References

Árva, D., Specziár, A., Erős, T., & Tóth, M. (2015). Effects of habitat types and within lake environmental gradients on the diversity of chironomid assemblages. Limnologica , 53 , 26–34. https://doi.org/10.1016/j.limno.2015.05.004
Asaeda, T., & Van Bon, T. (1997). Modelling the effects of macrophytes on algal blooming in eutrophic shallow lakes. Ecological Modelling , 104 (2–3), 261–287. https://doi.org/10.1016/S0304-3800(97)00129-4
Best, E. P. H., Buzzelli, C. P., Bartell, S. M., Wetzel, R. L., Boyd, W. A., Doyle, R. D., & Campbell, K. R. (2001). Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia ,444 (1–3), 43–70. https://doi.org/10.1023/A:1017564632427
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach to Numerical Computing. SIAM Review ,59 (1), 65–98. https://doi.org/10.1137/141000671
Binzer, T., Sand-Jensen, K., & Middelboe, A.-L. (2006). Community photosynthesis of aquatic macrophytes. Limnology and Oceanography , 51 (6), 2722–2733. https://doi.org/10.4319/lo.2006.51.6.2722
Blindow, I. (1992). Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biology , 28 (1), 9–14. https://doi.org/10.1111/j.1365-2427.1992.tb00557.x
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a Metabolic Theory of Ecology. Ecology ,85 (7), 1771–1789. https://doi.org/10.1890/03-9000
Cabral, J. S., Valente, L., & Hartig, F. (2017). Mechanistic simulation models in macroecology and biogeography: state-of-art and prospects.Ecography , 40 (2), 267–280. https://doi.org/10.1111/ecog.02480
Cao, J., & Ruan, H. (2015). Responses of the submerged macrophyte Vallisneria natans to elevated CO2 and temperature. Aquatic Biology , 23 (2), 119–127. https://doi.org/10.3354/ab00605
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (0 ed.). Routledge. https://doi.org/10.4324/9780203771587
Collins, C. D., & Wlosinski, J. H. (1989). A macrophyte submodel for aquatic ecosystems. Aquatic Botany , 33 (3), 191–206. https://doi.org/10.1016/0304-3770(89)90037-5
Colwell, Robert. K., & Lees, D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution , 15 (2), 70–76. https://doi.org/10.1016/S0169-5347(99)01767-X
Dalla Vecchia, A., Villa, P., & Bolpagni, R. (2020). Functional traits in macrophyte studies: Current trends and future research agenda.Aquatic Botany , 167 , 103290. https://doi.org/10.1016/j.aquabot.2020.103290
Dawson, W., Fischer, M., & van Kleunen, M. (2011). The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Global Ecology and Biogeography ,20 (2), 299–306. https://doi.org/10.1111/j.1466-8238.2010.00599.x
Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B., & Singer, A. (2012). Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography ,39 (12), 2119–2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., & Middelburg, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography , 51 (5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388
Duarte, C. M. (1995). Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia , 41 (1), 87–112. https://doi.org/10.1080/00785236.1995.10422039
Gao, H., Shi, Q., & Qian, X. (2017). A multi-species modelling approach to select appropriate submerged macrophyte species for ecological restoration in Gonghu Bay, Lake Taihu, China. Ecological Modelling , 360 , 179–188. https://doi.org/10.1016/j.ecolmodel.2017.07.003
García-Girón, J., Fernández-Aláez, M., & Fernández-Aláez, C. (2019). Redundant or complementary? Evaluation of different metrics as surrogates of macrophyte biodiversity patterns in Mediterranean ponds.Ecological Indicators , 101 , 614–622. https://doi.org/10.1016/j.ecolind.2019.01.062
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., … DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling , 198 (1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update.Ecological Modelling , 221 (23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019
Hawkins, B. A., Albuquerque, F. S., Araújo, M. B., Beck, J., Bini, L. M., Cabrero-Sañudo, F. J., Castro-Parga, I., Diniz-Filho, J. A. F., Ferrer-Castán, D., Field, R., Gómez, J. F., Hortal, J., Kerr, J. T., Kitching, I. J., León-Cortés, J. L., Lobo, J. M., Montoya, D., Moreno, J. C., Olalla-Tárraga, M. Á., … Williams, P. (2007). A Global Evaluation of Metabolic Theory as an Explanation for Terrestrial Species Richness Gradients. Ecology , 88 (8), 1877–1888. https://doi.org/10.1890/06-1444.1
Henricson, C., Sandberg-Kilpi, E., & Munsterhjelm, R. (2006). Experimental studies on the impact of turbulence, turbidity and sedimentation on Chara tomentosa L. Cryptogamie-Algologie ,27 (4), 419–434.
Herb, W. R., & Stefan, H. G. (2003). Integral growth of submersed macrophytes in varying light regimes. Ecological Modelling ,168 (1), 77–100. https://doi.org/10.1016/S0304-3800(03)00206-0
Higgins, S. I., Larcombe, M. J., Beeton, N. J., Conradi, T., & Nottebrock, H. (2020). Predictive ability of a process-based versus a correlative species distribution model. Ecology and Evolution ,10 (20), 11043–11054. https://doi.org/10.1002/ece3.6712
Hilt, S. (2015). Regime shifts between macrophytes and phytoplankton - concepts beyond shallow lakes, unravelling stabilizing mechanisms and practical consequences. Limnetica , 34 (2), 467–479.
Hoffmann, M. A., Raeder, U., & Melzer, A. (2014). Influence of environmental conditions on the regenerative capacity and the survivability of Elodea nuttallii fragments. Journal of Limnology , 73 (AoP). https://doi.org/10.4081/jlimnol.2014.952
Hoffmann, M., Sacher, M., Lehner, S., Raeder, U., & Melzer, A. (2013). Influence of sediment on the growth of the invasive macrophyte Najas marina ssp. intermedia in lakes. Limnologica , 43 (4), 265–271. https://doi.org/10.1016/j.limno.2012.11.002
Hofstra, D., Schoelynck, J., Ferrell, J., Coetzee, J., de Winton, M., Bickel, T. O., Champion, P., Madsen, J., Bakker, E. S., Hilt, S., Matheson, F., Netherland, M., & Gross, E. M. (2020). On the move: New insights on the ecology and management of native and alien macrophytes.Aquatic Botany , 162 , 103190. https://doi.org/10.1016/j.aquabot.2019.103190
Hootsmans, M. J. M. (1994). A growth analysis model for Potamogeton pectinatus L. In W. van Vierssen, M. Hootsmans, & J. Vermaat (Eds.),Lake Veluwe, a Macrophyte-dominated System under Eutrophication Stress (pp. 250–286). Springer Netherlands. https://doi.org/10.1007/978-94-011-2032-6_14
Hussner, A., Heidbüchel, P., Coetzee, J., & Gross, E. M. (2021). From introduction to nuisance growth: a review of traits of alien aquatic plants which contribute to their invasiveness. Hydrobiologia ,848 (9), 2119–2151. https://doi.org/10.1007/s10750-020-04463-z
Ikusima, I. (1970). Ecological Studies on the Productivity of Aquatic Plant Communities IV Light Condition and Community Photosynthesic Production. Shokubutsugaku Zasshi , 83 (987–988), 330–341. https://doi.org/10.15281/jplantres1887.83.330
Iversen, L. L., Girón, J. G., & Pan, Y. (2022). Towards linking freshwater plants and ecosystems via functional biogeography.Aquatic Botany , 176 , 103454. https://doi.org/10.1016/j.aquabot.2021.103454
Kleyer, M., Bekker, R. m., Knevel, I. c., Bakker, J. p., Thompson, K., Sonnenschein, M., Poschlod, P., Van Groenendael, J. m., Klimeš, L., Klimešová, J., Klotz, S., Rusch, G. m., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., … Peco, B. (2008). The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology ,96 (6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Körner, S. (2002). Loss of Submerged Macrophytes in Shallow Lakes in North-Eastern Germany. International Review of Hydrobiology ,87 (4), 375–384. https://doi.org/10.1002/1522-2632(200207)87:4<375::AID-IROH375>3.0.CO;2-7
Lewerentz, A., & Cabral, P. D. J. S. (2021). Wasserpflanzen in Bayern. Der Blick auf den See verrät nicht, was unter der Oberfläche passiert.Mitteilungen der Fränkischen Geographischen Gesellschaft ,67 , 19–28.
Lewerentz, A., Hoffmann, M., & Sarmento Cabral, J. (2021). Depth diversity gradients of macrophytes: Shape, drivers, and recent shifts.Ecology and Evolution , 11 (20), 13830–13845. https://doi.org/10.1002/ece3.8089
Lind, L., Eckstein, R. L., & Relyea, R. A. (2022). Direct and indirect effects of climate change on distribution and community composition of macrophytes in lentic systems. Biological Reviews , brv.12858. https://doi.org/10.1111/brv.12858
Lüdecke, D., Bartel, A., Schwemmer, C., Powell, C., Djalovski, A., & Titz, J. (2021). sjPlot: Data Visualization for Statistics in Social Science (2.8.10) [Computer software]. https://CRAN.R-project.org/package=sjPlot
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., Wiernik, B. M., Arel-Bundock, V., & Jullum, M. (2022).performance: Assessment of Regression Models Performance (0.9.0) [Computer software]. https://CRAN.R-project.org/package=performance
Mellin, C., Bradshaw, C. J. A., Meekan, M. G., & Caley, M. J. (2010). Environmental and spatial predictors of species richness and abundance in coral reef fishes. Global Ecology and Biogeography ,19 (2), 212–222. https://doi.org/10.1111/j.1466-8238.2009.00513.x
Melzer, A. (1999). Aquatic macrophytes as tools for lake management. In D. M. Harper, B. Brierley, A. J. D. Ferguson, & G. Phillips (Eds.),The Ecological Bases for Lake and Reservoir Management (pp. 181–190). Springer Netherlands.
Milbau, A., Vandeplas, N., Kockelbergh, F., & Nijs, I. (2017). Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra. AoB PLANTS ,9 (5). https://doi.org/10.1093/aobpla/plx040
Mirochnitchenko, N. A., Stuber, E. F., & Fontaine, J. J. (2021). Biodiversity scale-dependence and opposing multi-level correlations underlie differences among taxonomic, phylogenetic and functional diversity. Journal of Biogeography , 48 (12), 2989–3003. https://doi.org/10.1111/jbi.14248
Moss, B. (2012). Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review. Science of The Total Environment ,434 , 130–142. https://doi.org/10.1016/j.scitotenv.2011.07.069
Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., Havens, K., Lacerot, G., Liu, Z., Meester, L. D., Paerl, H., & Scheffer, M. (2011). Allied attack: climate change and eutrophication. Inland Waters , 1 (2), 101–105. https://doi.org/10.5268/IW-1.2.359
Murphy, F., Schmieder, K., Baastrup-Spohr, L., Pedersen, O., & Sand‐Jensen, K. (2018). Five decades of dramatic changes in submerged vegetation in Lake Constance. Aquatic Botany , 144 , 31–37. https://doi.org/10.1016/j.aquabot.2017.10.006
O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I. D. M., Lazar, A. N., Sinclair, R., Wade, A. J., & Bowes, M. J. (2018). Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model. Frontiers in Plant Science , 9 , 451. https://doi.org/10.3389/fpls.2018.00451
Padial, A. A., Ceschin, F., Declerck, S. A. J., Meester, L. D., Bonecker, C. C., Lansac-Tôha, F. A., Rodrigues, L., Rodrigues, L. C., Train, S., Velho, L. F. M., & Bini, L. M. (2014). Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure. PLOS ONE , 9 (10), e111227. https://doi.org/10.1371/journal.pone.0111227
Pausas, J. G., & Austin, M. P. (2001). Patterns of plant species richness in relation to different environments: An appraisal.Journal of Vegetation Science , 12 (2), 153–166. https://doi.org/10.2307/3236601
Peréz-Sánchez, H., Fassihi, A., Cecilia, J. M., Ali, H. H., & Cannataro, M. (2015). Applications of High Performance Computing in Bioinformatics, Computational Biology and Computational Chemistry. In F. Ortuño & I. Rojas (Eds.), Bioinformatics and Biomedical Engineering (pp. 527–541). Springer International Publishing. https://doi.org/10.1007/978-3-319-16480-9_51
Petter, G., Zotz, G., Kreft, H., & Cabral, J. S. (2021). Agent‐based modeling of the effects of forest dynamics, selective logging, and fragment size on epiphyte communities. Ecology and Evolution ,11 (6), 2937–2951. https://doi.org/10.1002/ece3.7255
Phillips, G., Willby, N., & Moss, B. (2016). Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years?Aquatic Botany , 135 , 37–45. https://doi.org/10.1016/j.aquabot.2016.04.004
Poikane, S., Portielje, R., Denys, L., Elferts, D., Kelly, M., Kolada, A., Mäemets, H., Phillips, G., Søndergaard, M., Willby, N., & van den Berg, M. S. (2018). Macrophyte assessment in European lakes: Diverse approaches but convergent views of ‘good’ ecological status.Ecological Indicators , 94 , 185–197. https://doi.org/10.1016/j.ecolind.2018.06.056
R Core Team. (2021). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing. https://www.R-project.org/
Reitsema, R. E., Meire, P., & Schoelynck, J. (2018). The Future of Freshwater Macrophytes in a Changing World: Dissolved Organic Carbon Quantity and Quality and Its Interactions With Macrophytes.Frontiers in Plant Science , 9 , 629. https://doi.org/10.3389/fpls.2018.00629
Ruiz-Benito, P., Gómez-Aparicio, L., & Zavala, M. A. (2012). Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Diversity and Distributions , 18 (11), 1092–1106. https://doi.org/10.1111/j.1472-4642.2012.00901.x
Sachse, R., Petzoldt, T., Blumstock, M., Moreira, S., Pätzig, M., Rücker, J., Janse, J. H., Mooij, W. M., & Hilt, S. (2014). Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environmental Modelling & Software , 61 , 410–423. https://doi.org/10.1016/j.envsoft.2014.05.023
Sand‐Jensen, K., Riis, T., Vestergaard, O., & Larsen, S. E. (2000). Macrophyte decline in Danish lakes and streams over the past 100 years.Journal of Ecology , 88 (6), 1030–1040. https://doi.org/10.1046/j.1365-2745.2000.00519.x
Sarmento Cabral, J., Jeltsch, F., Thuiller, W., Higgins, S., Midgley, G. F., Rebelo, A. G., Rouget, M., & Schurr, F. M. (2013). Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae. Diversity and Distributions , 19 (4), 363–376. https://doi.org/10.1111/ddi.12011
Schaumburg, J., Schranz, C., Hofmann, G., Stelzer, D., Schneider, S., & Schmedtje, U. (2004). Macrophytes and phytobenthos as indicators of ecological status in German lakes — a contribution to the implementation of the water framework directive. Limnologica ,34 (4), 302–314. https://doi.org/10.1016/S0075-9511(04)80003-3
Scheffer, M., Bakema, A. H., & Wortelboer, F. G. (1993). MEGAPLANT: a simulation model of the dynamics of submerged plants. Aquatic Botany , 45 (4), 341–356. https://doi.org/10.1016/0304-3770(93)90033-S
Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., & van Nes, E. H. (1995). Super-individuals a simple solution for modelling large populations on an individual basis. Ecological Modelling ,80 (2), 161–170. https://doi.org/10.1016/0304-3800(94)00055-M
Schouten, R., Vesk, P., & Kearney, M. R. (2020). Integrating dynamic plant growth models and microclimates for species distribution modelling . EcoEvoRxiv. https://doi.org/10.32942/osf.io/ja4m6
Schultz, R., & Dibble, E. (2012). Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia , 684 (1), 1–14. https://doi.org/10.1007/s10750-011-0978-8
Schutten, J., Dainty, J., & Davy, A. J. (2004). Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes. Annals of Botany , 93 (3), 333–341. https://doi.org/10.1093/aob/mch043
Schutten, J., Dainty, J., & Davy, A. J. (2005). Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology , 93 (3), 556–571. https://doi.org/10.1111/j.1365-2745.2005.00980.x
StMWi. (2019). Bayerischer Solaratlas. Bayerisches Staatsministerium Für Wirtschaft, Landesentwicklung Und Energie , 1–64.
Thomaz, S. M. (2021). Ecosystem services provided by freshwater macrophytes. Hydrobiologia . https://doi.org/10.1007/s10750-021-04739-y
Toledo, M., Peña-Claros, M., Bongers, F., Alarcón, A., Balcázar, J., Chuviña, J., Leaño, C., Licona, J. C., & Poorter, L. (2012). Distribution patterns of tropical woody species in response to climatic and edaphic gradients. Journal of Ecology , 100 (1), 253–263. https://doi.org/10.1111/j.1365-2745.2011.01890.x
van Nes, E. H., Scheffer, M., van den Berg, M. S., & Coops, H. (2003). Charisma: a spatial explicit simulation model of submerged macrophytes.Ecological Modelling , 159 (2), 103–116. https://doi.org/10.1016/S0304-3800(02)00275-2
Vedder, D., Leidinger, L., & Sarmento Cabral, J. (2021). Propagule pressure and an invasion syndrome determine invasion success in a plant community model. Ecology and Evolution , 11 (23), 17106–17116. https://doi.org/10.1002/ece3.8348
Vetter, M., & Sousa, A. (2012). Past and current trophic development in Lake Ammersee - Alterations in a normal range or possible signals of climate change? Fundamental and Applied Limnology , 180 (1), 41–57. https://doi.org/10.1127/1863-9135/2012/0123
Wang, J.-W., Yu, D., Xiong, W., & Han, Y.-Q. (2008). Above- and belowground competition between two submersed macrophytes.Hydrobiologia , 607 (1), 113–122. https://doi.org/10.1007/s10750-008-9371-7
Wang, Z., Brown, J. H., Tang, Z., & Fang, J. (2009). Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences , 106 (32), 13388–13392. https://doi.org/10.1073/pnas.0905030106
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., & LeRoy Poff, N. (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters , 13 (3), 267–283. https://doi.org/10.1111/j.1461-0248.2010.01444.x
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment , 1–16. https://doi.org/10.1038/s43017-020-0067-5
Wortelboer, F. G. (1990). A model on the competition between two macrophyte species in acidifying shallow soft-water lakes in the Netherlands. Hydrobiological Bulletin , 24 (1), 91–107. https://doi.org/10.1007/BF02256751
Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling in ecology: A review of two decades of research. Ecological Modelling , 407 , 108703. https://doi.org/10.1016/j.ecolmodel.2019.05.008
Zervas, D., Tsiaoussi, V., Kallimanis, A. S., Dimopoulos, P., & Tsiripidis, I. (2019). Exploring the relationships between aquatic macrophyte functional traits and anthropogenic pressures in freshwater lakes. Acta Oecologica , 99 , 103443. https://doi.org/10.1016/j.actao.2019.103443
Zhang, Y., Jeppesen, E., Liu, X., Qin, B., Shi, K., Zhou, Y., Thomaz, S. M., & Deng, J. (2017). Global loss of aquatic vegetation in lakes.Earth-Science Reviews , 173 , 259–265. https://doi.org/10.1016/j.earscirev.2017.08.013