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Abstract

We consider the global well-posedness and asymptotic behavior of compressible viscous,
heat-conductive, and non-resistive magnetohydrodynamics (MHD) fluid in a field of external
forces over three-dimensional periodic thin domain 2 = T? x (0,4). The unique existence of
the stationary solution is shown under the adhesion and the adiabatic boundary conditions.
Then, it is shown that a solution to the initial boundary value problem with the same
boundary and periodic conditions uniquely exists globally in time and converges to the
stationary solution as time tends to infinity. Moreover, if the external forces are small or
disappeared in an appropriate Sobolev space, then § can be a general constant. Our proof
relies on the two-tier energy method for the reformulated system in Lagrangian coordinates
and the background magnetic field which is perpendicular to the flat layer. Compared to the
work of Tan and Wang (SIAM J. Math. Anal. 50:1432-1470, 2018), we not only overcome
the difficulties caused by temperature, but also consider the big external forces.
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1 Introduction

1.1 Formulation

The magnetohydrodynamics (MHD) equations are derived from the induction equation of the
magnetic field and the Navier-Stokes equations of fluid dynamics (see also [1, 2, 3, 4, 6, 10, 12]).

*Corresponding author.



In the Eulerian coordinates, the MHD equations have the following forms (Q C R?):

Op + div(pu) = 0, (z,t) € QA x RT,

p(Oru+u-Vu)+ VP — pAu— (p+ p/)Vdivu = \H-VH — %V|H}2 + pVf,
cop(00 + u- VO) + Pdivu — kA0 = 2u|D(u)|? + i/ |divul?,

OH+vw-VH—- H-Vu+ Hdivu =vAH, divH = 0.

(1.1)

Here, the mass density p, the velocity w = (u1,u2,us), the absolute temperature 6, and the
magnetic field H = (Hj, Ha, H3) are unknown functions. In addition, P := Rpf (R > 0) is
the pressure; f = f(z) denotes the known external potential force. Positive constants ¢, and &
are the heat capacity and the ratio of the heat conductivity coefficient over the heat capacity
respectively. Non-negative constant v is the resistivity coefficient. p and y’ are the viscosity
coeflicients, satisfying the physical conditions

w>0, 2u+3u >0,

and A > 0 are the permeability coefficients. The operator D(w) is defined by
1
D(u) = i(Vu—l— (Vu)").

The MHD equations are used to simulate the motion of a conducting fluid under the effect of
the electromagnetic field and have a very wide range of applications in astrophysics, plasma, and
so on. In many cosmical and geophysical problems where the conducting fluid is of extremely
high conductivity (e.g., ideal conductors), it is more reasonable to ignore the resistivity (i.e.,
v = 0). For the highly conducting fluid, the magnetic field lines move along exactly with the
fluid, rather than simply diffusing out. This type of behavior is physically described as that
the magnetic field lines are frozen into the fluid. In effect, the fluid can flow freely along the
magnetic field lines, but any motion of the conducting fluid, perpendicular to the field lines,
carries them with the fluid. The “frozen-in” nature of magnetic fields plays very important
roles and has a very wide range of applications in both astrophysics and nuclear fusion theory,
where the magnetic Reynolds number R,, ~ 1/v is usually very high. A typical illustration
of the “frozen-in” behavior is the phenomenon of sunspots. For more details of its physical
background and applications, we refer to [2, 3, 4, 6, 10, 12].

Due to its physical importance, complexity, rich phenomena, and mathematical challenges,
there have been extensive studies on MHD by many physicists and mathematicians. However,
similarly to those for the Navier-Stokes equations, many physically important and mathemati-
cally fundamental problems of MHD are still open. For example, to the author’s knowledge, the
global well-posedness of the multi-dimensional compressible non-resistive MHD equations re-
mains unknown, even that the data is sufficiently close to the non-vacuum equilibrium state in a
similar sense as that in [20] for the compressible Navier-Stokes equations. Here, we would like to
refer to the recent works [15, 17, 18, 32], where the global well-posedness of the Cauchy problem
of two/three-dimensional incompressible non-resistive MHD (MHD-type) equations with small
data are announced. In the case that viscosity coefficient equals magnetic resistive coefficient
whether they are zero or positive constant, He-Xu-Yu [11], Cai-Lei [5], and Wei-Zhang [30] they
establish the global well-posedness in different methods for the incompressible MHD. For the
isentropic compressible non-resistive MHD equations, Wu-Wu [31] obtain the global solutions
and its asymptotic behavior in R? using the special structure of equations. By means of the
two-tier energy method, Tan-Wang prove the similar decay result over ) := R? x (0,1) in [27].



It is worth noting that the heating of high-temperature plasma by MHD waves is one of
the most interesting and challenging problems of plasma physics, especially when the energy is
injected into the system at length scales that are much larger than the dissipative ones. For
compressible heat-conductive non-resistive MHD, Zhang-Zhao [33] and Li-Wang-Ye[14] obtain
the global well-posedness in 1D bounded domain and whole space, respectively. Assume that
there exists a magnetic background, Si-Zhao [25] establish the large time behaviors of strong
solutions in R, R™, and (0,1) C R, respectively.

Furthermore, the large external forces can significantly affect the dynamic motion of flows
and cause some serious difficulties (see [9, 13, 22, 29]). Indeed, there are lots of results for
the global existence and large-time behavior of the solutions to the compressible Navier-Stokes
equations when both the external forces and the initial perturbations are sufficiently small; see
[7, 8, 24, 28] and the references therein. For the compressible Navier-Stokes equations, the
asymptotic behavior of a solution is first considered by Matsumura and Nishida in [21], where
they prove the solution converges to the corresponding stationary solution as time tends to
infinity in the exterior domain of R? under the smallness assumptions on the initial data and
the external force. After the research of [21], Matsumura in [19] considers isothermal flow and
proves that the stationary solution is time asymptotically stable for an arbitrary external force.
For large external forces, literatures [9, 13, 22, 23] establish the large time behavior of weak
solutions to the isentropic compressible Navier-Stokes equations. Moreover, Li-Zhang-Zhao [16]
study the global existence and the large time behavior of the strong solutions.

In view of the results achieved, we consider the global well-posedness and asymptotic be-
havior of the compressible heat-conductive non-resistive MHD flows

(8;p + div(pu) = 0, (z,1) € @ x RT,
p(Oru+u-Vu)+ VP — pAu— (p+ p/)Vdivu = \H-VH — %V!H}z + pVf,
cop(040 + - VO) + Pdive— kA0 = 2u|D(w)|? + /| divul?, (1.2)
O:H+u-VH— H-Vu+ Hdivu =0, divH =0,

( U|z3=0,5 = 0,1 - VO|z,—05 =0,

where Q := T?x [0, ], T? := [0, 1] x[0, 1]. Letting (ps, us, s, Hy) be the stationary solutions of the
problem (1.2), multiplying (1.2)3 by 1/65, and integrating over Q, by virtue of n-Vé|;,—0s = 0,
div(psus) = 0, and us|gs—0,5 = 0, one has

d 52
/i/ d—|—2/‘ d+ /|1vu| =0, (1.3)
Q

which means that §, and wu, are some constants. Since s|z,—0 s = 0, one has

us = 0. (1.4)

S

S

For simplicity, we set
0 =1. (1.5)

Because we are interesting in showing that H — H = (0,0,b) ", we may assume H, = H. Hence,
it follows from (1.2)3 and (1.4)—(1.5) that

RVps = psV f, (1.6)

which yields
ps = exp{f/R+ C}.

To summarize, we have the following proposition.



Proposition 1.1 Assume that f € H*N*2 and the integer N > 1. Then the stationary problem
(1.6) has a unique solution ps = ps(x) satisfying

0<p<ps<p<oo and Vps € HNFL, (1.7)

where p and p are positive constants depending only on R, sup f and ing2 f-
- zeN z€

Inspired of [26], letting B = H — H, similar as (1.3), we have

d L o, Ko P P P
T Q<2p +2B +cUp(9—log9—1)+Rps(pslogps—p8+1>>dx
0| D(u)|? divul?
+/£/ Ve dx—l—QM/ Hu)’dm—k/// ﬂdxzo. (1.8)
qQl 0 o 0 o 0

In fact, it follows from (1.2) and B = H — H that

'&gp + div(pu) = 0, (x,t) € Q x RT,
p(Ou+ u-Vu)+ VP — pAu— (p+ /) Vdivu
= \B-VB - %V!BF + A93B — A\VB; + pV {,
cop(0:0 + u- VO) + Pdive — kA0 = 2u|D(u)|? + p/|divul?,
04B+ u-VB— B-Vu+ Bdivu = dsu — divues, divB =0,
ulpn = 0,n - Vl|q = 0.

Multiplying (1.9)2, (1.9)4, and (1.9)3 by u, B, and —6~! respectively, adding them together with
(1.9)3, it follows from integration by parts, (1.9)1, ulgg = 0, and n - VO|sq = 0 that

d 1 5 A, \Y
dt/Q(qu +§B + cpp(6 — log 1)>d3:+1<;/Q -

D(u)|? divuf?
o 0 o 0 Q Q

By virtue of (1.6), (1.9); and integration by parts, one can derive that

2
dz (1.10)

/ pu-Vfdr = R/ pu - Vlog psdx = —R/ div(pu) log psdx
Q Q Q
:R/ pt log psdz, (1.11)
Q
/ Rpdivudx = —R/ u- Vpdr = —R/ pu - Vlog pdx
Q Q Q
= R/ div(pu) log pdz = —R/ ptlog pdzx. (1.12)
Q Q
Inserting (1.11)-(1.12) into (1.10), one immediately has (1.8).

The basic energy-entropy estimate (1.8) will play a very important role in our proof. For
convenience to establish the high order estimate, we transform (1.2) into Lagrangian coordinate.



1.2 Reformulation

We define the Lagrangian trajectory X(t,y) by

SX(t,9) = ult, X(t,9)) )
X(0,y) = Xo(y)-
For any smooth function f, we deduce from chain rule that
0, £ = 3L (80t 0 g, (1.14)
where 4,7 € {1,2,3}. Let us denote A = ((VX)™H)T, then we have
Vuof = Aij0,, f=Vaf, divy f = Aij0y, fi = divaf. (1.15)

Denote A4 f = divaV 4f, then one has

Orp + pdivau =0,

PO+ VAP — pAgu— (p+ p)Vadivau = NH -V H — %VA|H]2 + pVaf,

copdil) + Pdivau — kA A0 = 2u|Da(w)]? + p/|divaul?, (1.16)
O H— H-V  u+ Hdivoju=0, divaH=0,

ulgo = 0,n- V40|90 =0,

-
where D4(u) = VAu+2(VAu) . We denote that J = det(VX), then we have 0,J = Jdivau,

which combined with (1.16); yields that

O(pJ) =0. (1.17)
Multiplying (1.16)4 by JAT, thanks to 0;(JA;;) =0, one can deduce that
O(JATH) = 0. (1.18)

Since we are interested in showing that (X, p, u,0, H) — (Id, ps,0,1, H) as t — oo in a strong
sense, due to the conservations (1.17)-(1.18), we may conclude that for any ¢ > 0

pJ =ps, JATH=H inQ, and X =1Id on 9. (1.19)

Note then that divaH = J~'div(JAT H) = J~'divH = 0. In turn, to have these we need to
assume that the initial data satisfy these conditions; such conditions are necessary for our global
well-posedness. We may shift X — I'd + X, and hence J = det(I + VX), A = ((I + VX)™1)T,
and we rerecord these conserved quantities in the following form:

p=psJ, H=J YT+ VX)H=0bJ"1(e3+X)in Q, and X=00n Q.  (1.20)
Next, we reformulate (1.16). By virtue of X|gn = 0, one has

1, 0, 0
I+VX)a=| o 1, 0 . (1.21)
03X1 a0, 03Xa|an, 1 + 05X3]a0
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Hence, one obtains that
Asilon =0,  Asslon =0, (1.22)
which combined with n -V 46|pq = 0 yields
95000 = 0. (1.23)
According Taylor formula, one has J~! = 1 — divX + O(|VX|?), which means that

H- V4 H—-Vy <|II2|2>

= H-V(H- H)+V(H; - H))H;
+H-(Va—V)(H—-H)+(H- H) Vi(H- H)
+(Va—V)(H; - Hj)H; + V 4(H; — Hj)(H; — H;)

= H-V(H- H) +V(H; - H))H; + O(VXV?X)

— (83((J‘1 es +JLX) V(I -1+ J—lagxg)) + O(VXV2X)

= b%(02X — d3divXes + VdivX — V3X3) + O(VXVZX). (1.24)
About the terms of pressure and external force, we have

VAP —pVaf
= RV A(psJ~10) — RT 1V 4p,
= RVA(ps(J_l = 1)0+ ps(0 — 1))
—R(J' = 1)(Va—V)ps— R(J™' = 1)Vpy

— R(V4— V)(pS(J_l 18+ ps(6 — 1)) C RN - 1)(Va - V)ps
+RV (pS(J_l —1)(6 - 1)) + RpsV(JL = 1)+ RV(ps(6 — 1))
= —G — Rp,VdivX + RV (ps(0 — 1)) + psO(VXV3X), (1.25)

where
Gy = R(I™ = 1)(Aij — 6)0;p5 — R; (ps(J 7" = 1)(0 - 1))
—R(Ay = 55)0(po(J 1 = 1)+ ps(6 - 1)).
Similarly, one has
Pdivau = Rpsdive+ Rps[(J71 = 1)0 + (0 — 1)]Ai;0ju; + Rps(Aij — 6i5)05ui.  (1.26)
By means of (1.22)-(1.26), (1.16) can be rewritten as following:

X = u, (u, X, 030, As1, As2)|oq = 0, 0 :=R2 x (0,9),
psOru — pAu — (pu+ p')Vdivu — RpsVdivX + RV (ps(6 — 1))

= \? (02X — 03divXes + VdivX — V95X3) + F + G,
CopsOd — KAO + Rpsdivu = E,

(1.27)



where

F;:=(ps + 1)O(VXV2X)i + (1 + p') Ay 0; A Oyuy, + A0k A Opu;
+ (4 1) (Aij Agr — 6i501) 050wy + p(AjkAj — 01651) Ok Opu; — ps(J 71— 1)0suy,
n
E = —Rps[(J7' = 1)0 + (8 — 1)]As;0ju; — Rps(Aij — 8:)05ui + 2u|Da(u)|? 4 1/ (divaw)?
+15 Ak Aji OO + K(AjeAji — 61051 0k00 — ps(J " —1)046.

I

Notation. Before stating our main result, we first introduce the notations and conventions
used throughout this paper. The Einstein convention of summing over repeated indexes is used.
We write [ f = [, fdy. We take LP(2), p > 1 and H*(Q), k > 0 for the standard LP and
inhomogeneous Sobolev spaces on 2 with norms || - [|[zs := || - [|Lr(q) and [| - [k == || - | g (). We
denote C' > 0 a generic constant that does not depend on the initial data, time and €2, but can
depend on N, p, p, and any of the parameters of the problem, which are allowed different from
line to line. We refer to such constants as “universal”. We employ the notation A < B to mean
that A < CB for a universal constant C' > 0, and we write A+ B < D for %, A+ CB < D. We
will write N = {0,1,2,---} for the collection of non-negative integers. When using space-time
differential multi-indexes, we will write N'*™ = {a = (ag, a1, -+ , )} to emphasize that the
0-index term is related to temporal derivatives. For just spatial derivatives we write N, For
o € NI we write 9% = 9,007 - - - 9%m. We define the parabolic counting of such multi-indexes
by writing |a| = 2ap + a1 + - -+ + ayy,. For vector v = (v1,v2,v3), we write vy, = (v, v2) for the
horizontal components. We write Vj, = (01, 82) for the horizontal gradient, Ay, := 82 +03 for the
horizontal Laplace operator, and div;, for the horizontal divergence, i.e. divyv, = O1v1 + dovs.
We also have the following anisotropic Sobolev norm:

A7 = > 167052 f 1 e
a1taz<l

k
where || f[|3,, = Z |03 f||3. For a given norm || - || and an integer k& > 0, we introduce the
j=0
following notation for sums of derivatives:

IVEAIZ = > [0°fI

aeNH3 |a|<k

Finally, for a generic integer n > 3, we define the energy as
n .
En =) 110](w,0 = D)|3,_9; + X [3041 (1.28)
§=0
and the dissipation as

j=0

We will consider both n = 2N and n = N + 2 for the integer N > 4. Finally, we define

T
Gon(T) :== sup &Ean(t) +/ Doy (t)dt + sup (14 t)2V 4y a(1). (1.30)
0<t<T 0 0<t<T
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Multiplying (1.9)2,4 by wand H— H, respectively, adding them with (1.9)3, and integrating
over {2 about x, we can derive

+ (Hy — F)?
0 —|— dx = / 0o —I- dx.
9] / Co [ 2¢,

For simplicity, we denote the mean value of energy at initial

+(Hy— HP
00+ =1.
o,

2¢y

1.3 Main result.

Our main result can be stated as follows.

Theorem 1.1 Let N € Zsy. Suppose that ug € H*N(Q), and Xg € H*NTYQ), f € HNT?
satisfy the appropriate compatibility conditions for the local well-posedness of (1.27), Xo =0 on
092, and d is suitable small. There exists a constant eg > 0 such that if

52]\[(0) S €0, (1.31)

then there exists a global unique solution (X, u,0) solving (1.27) on [0,00). The solution obeys
the estimate

Gan(o0) < Ean(0). (1.32)

We now comment on the analysis of this paper. Our main difficulties are from the boundary
condition of # , and that ps is a function of x, not a constant. Since 6|sq is unknown, one can
not use the Poincaré inequality to tackle the term of temperature. Compared to the work of
Tan-Wang [27], we have the following main breakthroughs:

1. Whether in estimating the energy evolution of temporal or the horizontal derivatives, there
always exists big term ||V (6, u)||3 coming form the estimate of pressure which cannot be
directly absorbed by the left hand of inequality. Thanks to the elementary energy estimate
of (1.8) in Eulerian coordinate, we have the following estimate in Lagrangian coordinate:

d

T (1psu + )\bQ(JA@gX%— e3(J 1 — 1))2J—i— cops(0 —logh — 1)

+Rpo(J ~logJ 1)) + [V (0, w) [} S VEDn, (1.33)

which means that when we estimate the higher order derivatives, the terms ||V (6, u)||3 can
be controlled.

2. The estimate of horizontal derivatives of X cannot be obtained only by the integration
by parts when we tackle the pressure term, since ps is a function of z and the estimate
of H0||%,2n cannot be established. To overcome these difficulties, we need the Poincaré’s
inequality to increase the derivative order of temperature. See more details in the estimate
of V.



3. For the estimates of the horizontal derivatives of velocity, we cannot use the method similar
as X. In fact, these will increase the derivative order of u and lead to appearing of the
term [|§ — 1||2.. which does not contained in D, since the Poincaré’s inequality is not
suitable for temperature. Thanks to 0;X = u, we can shift the time derivative from X to
0 for the reason that ps only depends on z. However, the estimate of ||6;]|3 in D, cannot
be established similar as u. Here, we need re-estimate ||976||3 in Lemma 2.2.

4. In our model, the stationary solution ps; depending on spatial space yields that we cannot
directly use the method of Tan-Wang [27] to get the estimate of ”83diVX||%72nik71. So we
have to estimate ||divX||? ;. Fortunately, b is a constant which makes it easier to get the
form of horizontal direction of X.

5. In the improved estimate, d36 can use Poincaré’s inequality since 030|gn = 0. This means
that ||839||%72n7k71 < H@g@”%znfkfl. Thus, we only need to tackle the term ||6§0||z72n7k71
when we estimate ||030|% v12n_k_1- 1t follows from the conservation of energy and the
Poincaré’s inequality that the form of 6 is similar as velocity w in D,, (see (2.102)).

6. Particularly, to improve the estimate of 6 in Lemma 2.9, We can not directly use the
elliptic regularity because the boundary value of # is unknown. But, firstly we have

n
030|p0 = 0 which means that we can establish the estimate of Z 10307 0]|2,,_o, by using
r=1
elliptic regularity. Secondly, due to the structure of (1.27) and Sobolev inequality, we
n

can derive the estimate of ||V,070||3,,_5,_1. Moreover, Z 107 0)15,,_2r4+1 can be controlled
r=1

when we get the estimate of |03V ,0°07 0|2 and ||AR9°07 0|3 ( B € N3, |B| = 2n —2r —1).

In Lemma 2.10, besides the similar estimates as above, we also need to control |07~ *V20||2

n
and [|0f~'V0)||? separately to obtaining the estimate of Z 107613,
r=0

7. To obtain the decay of En12, we must absorb all of terms on the right hand of inequality.
However, the existence of large external forces makes the estimation of horizontal deriva-
tives of X is particularly difficult, since the appearance of the terms V' (i = 1,2,3) in
(2.34). To overcome this difficulty, we need the Poincaré’s inequality in Lemma 1.1 when
d is suitable small.

Remark 1.1 Suppose the external force is small or disappeared, then the controlling of the term
VP (i =1,2,3) would no longer be a difficulty. At this moment, the distance between two layers
needn’t be small. Then, we have the following Corollary.

Corollary 1.1 Let N € Zs4. Suppose that ug € H*N(Q), Xg € H*N*TY(Q), and f € H*N+2
satisfy the appropriate compatibility conditions for the local well-posedness of (1.27), Xo =0 on
012, and d is general constant not need small. There exists a constant €9 > 0 such that if

Ean(0) + || fllan+2 < eo, (1.34)

then there exists a global unique solution (X, u,0) solving (1.27) on [0,00). The solution obeys
the estimate

Gan(00) S Ean(0). (1.35)



Remark 1.2 If the external force and § are all large, we can not derive Theorem 1.1 for the
appearance of VP (i =1,2,3). We also can not establish the global well-posedness of this MHD
system if b is a function of t or y. Our next step in this program is to solve these problems.

The following results will be used in the proof of Theorem 1.1.
Lemma 1.1 If f|sq = 0, it holds
1115 < a*195£113 (1.36)
where  := {(y1,y2,y3)|(y1,12) € T2,0 < y3 < 6}.

Proof. Since

é
118 = [ don [ s (157

we first have the following calculation:

3 2 5 2 5
rf<yh,y3>12=] " 0 (g 5)ds g' [ st sas| <5 v opas. 1.39)
0 0 0

Inserting (1.38) into (1.37), one can derive

3
I918< [ o (2 [ 0ason,9)Pas) < 210 (1.39)

O

In the next section, we will only prove the Theorem 1.1. First of all, the elementary energy-

entropy estimates will be established in subsection 2.1. Secondly, the estimates of temporal

derivatives will be obtained in subsection 2.2. Then, we will derive the estimates of horizontal

derivatives of X, u, and # in subsection 2.3. In subsection 2.4, by means of ODE regularity

and Elliptic regularity, the estimates obtained above will be improved. We finish our proof of
Theorem 1.1 in subsection 2.5.

2 Proof of Theorem 1.1.

In this section, we will give a complete proof of Theorem 1.1. We assume throughout the section
that the solution obeys the estimate Goy < 7 for sufficiently small 0 < n < gg.

2.1 Elementary energy-entropy estimate.
First of all, we have the following elementary energy-entropy estimate.
Lemma 2.1 Forn > 3, it holds that

d
S HIVO W5 S VEDn, (2.1)
where

2

S = / (%psu2 + %52 (J'osX +eg(J 1= 1))

+cyps(0 —logl — 1) + Rps(J — log J — 1)) (2.2)
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D
Proof. 1t follows from D9 = Org +u-Vag, 0j(JA;;) =0 and J; = Jdivau that

d

dat g(z, t)dr = / Oig(z,t)dx —/ Di g(y,t)Jdy — / Ju - V agdy (2.3)
D d

_/ Dt (9‘]) (9‘]’41']'83‘“1' + J“iAij3j9>dy =3 Qngy,

which also means that

/g(m,t)dx:/g(y,t)de. (2.4)
Q Q

Thanks to the above observations (2.3)-(2.4) and (1.8), p = psJ !, B= H— H=b(J '0;X +
e3(Jt — 1)), and (1.15), one can derive

6> D 2 di 2
/'VA J+2M/"“é")|J+u’/| Ng‘u‘ J=0. (2.5)
By virtue of Goy < 7, one has |# — 1| < n, if n < 1/2, then
2 : 2
/’VAG J+2M/|DAéu)\ J_i_u,/\dwg;u] 7

_%/‘vAe —1)+2u/|m‘é“>‘2u—1)+u’/‘divg‘“‘Z(J_n

+K / (A — 5”)8929(VA + V)6 + ,u/ ((VA —V)u+ (Vs — V)uT) Da(w) + D(w)

+M// (Asj — 045)05u;(diva + div)w /‘VG Lo /\D M// |di\éu’2

6

> ﬁ/yvm 42 < /|D |2+,u/|d1vu2> C\/ED,
H/yvey 42 (/\WP (i + 1t /|d1vu!2> C\/ED,. (2.6)

Putting (2.6) into (2.5), we can conclude (2.1). O

2.2 Temporal derivatives estimates.
For n € Z>3, we define the temporal energy by

gt .= zn: ( /Q ps [J—l((agu)2 n cv(ag'e)Q) +R(agdivsg)2}

j=1
FAD?(| 8 95X 12 4+ AB? (|0 divy X |2 + muvag’—leug) (2.7)
and the temporal dissipation by

= > 1197 (w 0)]3. (2.8)
j=1

11



Lemma 2.2 Forn > 3, it holds that

d - _
=€+ Dl S VEDa + | Vull, (2.9)

Proof. Applying the operator 9] to (1.27)g for 1 < r < n, one has
psJ 1030 u; — pAOu; — (1 + 1) 0;divo} u — Rpsd;divar X + RO;(ps0r6)
— A2 (a;ja;xi — D3div(0]X)8i3 + Osdiv(O]X) — aiaga;"xg)

+IL + 1+ 0{(F— 1L +G), (2.10)
where
I = (,UJ + N/)(AijAkl - 5ij5kl>8jalafuk + M(AjkAjl — 5jk5ﬂ)8k818{ui (2.11)
=) Cr" (psa?lj_laf_matui + (4 10" (Aij At — 050%1) 05010, " u
m=1
+r0y" (AjkAj — 5jk5jl)3k510[muz'), (2.12)
and
|1+ O] (F — I + G)||3 < E.Dn. (2.13)

In fact, all terms in the definitions of Il + 0] (F — I + G) are at least quadratic; each
term can be written in XY, where X involves fewer derivative counts than Y. We may use the
usual Sobolev embeddings along with the definitions of £, and D,, to estimate || X |2 < &, and
|Y]|2 < Dp. Then | XY |12 < | X2 Y13 < EnDy, and the estimate (2.13) follows.

Multiplying (2.10) by 0ju;, by integration by parts and J; = Jdivu, one has

s [ oo O 4 VOl + 4 )il
/ Rpsdivar Xdival u + / RO, (0T 0)0T s
+ / AP (aga;xagagu — divO} XOs0fus
+div(O]X)div(0"u) — aga;xgdiv(agu)>
= —R / Ofu- Vpsdiva] " u— % / ped  dive(Of u)® + / 11,0} w
+ / (112 FON(F— I + G))a;"u. (2.14)

By (1.27)1, we get

/RpsdiV@[XdivﬁtTu: /RpsdivateriVOZHX: ];/ps|div(8trX)|2 (2.15)

12



and

/ (9507 X507 w — divay K0 us + iv(3f X)div (97 w) — 2307 Kacliv(3fu)

1d . r T . r
=22 / (19702 — 201w (2] )05 (97 s) + |div(FF3)?)
1 d .
_ zdt/(\a;agxhyu OFdivy ). (2.16)

It follows from Poincaré’s, Holder’s, and Young’s inequalities, that
—R/a{u- Vpsdival ~tu < C||VOF ullo||VOr tullo < €| VOr |3 + Co||[VOr tul2. (2.17)

By means of integration by parts, similar as (2.15) and (2.13), it follows
/Hlé?{u =—(pu+p) / <(3injAkz + A0 Ar) 0,07 ur Of u;
+<(Aij — 04j) At + 04 (Ap — 5kz)>5zafuk3j8fuz')
—M/ <(31Ajkz4jz + Aj1rO1 A1) O Of uiOf

+((Ajk = k) Aji + 0k (Aj — 5ﬂ))5k:3§ ui00f uz)
S VXV, ullo)|0F ullo + VEVI; ullo]| VO ullo S v/ €Dy (2.18)

By Poincaré’s inequality and (2.13), one has

1

—3 /sz_ldivu(é?{u)Q + / (II2 +0;(F—1L+ G))@{u,ﬁ VEnDn. (2.19)

By virtue of integration by part, we obtain
/R@i(pﬁ{ﬁ)@{ui = —R/psﬁtrﬁdivdfu. (2.20)

Putting (2.15)-(2.20) into (2.14), choosing suitable small € > 0, one has

G [ (9700w + Rpuldivdr P + NPJorouk? + |0 divi X )
HllV0pulf + e+ il — R [ p.0f0divopu
SVED, + || VO 2. (2.21)
Applying 0] to (1.27)3, 1 < r < n, one obtains
Cops T 1000 — KADLO + Rpydivdiu= O (E - 12) VI + 11D, (2.22)
where

IIIl = H(AjkAjl - 5jk6ﬂ)6k818[9,
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=Y cr (ar(AjkAj, — 5ik0;)0k007 0 — oI *1ata;“—m0). (2.23)
m=1

Multiplying (2.22) by 9]0, one can derive

d
%& psJ 1076 +/£||V0[9||(2)+/Rpsdivafu0{9 = /11118{9
T T 1 —173: T2
+ (at (E— L)+ 1112) 010 =3 [ poatdivlof 0. (2.24)
First of all, similar as (2.13), we can deduce that

18] (E — I5) + 1 I|[§ S Ea D (2.25)

By means of (2.25) and Holder’s inequality, it follows

/ (0(B — o) + 111,070 - ;/psjldiv\8[0|2 < /&Dy. (2.26)
Similar as (2.18), one obtains
/ 111870 < \/E,Dy. (2.27)
Hence, by virtue of (2.21) and (2.24)-(2.27), one can deduce
% (psrl(a{u)z + cops T O 012 + Rps|divay X|* + Ab?|0) 05X, |2 + )\52]8[divhxh\2)

+ul| Vo[ ull§ + (e + 1) divof ullg + £ VOTOIIE < /€D + [IVO; 5. (2.28)

Since the value of 8 on the boundary of €2 is unknown, we cannot use the Poincaré’s
inequality to get the estimate of ||070||2. Similar as (2.22), applying "' to (1.27)3, multiplied
by 0;0, and integrating over (2 we can deduce that for 1 <r <n

d
S IVo o+ o [ g opo + [ Rpsanop oo = [ viogs

+/ (a;‘—l(E — 1) +IVQ)8§9, (2.29)
where
2= Ii(AjkAjl - 6jk5jl)ak8l8:710’

r—1
m=3 o, (a;n(AjkAﬂ — §k00) OO0 — psa;”,]—latag’*lfme). (2.30)
m=1

Similar as (2.25)-(2.27) and (2.6), it follows

Kk d - . . a1 ar
IV 01+ coplof81 < VELD, + [ lavopudpe
S VEDu+ CAVO a3+ ellopol3. (231)

Choosing suitable small e, combined with (2.21), (2.28), and (2.31), the proof of this lemma can
be completed by a simple induction. O
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2.3 Horizontal derivatives estimates.

Next, we define that -
ENT = | VXB g + (1 + 1) ||divX[3 5,

and
_, .
Dnﬂc = HleXHg,Zn HaSXHazn HEgH%Qn

Lemma 2.3 Forn > 3, it holds that

d ch,x fo' « Y
= | &N +2 > /psa u-0°X | + Dy

R
SVENDaN + VEnsaEan + eIV} + (|VO)2)
e (IVoulld + el s + 19013 20 (2:32)
and
- Evia+2 > /psaau- 9°X | + D", (2.33)
a e N?
laf < 2(N +2)

S VENDN1z + e BV (|Vuld + [VOI) + 2 (V0™ + Il ns + 1961322

for suitable small 0 < e < 1.
Proof. Applying the operator 9% to (1.27)2, 0 < || < 2n, multiplying by 0*X, one can derive

e 1d
fo' « l [ a—l fo' axy |2 / s oAy |2
/psé?té? ud X+l§| 1Ca/6 Ps0:0% " ud X—l—i—t (M|V8 X|*+ (p + p')|divo*X| )

V U
1 v

+R / ps|divo®X|® + R / Vpsdivd*X0*X - R > C), / ' ps Vdivor ' X9*X (2.34)
1]=1

P
% e

-I—R/(?O‘V(ps(ﬁ— 1))9°X +f@b2/ (yaaag,xhy? + yaadivhw) - /aa(F+G)aaX.

~~
P
V3

By means of (1.27)1, Sobolev’s, Young’s and Poincaré’s inequality, we have

d
7 dt/psa&uaax+/ps|aauy2
d
S - [ PO UK 4 e[ VO ulf + Ce| V. (2.35)

Because that the domain studied in this paper is a thin domain, we have the following estimate

VI’ < el|divX|§ o + Cll0XIF < el divXIIg o + 62Cc]|050°X 5 (2.36)
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where we have used the Poincaré inequality Lemma 1.1.

Next, the estimates of V3*, V¥, and V" are divide into the following two cases:

Case 1. a > 0. By Cauchy-Schwarz’s inequality and Poincaré inequality Lemma 1.1, we
have

3+ ==> C) / 0'ps0:0° "X + R C, / &' ps V1 dive* XX},
ll|=1 |1]=1

-R> C) / 050 podiv*'X0°X3 — R Y Cl, / 9 pedivo® X% 95X

li|=1 li|=1
< ellwllf gn—1 + Cel|0X[G + elldivX|3 2, + €]l 030°XF + Ce|divX][o,20-1
< ellwellg g1 + (¢ + 0%C:)[|050°X[§ + el|divX |13 2, + Ce|divX]]o. (2.37)

Thanks to integration by parts, Sobolev’s, Poincaré’s, and Young’s inequalities, one can derive

V=R /80‘p5(9 — 1)divo X+ ) Cg/aalpsal(e — 1)divo*X
ll|=1
< C)10 — 1|26 || divo“X|lo + C||VO]l0.2n—1]|divO*X]lo
< e[ diva*X|§ + CclIVO[5 + C6‘|V9H(2J,2n—1 + CeénDp
< el|divo*X||§ + CL||VO|I + || VO[3 5, + C=En D, (2.38)

where the following fact has been used:
10 — 1115 < IV0][5 + En D (2.39)

Infect, by means of the conservation of energy, we have

1 ) 2
o dn [Ja 2¢y

/Qu2+(H—H)2dw

2¢y

_ 1
9:/9dx.
12 Jo

It follows from (2.4), (2.40), the boundary condition, Poincaré’s inequality, and (1.20)2 that

1

1=

(2.40)
1

19

S sup|v? + (H - H)?|,
€

where we have used the definition:

01155 [ 087+ (6~ 1Pds
Q
< / \VO|?dzx + sup |u* + (H— H)*| (2.41)
Q yeN
S VOl + €Dy
Case 2. a = 0. In this case, the terms V3" and VI’ in (2.34) will disappear, that is

Vy'=Vy =0. (2.42)
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By f € H*N*2 Sobolev’s and Poincaré’s inequalities and (2.39), one has

—VP = —R/Vps(ﬁ ~ )X - R/pSVQX
< C(10 — 1l gs + VOlo)[IX[o
< el| 95X + CelIVO§ + CeEnDi.

(2.43)

For the right hand side of (2.34), we first consider the case n = 2N. If |a| < 4N — 1, then
we to have

[ °(F + 6% < 107Kl G+ Flaw-1 < v/Dax v/ EuxDy. (2.41)
where we have used
V6" (F, )} S €D (2.45)

In fact, all terms in definitions of F' and G are at least quadratic. We apply these space-time
differential operators to F' and G, then expand using the Leibniz rule; each product in the
resulting sum is also at least quadratic. We then write each term in the form XY, where X
involves fewer derivative counts than Y. Then the estimate (2.45) follows similarly as (2.13)
with a slight modification when X = V2"T!X: in such cases, we estimate ||[V*""1X||2 < &, and
|2 < Dyp. Moreover, it follows more easily that

IVer—2(F, G, E)|3 < (€n)?, (2.46)
IV5" " E|l§ < €nDn. (2.47)

If |a] = 4N, we may write a = v + (o — ) for some v € N? with |y| = 1. We can then
integrate by parts and use (2.45) to have

/8“(G + F)o*X = —/(9“_7(F + G)ITX < ||F + Gllan—1]|X]Jan+1

S (D2N + \/5N+252N) Vén, (2.48)
where we have used
IF 4+ Glin_1 S (Dan)? + Engaban- (2.49)

In fact, we again write each term of 0“(F+ @) in the form XY, where X involves fewer derivative
counts than Y. To derive (2.48), we estimate both || X||3 < Doy and ||V |2 < Dan except the
cases when X = V?"TIX; in such cases, we estimate |[V*"™X|]2 < &y and [V |70 < Enio,
then (2.48) follows. Moreover, by estimating || X|[|2 < & and ||Y]|3 < Do, it follows

I1F+ G||§(N+2) S EonDyo. (2.50)

Now for the case n = N + 2, we use (2.50) to estimate

/ 0°(F + G)0"X < | F + Cllans0)10°K]l0 < v/EanDyrzy/Dysa. (2.51)

Hence, choosing suitable small § > 0, summing up such «, and using Poincaré’s inequality, we
can conclude (2.32) and (2.33). O
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In the following, we define

2n
Epti= )" / (psyaauF + Rps|0°divX|? + \b2|0%0sXp,|* + )\52]8adivhxh\2>,
|ar|=0
and
B 2n
D= > VO ulf5.
la|=1
Lemma 2.4 Forn > 3, it holds that
d [ - _
= (5;;7“ +2R / DV ps(0 — 1)aax> + Dhu
L 2.52
S VEaDn + €[ VOIR 5 +DE” + w0y (2:52)
+ CL|Vul? + C.D! + C.DM

for a € N? and suitable small 0 < ¢ < 1.

Proof. Applying the operator 9%, a € N2, and 1 < |a| < 2n to (1.27)2, and doing inner product
with 0%u over (2, similar as (2.15) and (2.13), we find that

1d

S dq (psla"‘uP + Rps|0°divX|? + \b?|0°05X), % + AB2|3adithh|2>

—|—R/VpsaadiVXGO‘u—i-R/@aV(ps(G— 1))0%u+ || VO™ u3

h,p
Vi

e+ )| divo“ullf + / CL 00" udu+ / C! RO p,Vdivo® X0 u
ll|=1 ll|=1

g

Vhu Vzh,p
- / 8%(F + G)d%u = — / 8OV (F + G)9° u < /&, D, (2.53)

where [, € N2 and |y| = 1. Thanks to (1.27);, Sobolev’s and Young’s inequalities, we can
derive that

R [0V 0~ D) u S R [0V (0~ 10"+ < V0] 5, + ol ul}

~

< R(i/aans(G —1)0“X + R/@O‘Vpsﬁt(?ax

e V(0. IR 00 + OV}
SR [ 0°9pu(0 — 10K+ 906, w)[F 0+ <K
+C:||(Vu, ) ||2. (2.54)

By virtue of Sobolev’s, Holder’s and Young’s inequalities and integration by parts, one has

—VI S el VO ullf + €100 ullf + Cel| Va5, (2.55)
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VI S Cel|oullf + 2| divE[F 2, S £ VO ullg + Ol Vull§ + el divX§ 5, (2.56)

—V =3 / CLRV pdivd® X0 u+ > / C! RO pydivo® X0 divu
l1|=1 l1|=1
S ellVullg 2n + CelldivX|[§ 2n-1 S ellVullg 2, + el div

%,27171 + Cc||divX]|§. (2.57)
Putting (2.54)-(2.57) into (2.53) and summing up from o =1 to o = 2n, we can find

2n

d

kT Z / (ps\a“uP + Rp,|0“divX|? 4+ 2ROV p,(6 — 1)0°X
la|=1

2n
+AD?|0%05X, |2 +AB2\aadivhth> + ) Vo ul (2.58)
lal=1
S VEnDn +[[(VO, X, divX)|[§ 5, + ellue 5 201 + CelIV (61, w)[§ + Ce | divX][5.
Hence, (2.52) is verified.

O
Next, we define that
2n
=" /ps|aaay2
lal=1
and
2n
Dy = |[VoUolls
|a|=1
Lemma 2.5 Forn > 3, it holds that
d - _ _
— &0 DI < \/E, Dy + DI + Ce[|[V(w, 0) |12 + €101 201 - (2.59)

dat "
Proof. Applying 0%, o € N? and 1 < a < 2n to (1.27)3, multiplying by %0, and integrating
by parts over €, similar as (2.15) and (2.13), one has

cy d

2dt/Ps’aae‘Q-l-/iHV@O‘H\%—i—R/Oa(psdivu)ao‘e

+) / CLolp, 010,070 = — / 9 tE9 T < \/E,D,. (2.60)
=1
By integration by parts, Sobolev’s and Young’s inequalities, we have
R / 0 (podive) 90 = R / 0" (pudive) ™10 < || VO]2 + Col[ VB
< e VOUO§ + el Vaull§ o, + C [V ull3. (2.61)

- 1 al a—l « anll2 2
> [ clotporionns < Culovlf + <l
=1

S e VOUOll§ + CelIVOIG + el 013 2n1- (2.62)

Hence, putting (2.61) into (2.60), and sum them up from |a| =1 to 2n, we can deduce (2.59).
O
To control the term ||w|o2n—1 in Lemma 2.3-2.5, we need the following estimate of hori-
zontal derivatives of u;.
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Lemma 2.6 Forn > 3, it holds that

d _ _ _ _ _ _ _
dtsf; we g phue <\ /€D, + DM 4 D! + C.(DI 4 D* + DM 1+ D). (2.63)

Proof. Applying 0%, a € N?, and 0 < |a| < 2n — 1, to (1.27)2, one can derive
ps010°u+ > CLO p.010° ' u — pAI u— (p+ 1) Vdivo u
=1

— Rp,Vdivd®X — R > CLd'p,Vdivd* !X + RO“V (p,(0 — 1)) (2.64)
I|=1

— A (agaax — 85divO®Xe; + Vdiv®X — vagaaxg) L OUF + G),
which multiplied by 0;0%u yields
1d

5 27 (IOl + G+ ) | divo™ullf) + [[v/ps0" el + Sl / 0 ps0 0" ud uy
[7]=1

Vs

+R / Vpsdivo®X + Z C! V8 pedivo®~ lx)a (2.65)
ll|=1

%1

+R / psdivo™X + Z CL psdivo™™ lx) O%divay + / ROV (ps(0 — 1))0%uy
1] =1

V3
%

— AP / (agaax — 93divd®Xes + Vdiva®X — vagaaxg)aaw + / 0%(F + G)0°w,

Vs

where we have used the integration by parts. Apparently, one has

-1 <

utllo < e 0%w|§ + C | div]o,2n- (2.66)

By means of (1.27);, Sobolev’s and Young’s inequality, we have

_ d EyaYe - L 5l s oao—l aq:
Vs = _Rdt (psdlvﬁ X+ |lz_1 C,0 psdivo X)@ divu

/ sdivo®u + Z CL o pydivo >8adlvu (2.67)

/ =1
/G

_pd
d
|l|=1

( 5 divooX + f: cl o psdivaa_ZX> 0 divu+ C|/divul2 o,

(dive X + 3 cgalpsdivaa—lx) 0™ divu+ e[ Vul[2 o, + Cc || V3.
=

rd
=y

20



Similar as Lemma 2.2, one can derive that
Vi = )\BQ% / (agaax — 85div0°Xes + Vdiv*X — vagaaxg)aau
Y / (agaau — 85divO®ues + Vdivd®u — vaga%)aau (2.68)
= )\BQ% / (agaax — 93divo“Xes + Vdivo*X — vagaaxg) O%u — ||(8%03uy,, 0°divy,up) 3.
However, the term V3 cannot be tackled as in X using the integration by parts, since the derivative

order of u cannot be increased. Our method is translate the time derivative to temperature. In
fact,

d
Vy< - / RO°Vpy(6 — 1) u + / RO*Vp,0,0"w+ £ 0%wi])3 + Co|[ V6|2 5,

d
< T RO*Vps(0 — 1)0%u+ || (0%us, 0:) |3 + Ce]|0%u||3 + CEHVHH%QH (2.69)

<=5 [ ROpu(0 — D0t <@ e 01 + <l Tl 5, + CoITulf + CLITOE
By Sobolev’s and Young’s inequalities, for e > 0, one has
Vs < ello w3 + CLll0° w3 < 20 wl3 + Cell9rul?, (2.70)
and for o = 0, the term V5 will disappear, that is
Vs =0. (2.71)
Combined with (2.65)-(2.71), by means of (2.45), one has

d 2 / : 2 d feY fe}
53 (VB a0y G vl ) + 5 [ (R[a Vos(6 ~ 1)0"u

+(pediva X + 7 CLo p,dive X)) 0% diva] — A (050X — dydivo” Xes
=1

FVdivITX — V330“X3)0“u) a2 91 + 1850, diviun |12 50y (2.72)
< CVéEDn + el Vul§ o0 + el 01 + Ce(I1divXIIZ 2 + IV ullf + VO 20 + |0eu5),
which means that (2.63) has been obtained when we have the following definition:

Ent = (| Vu

3ot + (ot 1) divel3 g, )

+ / (R [aavps(e) 18+ (psdivaaX n Za: Céalpsdivaa’lx) aadivu}
li=1

—\b? (agaax — 03div0*Xesz + Vdivo*X — vagaaxg)aa u) : (2.73)
Dy = w3 anr + 1@, diviun) 521, D= [V (w, 0)]f5. (2.74)
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For n € Z>3, we define
En’ = VO[5 201 (2.75)
and
Dy = 1045 201 (2.76)

Lemma 2.7 Forn > 3, it holds that

d - _ _ _ _
ggjjﬁf + DM <\ /€, D, + DI 4+ C.D* + C.D,. (2.77)

Proof. Applying 9%, a € N2, and 0 < |a| < 2n — 1 to (1.27)3, one has

o
CopsDh0°0 +cy »  CLO'p0,0°710 — KAD™0 + RO (psdive) = O°E, (2.78)
l1|=1

which multiplied by 0“6, yields

|

g%waaeug + || /Ps0%0: |3 + co / > CLO ps00° 10070, + R / % (psdive) 0“0,
ll|=1
VI
= / B0, < \/EDn. (2.79)

By virtue of Hélder, Young and Sobolev’s inequality, for 1 < a < 2n — 1 one has

VI <001 + Cell0ul s + ColI Tl 2y
< (1001201 + IVl 20 ) + Co (16:]3 + 7 ul3). (2:80)

Similarly, for « = 0, one has
VIR [ pudivat < <0 + CITul}, (2.81)
Combined with (2.79)-(2.81), it follows
%I|V9llﬁ,zn_1 + 10015 201 S VEDn + el Vaull§ 2 + Cell(Vas, 6)3, (2.82)
which means that (2.77) has been obtained. O

2.4 Improved estimates.

Lemma 2.8 Forn > 3, it holds that

d .
%Qn + ||(divX, 95X, X) |13, + [[(w,0 — 1)[|3,,41
S (g, 00) (13,1 + DI + DiP + D™ + D + £,D,. (2.83)
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Proof. Note that

—pAug — (u+ p)osdive = —pApuz — (2u + p)O5us — (u+ p')dsdiviuy,
= —MAhu;), — (2,u + ,u/)ﬁgdivu + uﬁgdivhuh. (2.84)

Hence, let ¢ := —divX, the third component of (1.27)2 can be rewritten as

(2p + 1) 0:93q + RpsOaq = —psOpus + plApuz — pdzdivyup,
—R0O3(ps(0 — 1)) + F3 + G3. (2.85)

Applying 050;", 0 <r <k, 0 < |m| < 2n —k — 1, one has

r o |ml|
(2p+ 1)0103(508"q) + Rps03(030)'q) = —R Y | > CRCR20 02 ps03(05 10 "2q)
li=1]l5|=0
m|
“RY CEl2p, 030507 2q + aga;r( — peBhus + pAnuz — pdsdiviu,
|l2|=1
~Ros(ps(6 — 1) + Fy + G ), (2.86)
which yields
k 2n—k—1
Ru+u)2 D> Y /p5|838§8}?q|2 + 21+ 1211036107 o1 + B0 1030117 201
r=0 |m|=0

< Cl105011 20—k + Cl0sal1E 2z + || ( = psBria + by
2
—udsdivyup — Rag(ps(e — 1)+ F3 + G3> H
k,.2n—k—1
i,ankfl +CaHa3QHz,0 +C€‘|qH(2),2n7k71 + C||Opus]|3, +CH’U‘H%+1,2nfk

+C”U”i,2n—k+1 + C”VQH%,%%A + C||F5 + G313,_1- (2.87)

< ¢||0sq|

To estimate the term H83‘JH%,07 we need the following calculation. Applying the operator 05 to
(2.85), 0 <r <k, one has

(21 + 1) 0405(95q) + Rps03(05q) = —R > CLokps05(95 'q) + ag( — psOyuz + pApus
=1
—udsdivyup — RO3(ps(6 — 1)) + Fy + G3>, (2.88)
which yields
d k
R(2pu+ ) > / psl0s05q* + (2 + 1)?[01D3qll o + R*p*[19s4ll7 o (2.89)
r=0

2
S 10sqlli_1 0+ H ( — psOpuz + pApuz — posdivyu, — RO3(ps(0 — 1)) 4+ F3 + Gs) Hk .

S ellOsallio + Cellally + N10eusllz o + l1ull 1 20 + 16llR 2n k1 + 155 + Gl o + [IVOIIZ o-
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Combined with (2.87) and (2.89), we obtain

k 2n—k—1
d T T QM
at Z (/p5\8383q2 + Z /Ps|53838h Q|2> + <||33Qt||i,2n—k—1 + ||63q||%,2n—k—1> (2.90)

r=0 |m|=0

S HQ||(2),2n + 10pusll3, 1 + ||'u’||%+1,2n7k + IIUIIi,znka + (G3, Fs)|15,-1 + ”VQH%,ankfl-
The first two components of (1.27)2 can be rewritten as

—pd3up, — N*93Ky, = —psOpun + plpup — (n+ 1) Vioeg
—RpsVyq — RVp(ps(0 — 1)) — /\EQ(th + V3,05X3) + G + Fp. (2.91)

Taking the norm || - szn_k_l of (2.91), one has

»d 7
AV 105Xk 201 + N BHNO5Xn N 201 + #2105 unllE 201

= || = psOrun + pApup — (1 + 1')VaOg — RpsVrg — RV (ps(0 — 1))
—AbQ(th + Vha3X3) + G+ Fh”%,?n—k—l

S 18sunlZn—1 + lunllion—r+1 + 10:alZ 20—k + 4l 2n—r + 195X317 204
+[[VO %,2n7k71 + [[(Fn, G)| i,ankfl' (2.92)
Noting that
115,20 = I1dIvX[[5 2, S D", (2.93)

105%s 17 2n—k—1 = 195(q + divaXp)F 201 < lalistonr1 + 105XnlFon rs (294
||8§U3||i,2n—k—1 = [105(0rq + divpXp) z,zn—k—1 < Hatq||i+1,2n—k—1 + HuthHan—k, (2.95)

combined with (2.90) and (2.92), we derive

k 2n—k—1

d s T Qm

& [Z ( / psldsdial” + Y / pslOs 0505 al?) + Hathuign“]
r=0 |m|=0

+ ||8tq||i+1,2n—k—1+||q||%+1,2n—k—1+||83XH%+1,271—1€—1+||u||i+2,2n—k;—1

S N02allf s + NallZ 2n—r + 105XIE 20—k + letllisr 20 + N6lR 2norir + 100ull3,
HIE G7 2n—k—1 + D™ + IVOIIF 20——1- (2.96)

By means of (1.27)3, one has
m@%& = —kApO + cypsby — E 4+ Rpsdivu.

Taking the || - ||z’2n7,€717 by Poincaré’s inequality and 9360|9q = 0, we can derive

2 20112 2
1030115112011 S 19501k 2n—k—1 + 103020 —1
k
S H3329||i,2n—k—1 + ||339H(2),2n—k—1 + ||33839||(2),2n—k—1
S 103017 20—k

S 10131 + IVROIE 20—t + laelRon—t1 + 1EIZ0y- (297)
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Noting that

(2.98)
one can deduce
VO3 11 2n—k—1 S IVOZ 2ni + 10:l130—1 + llgll7 20t + I EN30—1- (2.99)
Adding (2.99) with (2.96), it follows
d k 2n—k—1
@ [Z ([ olosdsal+ 3> [ losdsoal) + 1851 oo 1]
r=0 |m|=0
+ | 11(0eq. 4, 05X, VO Fy1.9m k-1 + ||u||i+2,2n—k—1]
S H (atQ7 q, 83X7 V&) 2
+| (ut, 0) 13,1 + | (F, G, E)[13,-1 + D" (2.100)

By means of (2.93), B
10eallo2n = ldivallozn < [luf12n S DR,

and the recursive inequality of (2.100) on k, we conclude that there exist constants \p > 0,
k=0,---,2n — 1 such that

d - 2 2n—k—1 /L)\b )
a Z Z (/ps‘a:”a?rq‘ > //’8’83‘93@1 ql ) + o= 15 XnlI7 20— 1]
—0

r=0 |m|=0

2n—1
+Cy Z 10¢q, q, 03X, VGH%+1,2nfk71 + ||U”z+2,2nk1]
k=0
SN0, 4, 05X, V0I5 20 + 10T 0, + N1, 021131 + (F, G, E) 3,1 + D"
S g, 0ll30—1 + |(F, G, E)|3,_, + D" + DIP + Dhv + Do (2.101)
Hence, if we define
2n—1 on—k—1
=2 N [Z (footia+ > [ niostapar) + “5 108500 ]
|m|=0

then &, is equivalent to ||03ql[3,_; + |03Xp|3,_1-
Thanks to (2.39) and (2.101), we can deduce that

Qin + ”(quQ763X)||gn + H(’U,, 0 — 1)”%n+1
5 ||(ut7 ‘9t7 F’ G7 E)H%n—l + ,Dz’u + IDZﬁ + @Z,x + @s + gnDn

d
dt (2.102)

Using (2.45) and (2.47) to estimate ||(F, G, E)||3,_1 < E.Dn we conclude the estimate (2.83) by
recalling that ¢ = —divX and using Poincaré’s inequality. O

Lemma 2.9 Forn > 3, it holds that

n
> (197 ul3—arer + 107013241 ) S EDn + Dl + [l (2:103)
r=1
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Proof. (1.27)3 can be rewrite as

—pAu+ (p+ " )Vdive = —psOpu+ RpsVdivX — RV (ps(0 — 1))
+AV? (93X — D3divXes + VdivX — VsX3) + F + G. (2.104)

Applying 9] to (2.104), employing elliptic estimates for 2n — 2r + 1 > 3, one can obtain

||8Zu||gn—2r+1
SN0 301 + V207 X301 + V(0507 0) 130201 + 107 (F + G)3,—2,—1
SN0l apiyir + 107 X321 + 10701132 + Ya, (2.105)
where B
Y, o= V" F + Q)5

By means of (1.27)1, |07 u||? < D!, and Sobolev’s and Young’s inequalities, a simple induction
on (2.105) yields

n n—1 n—1
D 0wl o SNOPulF + D 105X 50—r1 + D 1070]130—0r + Ya
r=1 r=1 r=1

n—1 n—1
S DZ + Z Ha{_lungn—Q(r—l)—l + Z ||8Z’9||%n72r + Y

r=1 r=1

n—2 n—1
S DL+ 31 + D N0 w301+ Y 1076152, + Ya

r=1 r=1

n—2 n—1
SO+ ul3ny +e Y 107 ull3nsris +€ D 10761502041

r=1 r=1
n—2 n—1

+C N0 ull§+ C D 1107015 + Ya
r=1 r=1

n—2 n—1
SO+ N3y +e ) 107 ul3norir +2 D 1070113, 0
r=1 r=1
+C. DL + Yy, (2.106)
By virtue of (1.27)3, one has
—kAO = —c,ps0:0 — Rpsdivu+ E. (2.107)

Applying 050} to (2.107), employing elliptic estimates for 2n — 2r > 2, one has
167 030132 S 10,7 0500301y + 101 T 0130 o(rsry + 107 Ull3p—ay + Zn,  (2.108)

where B
Zyp = ||V B2

By means of induction on (2.108), Sobolev’s and Young’s inequalities, and ||070]|? < D

deduce

¢
b, We

n n—1 n—1
1
D 0307 013,20 S NOFOIT + D110} wl3zr + D 107013, o041 + Zn
r=1

r=1 r=1
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n—1 n—1 n
S e Y 07 ull3uorr + Ce X107 uld + 107617 + D 107 0130—a + Zn

r=1 r=1 r=2
n—1 n

Se Z 107 wll3—0r1 + & Z 1070113, —2r+1 + C=D}y + Zn. (2.109)
r=1 r=2

Next, we rewrite (2.107) as
—kARLO = kD30 — cypsb; — Rpsdivu+ E. (2.110)
Applying VA9], B3 € N3, and |8| < 2n — 2r — 1 to above, one has

B
—kARVPO0 = 03V 070 — copVPOTT0 — ¢, Y - CLV p 0TIV
=1

B
—RpVP0jdivu— R CLV'p,0; VP ldivu+ VPOTE. (2.111)
=1

Multiplying (2.111) by V970, by integration by parts, Cauchy-Schwarz’s and Sobolev’s inequal-
ities, one has

IVAVP0; 612 < 1307013 201 + VP01 + 105013 a1 + 105wl oy + Zn
S 10597013, s, + £l VRVPOI + CLl|F013 + C 195076013, o,
18003 arryr + IO B i + CElOF U} + Zo  (2112)

Summing (2.112) up from 5 =0 to 2n — 2r — 1, we deduce

IVRO; 03201 S 105070113, + €l VnO; 0113201 + CellOFONIG + Cel| 0307013, o,
107 0132141 + ENOF W30y + CellOull§ + Zno (2.113)

Because

VRO 0113, —2r < IVROF 013, —2r 1 + 105VAV" 2 076][5 + VAV~ 107013
<IVRO; 013201 + 19507 0113, o + | ALV~ 1005, (2.114)

we next need to estimate ||A, V2219792, Taking |8| = 2n — 2r — 1 and applying || - [|2 to
(2.111), one can derive

1ALV 2107015 < 105V =2 1010115 + 110 011321 + 107 ull30 oy + Zn
S 10305 0132 + 10 015,241y + €O} w301 + CellOf ull§ + Zno (2.115)

Putting (2.113) and (2.115) into (2.114), one has
IVRO; 015020 S 1050701527 + 107 01120 i1y 1 + CeDpy + €07 ull 32711 + Zn(2:116)
By virtue of (2.109) and (2.116), we have

Ha{mgn—zrﬂ = Hva{HH%anr + HatTHH% S tha{eugnfﬁ“ + ||838:0||%n,274 +25$1

n—1 n
SCDy+ ey 107 ul3n orir + Y 11070130 21 + 0] ull30 i1

r=1 r=2
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H10F 03 —ar 1)1 + Zne (2.117)

By a simple induction of (2.117), one has

n n—1
D 076130201 S CDp ey 10 ull3n g1 + 1076117 + Zn
r=1 r=1
~ n—1
S CéDZ te Z Haz‘auH%n—Qr-i-l + Zn, (2118)
r=1
which combined with (2.106) yields
n
> (197 wlBari1 + 10 OBars1) S Yo+ Zo+ Dy + s (2.119)
r=1
Using (2.45) and (2.47) to estimate Y, + Z,, S &£,Dy,, we then conclude (2.103). O
Lemma 2.10 For n > 3, it holds that
En SELFEM L@, + 85+ 2. (2.120)

Proof. Applying 97, 0 <r <n — 1, to (2.104), and then employing the elliptic estimates with
2n — 2r > 2, one has

Ha{quanT S |’a:+1qunf2r72 + ||V28{X”%n72r72 + HV(/)S(?:(O - 1))”%n727‘72
+H8{(F + G) Hgn72r72
SN0 g, oy T 107X N3n—2r + 107 (0 = V35201 + Uny  (2.121)

where
Un = [V 2(F + Q)2 (2.122)

A simple induction on (2.121) yields, since ;X = u

n n—1 n—1
D 07 ull3u—or S 107wl + D105 X30—2r + > 1070 = V30901 + Un
r=0 r=0 r=0

n—1 n—1
S E A IXIZ + D105 ullFar +2 D 1107 (6 = D13, 20
r=1 r=0
n—1
+C ) 1050 — DIF + Un (2.123)
r=0
n—2 n—1
S OES’Z + 57?’96 + an + EZ Ha{ungn—%’ + EZ ||6{(0 - 1)”%71—27" + UTLv
r=0 r=0
n—2 n—1
where we have used the facts [|X[|3,,; < gty e, Z 0Ful|3 < & and Z 107 (6 —1)|12 < &L
r=0 r=0

Applying 003, 0 < r < n — 1, to (2.107), and then employing the elliptic estimates with
2n — 2r — 1 > 2, one has

"8{836”%71—27“—1 g “a{+1839“%n—27"—3 + Hva{UH%n—Qr—z + 6
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S \\32”“839\@”72(”1)71 +10F ull 321 + O, (2.124)

where
6, = IV 2E|2. (2.125)
A simple induction on (2.124) yields
n—1 n—2
> 110703013, —0r—1 S 10705007 + > 107 w3, 9,1 + On
r=0 r=0
n—2 n—2
S 1077103017 + 2> 107 ull3, o + Ce > 107 ull§ + O
r=0 r=0
n—2
S 10771050017 + CE + 2> 107 ull3,—ar + O (2.126)
r=0

Similar as (2.111)-(2.116), one can derive
Va7 Oll5—2r—1 S 103070113001 + 110710113, a(r41) T Ce En + elloful3, o, + On(2.127)
By virtue of (2.126) and (2.127), for r < n — 1, we have

107 (0 = D) 135—2r = IVO[0]13, 0,1 + 157 (0 — D)3
5 tha{m’gnﬁrq + H838{0|’%n,2r,1 + g’ltl +S

n—2
5 S + Ct’:‘g’ltl +e Z Ha{uH%nfﬁ‘ + 8“8;11’”%11727"

r=0
IO, ey + 107 V0] + . (2.128)
By a simple induction of (2.128), one has
n—1
Z 107 (0 = D320 S S+ CEl+2 Y 10F ull3r + 077 V0I5 + O (2.129)
r=0

Applying 97! to (2.107) and then applying | - |2, by integration by parts and 930|gq = 0, we
can deduce

IV20p 71015 = 1407710115 < 1o oIl + || divoy " wl§ + (|07~ Ell3
< E 4|08 |? + O (2.130)
Combined with (2.123) and (2.129)-(2.130), it follows

Zuarue D)3ney SEL+EM + €+ S+ U, + 6. (2.131)
Using (2.46) to estimate U, + O, < (£,)%, we then conclude (2.120). O

Lemma 2.11 Forn = N + 2 or 2N, there exists an energy &, which is equivalent to &, such
that

d =
%EQN + Doy S VEN262N (2.132)
and
d ~
%5]\[4_2 4+ Dpny2 < 0. (2.133)
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Proof. It follows from (2.83) of Lemma 2.8 and (2.103) of Lemma 2.9, that

d _ _ _
— &, + Dy S EDy + ||ufl3,_1 + DL, + Di¥ + D*

dt
S (En +€)Dy + C:||u|)2 + DY, + Dv + DI”
< (&, +€)D,, + C.D!, + D 4 DI (2.134)
which yields
d _ _ _
&+t S D! + Dl 4 Dl (2.135)
Let n denote either 2N or N + 2 through the proof, and we use the compact notation @),, with
Q2N = VENDan + /Eng2Eony and Qni2 = VENDn 2. (2.136)
It follows from Lemma 2.1-2.2, one has
d _ _
&(SJF&Q) +D* + D! < \EDn. (2.137)
By virtue of Lemma 2.3-2.4, there exists a large constant K7, such that
d /. _ _ _
r (8,’;’“ + K [55“” +2 / pst- XD + DM 4 (K — C.)DP"

< Qn + VEDy, + (DY 4 DI 4 DI - DRty 1 O(D* + D). (2.138)

By Lemma 2.3 and Lemma 2.5, we have

d/( - _ _ _
& <£j§’m +2 > /psaau~ X + 8,’;"’) + Dl 4 Dho
a € N?
la] < 2n

SVED, + Qn + C.D° + &(Dhv  Dhvue  Dhibry, (2.139)

Hence, by means of (2.137)-(2.139), there exists a large constant Ky >> K; >> C. > 1 and a
small 0 < 2¢ < g1 << 1 such that

d _ _ _ _ _
pr Ky(S+ &)+ &M+ Ky [55’”+2/p3u-x} tea |&7+2 > /psaau-aamgf;ﬁ

o € N2
la] < 2n
(K — £1C: — C)D* + (K3 — Co)D + (1 — 16 — £)DP" + (1 — &) (DI + DY)
S Qn+ VEDy + (D% + D). (2.140)

Thanks to Lemma 2.7 and Lemma 2.6, one obtains

d - _ _ _ _ _ _ _ _
a(f;ﬁjf’t 4 Ehwuy 4 DO Dhue <\ /€ D, + C.(D!, + D* + D + DM + eDhv (2.141)

Multiplying (2.141) by 0 < £ < €3 < €1 — € << 1 and adding with (2.140), we have

d _ _ _ _ _

o Ko(S+EL) + &M + Ky <£§’x+2/psu.x> +e (5,};’9%2 > /ps(‘?au-aax—kgﬁ’e)
a e N?
lal < 2n
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+e9(EMOt 4 Eluey| 4 DS 4+ Dt 4 DI 4 DI 4 DhO L Dhoue L DhO < ) 4 \/E,D,.  (2.142)

We then deduce from (2.142) and (2.135), for 0 < g3 << 1,

d

dt

Ky(S+ &)+ &M + Ky <5§”” + 2/p5u- X> +e1 (5‘{;’r +2 ) /psaau'8QX+ 5’2’9>
a € N2
la] < 2n

+eo(EN0 + EM) + e3¢, | + D + D), + D" + Dp® + Di? + Dot + D% + Dy,

S Qn+ VED. (2.143)
which yields

d

—&0+Dn < Qu, 9.144
T+ DS Q (2.144)

where

En =

Ko(S+ &) + &M 4 K,y (5{]’“ + 2/p5'u,- X) + gg(EMO 4 Ehue) 4 g,

+e <5’ﬁ""”+2 > /psao‘u-aaXJrE,’;ﬂJréﬁﬁt)].

a e N?
lal < 2n

By virtue of (2.120), one has
E0 < Ent (6, (2.145)

that is to say &, is equivalent to &, since En < 7 is small. We thus deduce (2.132) and (2.133)
from (2.144) by recalling the notation @,, and using again that Eon(T") < 7 is small. O

2.5 Global energy estimates.
Lemma 2.12 There exists a 0 < n < 1 such that if Goy <, then

T
Ean(t) + / Do (t)dt < Eax(0) (2.146)
0
forall0<t<T.

Proof. Integrating (2.132) directly in time, we find that
T T
52]\7(75) +/ DQN(t)dt S EQN(O) —|—/ \/ 5N+252th
0 0

T
S &n(0) + sup 52N(t)/ V(L 4+ 1)V 24t < En(0) + /1 sup Ean(t), (2.147)
o<t<T 0 0<t<T

where we have used the fact that N > 4. This proves the estimate (2.146) since 7 is small. [

It remains to show the decay estimates of Eno.
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Lemma 2.13 There ezists a general constant 0 < n < 1 so that if Gon(T') < n, then

(1+ )2V N 1a(t) < Ean(0) (2.148)
forall 0 <t <T.
Proof. If we can obtain that Eyyo < M(Dn42)* 0 < a <1, then

d 1/
vt oM~eENT, <o, (2.149)

which means that

. ~1/(1/a—1)
B 5 CMYag 0)l/a—1
Enio <Enia(0) 1+ n2(0) . (2.150)
1/a—1
However, every term in Eyy2 can be controlled by Dy2, except HV%L(NH)HXH%. Using the
Sobolev’s inequality in horizontal, we have
Vi 2GS VTR TR € (D) (€)' (215D)
2N —4 .
where a = 5N _3 < 1. Thus, we may derive
Enta S (D) (Ean)' " (2.152)
By virtue of (2.146), one has
sup &N (t) S Ean(0), (2.153)
0<t<T
which combined with (2.152) yields
Ena(t) < CEn+a(t) < C(E2n(0)'*(Dv42)™. (2.154)

So, one has M = C/(En(0))1%, putting into (2.150), by Ens2(0) < Ens2(0) < En(0), we may
conclude (2.148).

The Lemmas 2.12 and 2.13 can directly get the following result.

Theorem 2.1 There exists a general constant 0 < n < 1 such that if Goy <7, then
Gan < Ean(0) (2.155)

forall0 <t <T.
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