jo= P( >l k)uj,k)

j€l1 k€l2 (41)
fn:f0+fn71_PAanfla n>1

fo= P( > el k)uj,k;)

j€I1 kED2 (4.2)
Jon=fo+ fn-1 — PArofn-1, n> 1.

Theorem 4.1 Let p, q, ¢ and {j} : j € J1,k € Ja} be as in Theorem 3.1. Suppose that

and

I'={vjr = (zj,u) 125 e R,y € R%, 5 € J1,k € Jo} is a relatively-separated set with gaps s
and &g for both variables x and y. If 05, d¢ and a are chosen such that

1y 1= A7 Pllop [2MlJw(@)llwra + (1 4+ M) | /zz(0)

+MH‘*" /2(5§+5g+a2)(30)”Wm} <1 (4.3)
then the algorithm (4.1) exponentially converges to some foo € Vp 4(¢), and
7,,nJrl
Ifn = foollzpa < 72—l follLwa- (4.4)
— g

IfCO(jv k) = <f?77[}],k>7] € Jl,k‘ S J2 fOT f € V}O,q(@), then foo = f




Proof Note that fpr1 — fn = (I — PAr)(fn — fa=1), n > 1. For any f(z,y) € V,4(¥),

If = PArfllzea < |Pllopllf — Arfllzra
< |IPllop(If = QrfllLra +11Qrf — Arfllzea),

where Qrf(@,9) = %) 30 £y y)us(w,y). Furthermore,
j€l1 k€la

f(zy) = Quf(x, ) < D 1f(w,y) — fas,yw)lujr(z, y)

j€l1 k€l2

<w rs(H@y)
<D0 D lelhn k) |W\/m( o) (@ —k1,y — k2).

k1E€EZ kyeZ4d

By Lemma 2.1, we can obtain

If = Qefllpra < A7H|w /e (O)llyypall Flva-

On the other hand, we have

QS ) — Arfay) < 3% / / 15, e) — £(5, )15 (5, ) s () sl

j€J1 k€la

<MY walf) (@ ye)ujp(@, y)

j€d1 k€l2

(4.5)

(4.6)

<MY ). ( D0 lelk, ko)lwa(9) () — K, yn — k2)>uj7k($,y)

Jjel1 k€lo  ki1€Z kyezd

= MQF( Z Z ’C(/ﬁ, kg)\wa(cp)(- — k1, — kQ)) (x,y)

k1€Z kyezd

<MY D lelh klwa(p) @ — kry — k)

k1E€Z kycZd

—Qr (X2 X lelky, ko)lwal@)(- = ki = k2) ) (2, 9)|

K1E€EZ kyeZ4d

MDD Jelhnha)lwa() @ — iy — ko).

k1E€Z ko

By the same method as (4.6), we obtain
1@rf = Avfllzna < MA™(|lw_szrm(@a(@Dllyra + lwal@)lwea ) [ £lzns

< MA—1<HUJ\/Ww)HWp,q + H"J\/W(SO)HWp,q
+ 2lwa(@) lwoa ) £l

This together with (4.5) and (4.6) gives

|f = PArfllea < r3|l fllea.
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Therefore, (4.4) is proved. Define

Rp:=1+Y (I-PAp)".

n=1

Then RrPAr = PArRr =1 on Vp,q((p). If co(g, k) = (f, 1/’j,k> for f € Vp7q(g0), then
foo =Rrfo=RrPArf=1f=f.

Theorem 4.2 Letp, q, ¢ and 1 be as in Theorem 3.2. Suppose that T’ = {v;r = (xj,yx) : xj €
R,yr € RY 5 € J1,k € Jo} is a relatively-separated set with gaps 67 and dg for both variables x
and y. If 67, d0g and a are chosen such that

ra = APyl gD + g hma + 6 lona] <1, )

then the algorithm (4.2) exponentially converges to some foo € Vp 4(¢), and

n+1
| fn = foollLra <

”f0||qu (4.8)
If co(4, k) = [ *¥z(vjk):J € I1,k € Ja for f € V;mq(sf’), then foo = f.

Proof For any f(z,y)= >, > clki,k2)p(z—Fki,y—k2) € V,4(p), one has

klEZkQEZd
|f = PApoflrea < |[Pllop(Ilf — Qrflira + |Qrf — Qr(f * ¥i)||Lra). (4.9)
By (4.6), we know
|f = QrfllLra < A_lHw\/m(so)HWp,quHLM- (4.10)
Since Qr f(z,y) — Qr(f * ;) (x,y) = QF( > > (ki k2)*(- — ki, — kz)) (z,y), then
k1€Zk2€Zd
1Qes = Qe(f *¢illzra < | 30 37 etk k)o@ — kay ko) |
k1E€Z koeZ4
D elbr k)o@~ kayy — ko)
k1E€EZ kyeZd
_QF(Z Z (k1, ko) —kl,'—k2)>($ay)’mq
klEZkQEZd 7

< A7 (Il wra + [z () e )l
This together with (4.9) and (4.10) obtains
Hf - PAF,afHLqu < 7'4HfHLP,q.

Therefore, (4.8) is proved. Define

Rro:=1I+ Z(I — PAr )"

n=1

11



Then Rr oPAr, = PAroRro =1 onVy,(p). If co(j, k) = f*%(vx) for f € Vp4(p), then

foo = Rrafo = RroPArof =1f=f.
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