References
Árva, D., Specziár, A., Erős, T., & Tóth, M. (2015). Effects of habitat
types and within lake environmental gradients on the diversity of
chironomid assemblages. Limnologica , 53 , 26–34.
https://doi.org/10.1016/j.limno.2015.05.004
Asaeda, T., & Van Bon, T. (1997). Modelling the effects of macrophytes
on algal blooming in eutrophic shallow lakes. Ecological
Modelling , 104 (2–3), 261–287.
https://doi.org/10.1016/S0304-3800(97)00129-4
Best, E. P. H., Buzzelli, C. P., Bartell, S. M., Wetzel, R. L., Boyd, W.
A., Doyle, R. D., & Campbell, K. R. (2001). Modeling submersed
macrophyte growth in relation to underwater light climate: modeling
approaches and application potential. Hydrobiologia ,444 (1–3), 43–70. https://doi.org/10.1023/A:1017564632427
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia:
A Fresh Approach to Numerical Computing. SIAM Review ,59 (1), 65–98. https://doi.org/10.1137/141000671
Binzer, T., Sand-Jensen, K., & Middelboe, A.-L. (2006). Community
photosynthesis of aquatic macrophytes. Limnology and
Oceanography , 51 (6), 2722–2733.
https://doi.org/10.4319/lo.2006.51.6.2722
Blindow, I. (1992). Decline of charophytes during eutrophication:
comparison with angiosperms. Freshwater Biology , 28 (1),
9–14. https://doi.org/10.1111/j.1365-2427.1992.tb00557.x
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G.
B. (2004). Toward a Metabolic Theory of Ecology. Ecology ,85 (7), 1771–1789. https://doi.org/10.1890/03-9000
Cabral, J. S., Valente, L., & Hartig, F. (2017). Mechanistic simulation
models in macroecology and biogeography: state-of-art and prospects.Ecography , 40 (2), 267–280.
https://doi.org/10.1111/ecog.02480
Cao, J., & Ruan, H. (2015). Responses of the submerged macrophyte
Vallisneria natans to elevated CO2 and temperature. Aquatic
Biology , 23 (2), 119–127. https://doi.org/10.3354/ab00605
Cohen, J. (1988). Statistical Power Analysis for the Behavioral
Sciences (0 ed.). Routledge. https://doi.org/10.4324/9780203771587
Collins, C. D., & Wlosinski, J. H. (1989). A macrophyte submodel for
aquatic ecosystems. Aquatic Botany , 33 (3), 191–206.
https://doi.org/10.1016/0304-3770(89)90037-5
Colwell, Robert. K., & Lees, D. C. (2000). The mid-domain effect:
geometric constraints on the geography of species richness. Trends
in Ecology & Evolution , 15 (2), 70–76.
https://doi.org/10.1016/S0169-5347(99)01767-X
Dalla Vecchia, A., Villa, P., & Bolpagni, R. (2020). Functional traits
in macrophyte studies: Current trends and future research agenda.Aquatic Botany , 167 , 103290.
https://doi.org/10.1016/j.aquabot.2020.103290
Dawson, W., Fischer, M., & van Kleunen, M. (2011). The maximum relative
growth rate of common UK plant species is positively associated with
their global invasiveness. Global Ecology and Biogeography ,20 (2), 299–306. https://doi.org/10.1111/j.1466-8238.2010.00599.x
Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C.,
Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B., &
Singer, A. (2012). Correlation and process in species distribution
models: bridging a dichotomy. Journal of Biogeography ,39 (12), 2119–2131.
https://doi.org/10.1111/j.1365-2699.2011.02659.x
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L.
J., Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F.,
Melack, J. M., & Middelburg, J. J. (2006). The global abundance and
size distribution of lakes, ponds, and impoundments. Limnology and
Oceanography , 51 (5), 2388–2397.
https://doi.org/10.4319/lo.2006.51.5.2388
Duarte, C. M. (1995). Submerged aquatic vegetation in relation to
different nutrient regimes. Ophelia , 41 (1), 87–112.
https://doi.org/10.1080/00785236.1995.10422039
Gao, H., Shi, Q., & Qian, X. (2017). A multi-species modelling approach
to select appropriate submerged macrophyte species for ecological
restoration in Gonghu Bay, Lake Taihu, China. Ecological
Modelling , 360 , 179–188.
https://doi.org/10.1016/j.ecolmodel.2017.07.003
García-Girón, J., Fernández-Aláez, M., & Fernández-Aláez, C. (2019).
Redundant or complementary? Evaluation of different metrics as
surrogates of macrophyte biodiversity patterns in Mediterranean ponds.Ecological Indicators , 101 , 614–622.
https://doi.org/10.1016/j.ecolind.2019.01.062
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske,
J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A.,
Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou,
C., Railsback, S. F., Robbins, A. M., … DeAngelis, D. L. (2006).
A standard protocol for describing individual-based and agent-based
models. Ecological Modelling , 198 (1–2), 115–126.
https://doi.org/10.1016/j.ecolmodel.2006.04.023
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., &
Railsback, S. F. (2010). The ODD protocol: A review and first update.Ecological Modelling , 221 (23), 2760–2768.
https://doi.org/10.1016/j.ecolmodel.2010.08.019
Hawkins, B. A., Albuquerque, F. S., Araújo, M. B., Beck, J., Bini, L.
M., Cabrero-Sañudo, F. J., Castro-Parga, I., Diniz-Filho, J. A. F.,
Ferrer-Castán, D., Field, R., Gómez, J. F., Hortal, J., Kerr, J. T.,
Kitching, I. J., León-Cortés, J. L., Lobo, J. M., Montoya, D., Moreno,
J. C., Olalla-Tárraga, M. Á., … Williams, P. (2007). A Global
Evaluation of Metabolic Theory as an Explanation for Terrestrial Species
Richness Gradients. Ecology , 88 (8), 1877–1888.
https://doi.org/10.1890/06-1444.1
Henricson, C., Sandberg-Kilpi, E., & Munsterhjelm, R. (2006).
Experimental studies on the impact of turbulence, turbidity and
sedimentation on Chara tomentosa L. Cryptogamie-Algologie ,27 (4), 419–434.
Herb, W. R., & Stefan, H. G. (2003). Integral growth of submersed
macrophytes in varying light regimes. Ecological Modelling ,168 (1), 77–100. https://doi.org/10.1016/S0304-3800(03)00206-0
Higgins, S. I., Larcombe, M. J., Beeton, N. J., Conradi, T., &
Nottebrock, H. (2020). Predictive ability of a process-based versus a
correlative species distribution model. Ecology and Evolution ,10 (20), 11043–11054. https://doi.org/10.1002/ece3.6712
Hilt, S. (2015). Regime shifts between macrophytes and phytoplankton -
concepts beyond shallow lakes, unravelling stabilizing mechanisms and
practical consequences. Limnetica , 34 (2), 467–479.
Hoffmann, M. A., Raeder, U., & Melzer, A. (2014). Influence of
environmental conditions on the regenerative capacity and the
survivability of Elodea nuttallii fragments. Journal of
Limnology , 73 (AoP). https://doi.org/10.4081/jlimnol.2014.952
Hoffmann, M., Sacher, M., Lehner, S., Raeder, U., & Melzer, A. (2013).
Influence of sediment on the growth of the invasive macrophyte Najas
marina ssp. intermedia in lakes. Limnologica , 43 (4),
265–271. https://doi.org/10.1016/j.limno.2012.11.002
Hofstra, D., Schoelynck, J., Ferrell, J., Coetzee, J., de Winton, M.,
Bickel, T. O., Champion, P., Madsen, J., Bakker, E. S., Hilt, S.,
Matheson, F., Netherland, M., & Gross, E. M. (2020). On the move: New
insights on the ecology and management of native and alien macrophytes.Aquatic Botany , 162 , 103190.
https://doi.org/10.1016/j.aquabot.2019.103190
Hootsmans, M. J. M. (1994). A growth analysis model for Potamogeton
pectinatus L. In W. van Vierssen, M. Hootsmans, & J. Vermaat (Eds.),Lake Veluwe, a Macrophyte-dominated System under Eutrophication
Stress (pp. 250–286). Springer Netherlands.
https://doi.org/10.1007/978-94-011-2032-6_14
Hussner, A., Heidbüchel, P., Coetzee, J., & Gross, E. M. (2021). From
introduction to nuisance growth: a review of traits of alien aquatic
plants which contribute to their invasiveness. Hydrobiologia ,848 (9), 2119–2151. https://doi.org/10.1007/s10750-020-04463-z
Ikusima, I. (1970). Ecological Studies on the Productivity of Aquatic
Plant Communities IV Light Condition and Community Photosynthesic
Production. Shokubutsugaku Zasshi , 83 (987–988), 330–341.
https://doi.org/10.15281/jplantres1887.83.330
Iversen, L. L., Girón, J. G., & Pan, Y. (2022). Towards linking
freshwater plants and ecosystems via functional biogeography.Aquatic Botany , 176 , 103454.
https://doi.org/10.1016/j.aquabot.2021.103454
Kleyer, M., Bekker, R. m., Knevel, I. c., Bakker, J. p., Thompson, K.,
Sonnenschein, M., Poschlod, P., Van Groenendael, J. m., Klimeš, L.,
Klimešová, J., Klotz, S., Rusch, G. m., Hermy, M., Adriaens, D.,
Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L.,
… Peco, B. (2008). The LEDA Traitbase: a database of life-history
traits of the Northwest European flora. Journal of Ecology ,96 (6), 1266–1274.
https://doi.org/10.1111/j.1365-2745.2008.01430.x
Körner, S. (2002). Loss of Submerged Macrophytes in Shallow Lakes in
North-Eastern Germany. International Review of Hydrobiology ,87 (4), 375–384.
https://doi.org/10.1002/1522-2632(200207)87:4<375::AID-IROH375>3.0.CO;2-7
Lewerentz, A., & Cabral, P. D. J. S. (2021). Wasserpflanzen in Bayern.
Der Blick auf den See verrät nicht, was unter der Oberfläche passiert.Mitteilungen der Fränkischen Geographischen Gesellschaft ,67 , 19–28.
Lewerentz, A., Hoffmann, M., & Sarmento Cabral, J. (2021). Depth
diversity gradients of macrophytes: Shape, drivers, and recent shifts.Ecology and Evolution , 11 (20), 13830–13845.
https://doi.org/10.1002/ece3.8089
Lind, L., Eckstein, R. L., & Relyea, R. A. (2022). Direct and indirect
effects of climate change on distribution and community composition of
macrophytes in lentic systems. Biological Reviews , brv.12858.
https://doi.org/10.1111/brv.12858
Lüdecke, D., Bartel, A., Schwemmer, C., Powell, C., Djalovski, A., &
Titz, J. (2021). sjPlot: Data Visualization for Statistics in
Social Science (2.8.10) [Computer software].
https://CRAN.R-project.org/package=sjPlot
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Waggoner, P.,
Wiernik, B. M., Arel-Bundock, V., & Jullum, M. (2022).performance: Assessment of Regression Models Performance (0.9.0)
[Computer software]. https://CRAN.R-project.org/package=performance
Mellin, C., Bradshaw, C. J. A., Meekan, M. G., & Caley, M. J. (2010).
Environmental and spatial predictors of species richness and abundance
in coral reef fishes. Global Ecology and Biogeography ,19 (2), 212–222. https://doi.org/10.1111/j.1466-8238.2009.00513.x
Melzer, A. (1999). Aquatic macrophytes as tools for lake management. In
D. M. Harper, B. Brierley, A. J. D. Ferguson, & G. Phillips (Eds.),The Ecological Bases for Lake and Reservoir Management (pp.
181–190). Springer Netherlands.
Milbau, A., Vandeplas, N., Kockelbergh, F., & Nijs, I. (2017). Both
seed germination and seedling mortality increase with experimental
warming and fertilization in a subarctic tundra. AoB PLANTS ,9 (5). https://doi.org/10.1093/aobpla/plx040
Mirochnitchenko, N. A., Stuber, E. F., & Fontaine, J. J. (2021).
Biodiversity scale-dependence and opposing multi-level correlations
underlie differences among taxonomic, phylogenetic and functional
diversity. Journal of Biogeography , 48 (12), 2989–3003.
https://doi.org/10.1111/jbi.14248
Moss, B. (2012). Cogs in the endless machine: Lakes, climate change and
nutrient cycles: A review. Science of The Total Environment ,434 , 130–142. https://doi.org/10.1016/j.scitotenv.2011.07.069
Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E.,
Mazzeo, N., Havens, K., Lacerot, G., Liu, Z., Meester, L. D., Paerl, H.,
& Scheffer, M. (2011). Allied attack: climate change and
eutrophication. Inland Waters , 1 (2), 101–105.
https://doi.org/10.5268/IW-1.2.359
Murphy, F., Schmieder, K., Baastrup-Spohr, L., Pedersen, O., &
Sand‐Jensen, K. (2018). Five decades of dramatic changes in submerged
vegetation in Lake Constance. Aquatic Botany , 144 , 31–37.
https://doi.org/10.1016/j.aquabot.2017.10.006
O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn,
I. D. M., Lazar, A. N., Sinclair, R., Wade, A. J., & Bowes, M. J.
(2018). Responses of Aquatic Plants to Eutrophication in Rivers: A
Revised Conceptual Model. Frontiers in Plant Science , 9 ,
451. https://doi.org/10.3389/fpls.2018.00451
Padial, A. A., Ceschin, F., Declerck, S. A. J., Meester, L. D.,
Bonecker, C. C., Lansac-Tôha, F. A., Rodrigues, L., Rodrigues, L. C.,
Train, S., Velho, L. F. M., & Bini, L. M. (2014). Dispersal Ability
Determines the Role of Environmental, Spatial and Temporal Drivers of
Metacommunity Structure. PLOS ONE , 9 (10), e111227.
https://doi.org/10.1371/journal.pone.0111227
Pausas, J. G., & Austin, M. P. (2001). Patterns of plant species
richness in relation to different environments: An appraisal.Journal of Vegetation Science , 12 (2), 153–166.
https://doi.org/10.2307/3236601
Peréz-Sánchez, H., Fassihi, A., Cecilia, J. M., Ali, H. H., &
Cannataro, M. (2015). Applications of High Performance Computing in
Bioinformatics, Computational Biology and Computational Chemistry. In F.
Ortuño & I. Rojas (Eds.), Bioinformatics and Biomedical
Engineering (pp. 527–541). Springer International Publishing.
https://doi.org/10.1007/978-3-319-16480-9_51
Petter, G., Zotz, G., Kreft, H., & Cabral, J. S. (2021). Agent‐based
modeling of the effects of forest dynamics, selective logging, and
fragment size on epiphyte communities. Ecology and Evolution ,11 (6), 2937–2951. https://doi.org/10.1002/ece3.7255
Phillips, G., Willby, N., & Moss, B. (2016). Submerged macrophyte
decline in shallow lakes: What have we learnt in the last forty years?Aquatic Botany , 135 , 37–45.
https://doi.org/10.1016/j.aquabot.2016.04.004
Poikane, S., Portielje, R., Denys, L., Elferts, D., Kelly, M., Kolada,
A., Mäemets, H., Phillips, G., Søndergaard, M., Willby, N., & van den
Berg, M. S. (2018). Macrophyte assessment in European lakes: Diverse
approaches but convergent views of ‘good’ ecological status.Ecological Indicators , 94 , 185–197.
https://doi.org/10.1016/j.ecolind.2018.06.056
R Core Team. (2021). R: A Language and Environment for Statistical
Computing . R Foundation for Statistical Computing.
https://www.R-project.org/
Reitsema, R. E., Meire, P., & Schoelynck, J. (2018). The Future of
Freshwater Macrophytes in a Changing World: Dissolved Organic Carbon
Quantity and Quality and Its Interactions With Macrophytes.Frontiers in Plant Science , 9 , 629.
https://doi.org/10.3389/fpls.2018.00629
Ruiz-Benito, P., Gómez-Aparicio, L., & Zavala, M. A. (2012).
Large-scale assessment of regeneration and diversity in Mediterranean
planted pine forests along ecological gradients. Diversity and
Distributions , 18 (11), 1092–1106.
https://doi.org/10.1111/j.1472-4642.2012.00901.x
Sachse, R., Petzoldt, T., Blumstock, M., Moreira, S., Pätzig, M.,
Rücker, J., Janse, J. H., Mooij, W. M., & Hilt, S. (2014). Extending
one-dimensional models for deep lakes to simulate the impact of
submerged macrophytes on water quality. Environmental Modelling &
Software , 61 , 410–423.
https://doi.org/10.1016/j.envsoft.2014.05.023
Sand‐Jensen, K., Riis, T., Vestergaard, O., & Larsen, S. E. (2000).
Macrophyte decline in Danish lakes and streams over the past 100 years.Journal of Ecology , 88 (6), 1030–1040.
https://doi.org/10.1046/j.1365-2745.2000.00519.x
Sarmento Cabral, J., Jeltsch, F., Thuiller, W., Higgins, S., Midgley, G.
F., Rebelo, A. G., Rouget, M., & Schurr, F. M. (2013). Impacts of past
habitat loss and future climate change on the range dynamics of South
African Proteaceae. Diversity and Distributions , 19 (4),
363–376. https://doi.org/10.1111/ddi.12011
Schaumburg, J., Schranz, C., Hofmann, G., Stelzer, D., Schneider, S., &
Schmedtje, U. (2004). Macrophytes and phytobenthos as indicators of
ecological status in German lakes — a contribution to the
implementation of the water framework directive. Limnologica ,34 (4), 302–314. https://doi.org/10.1016/S0075-9511(04)80003-3
Scheffer, M., Bakema, A. H., & Wortelboer, F. G. (1993). MEGAPLANT: a
simulation model of the dynamics of submerged plants. Aquatic
Botany , 45 (4), 341–356.
https://doi.org/10.1016/0304-3770(93)90033-S
Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., & van Nes,
E. H. (1995). Super-individuals a simple solution for modelling large
populations on an individual basis. Ecological Modelling ,80 (2), 161–170. https://doi.org/10.1016/0304-3800(94)00055-M
Schouten, R., Vesk, P., & Kearney, M. R. (2020). Integrating
dynamic plant growth models and microclimates for species distribution
modelling . EcoEvoRxiv. https://doi.org/10.32942/osf.io/ja4m6
Schultz, R., & Dibble, E. (2012). Effects of invasive macrophytes on
freshwater fish and macroinvertebrate communities: the role of invasive
plant traits. Hydrobiologia , 684 (1), 1–14.
https://doi.org/10.1007/s10750-011-0978-8
Schutten, J., Dainty, J., & Davy, A. J. (2004). Wave-induced hydraulic
forces on submerged aquatic plants in shallow lakes. Annals of
Botany , 93 (3), 333–341. https://doi.org/10.1093/aob/mch043
Schutten, J., Dainty, J., & Davy, A. J. (2005). Root anchorage and its
significance for submerged plants in shallow lakes. Journal of
Ecology , 93 (3), 556–571.
https://doi.org/10.1111/j.1365-2745.2005.00980.x
StMWi. (2019). Bayerischer Solaratlas. Bayerisches
Staatsministerium Für Wirtschaft, Landesentwicklung Und Energie , 1–64.
Thomaz, S. M. (2021). Ecosystem services provided by freshwater
macrophytes. Hydrobiologia .
https://doi.org/10.1007/s10750-021-04739-y
Toledo, M., Peña-Claros, M., Bongers, F., Alarcón, A., Balcázar, J.,
Chuviña, J., Leaño, C., Licona, J. C., & Poorter, L. (2012).
Distribution patterns of tropical woody species in response to climatic
and edaphic gradients. Journal of Ecology , 100 (1),
253–263. https://doi.org/10.1111/j.1365-2745.2011.01890.x
van Nes, E. H., Scheffer, M., van den Berg, M. S., & Coops, H. (2003).
Charisma: a spatial explicit simulation model of submerged macrophytes.Ecological Modelling , 159 (2), 103–116.
https://doi.org/10.1016/S0304-3800(02)00275-2
Vedder, D., Leidinger, L., & Sarmento Cabral, J. (2021). Propagule
pressure and an invasion syndrome determine invasion success in a plant
community model. Ecology and Evolution , 11 (23),
17106–17116. https://doi.org/10.1002/ece3.8348
Vetter, M., & Sousa, A. (2012). Past and current trophic development in
Lake Ammersee - Alterations in a normal range or possible signals of
climate change? Fundamental and Applied Limnology , 180 (1),
41–57. https://doi.org/10.1127/1863-9135/2012/0123
Wang, J.-W., Yu, D., Xiong, W., & Han, Y.-Q. (2008). Above- and
belowground competition between two submersed macrophytes.Hydrobiologia , 607 (1), 113–122.
https://doi.org/10.1007/s10750-008-9371-7
Wang, Z., Brown, J. H., Tang, Z., & Fang, J. (2009). Temperature
dependence, spatial scale, and tree species diversity in eastern Asia
and North America. Proceedings of the National Academy of
Sciences , 106 (32), 13388–13392.
https://doi.org/10.1073/pnas.0905030106
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., & LeRoy Poff, N.
(2010). A structured and dynamic framework to advance traits-based
theory and prediction in ecology. Ecology Letters , 13 (3),
267–283. https://doi.org/10.1111/j.1461-0248.2010.01444.x
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J.,
O’Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate
change. Nature Reviews Earth & Environment , 1–16.
https://doi.org/10.1038/s43017-020-0067-5
Wortelboer, F. G. (1990). A model on the competition between two
macrophyte species in acidifying shallow soft-water lakes in the
Netherlands. Hydrobiological Bulletin , 24 (1), 91–107.
https://doi.org/10.1007/BF02256751
Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling
in ecology: A review of two decades of research. Ecological
Modelling , 407 , 108703.
https://doi.org/10.1016/j.ecolmodel.2019.05.008
Zervas, D., Tsiaoussi, V., Kallimanis, A. S., Dimopoulos, P., &
Tsiripidis, I. (2019). Exploring the relationships between aquatic
macrophyte functional traits and anthropogenic pressures in freshwater
lakes. Acta Oecologica , 99 , 103443.
https://doi.org/10.1016/j.actao.2019.103443
Zhang, Y., Jeppesen, E., Liu, X., Qin, B., Shi, K., Zhou, Y., Thomaz, S.
M., & Deng, J. (2017). Global loss of aquatic vegetation in lakes.Earth-Science Reviews , 173 , 259–265.
https://doi.org/10.1016/j.earscirev.2017.08.013