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Abstract 
 

Pyroptosis, is a specialized form of inflammatory cell death which aids the defensive 

response against invading pathogens. Its tight regulation is lost during infection by the 

severe acute respiratory coronavirus 2 (SARS-CoV-2) and thus uncontrolled 

pyroptosis disrupts the immune system and the integrity of organs defining the critical 

conditions in patients with high viral load. Molecular pathways engaged downstream 

to the formation and stabilization of the inflammasome - required to execute the 

process - have been uncovered and drugs are available for their regulation. On the 

contrary, pharmacological inferring of the upstream events - which are critical to sense 

and interpret the initial damage by the pathogen - is far from entirely elucidated. This 

limits our capacity to identify early markers and targets to ameliorate SARS-CoV-2 

linked pyroptosis. Here we aim to raise attention to mitochondria and pathways leading 

to their dysfunction with the goal to inform early steps of inflammasome and devise 

tools to predict and counteract diseases by the SARS-CoV-2.   
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Text 
The 2019 coronavirus disease (COVID-19) has changed our lifestyles causing an 

unimaginable and unprecedented health crisis with impact at multiple levels.  

The causative etiological agent behind what is the fastest spreading disease of the 

21st century is the severe acute respiratory coronavirus 2 (SARS-CoV-2). Structurally 

this is an enveloped, positive-sense, single-stranded RNA virus that enters its host cell 

by binding to the angiotensin-converting enzyme 2 (ACE2) receptor through the 

interaction with the trimeric S spike glycoprotein (Kim et al, 2020; Hoffman et al, 2020). 

Similar to other coronaviruses [i.e. the highly pathogenic Severe acute respiratory 

syndrome coronavirus (SARS-CoV) and the Middle-East respiratory syndrome 

coronavirus (MERS-CoV)] SARS-CoV-2 infection is associated with overbearing and 

uncontrolled inflammatory response (He et al, 2006; Lau et al, 2013; Zhou et al, 2014). 

Although a great portion of patients infected by SARS-CoV-2 remains asymptomatic 

or develops very mild symptoms, others experience severe and acute respiratory 

syndrome leading to hospitalization and critical care treatment. Notably, patients with 

severe COVID-19, present elevated level of pro-inflammatory mediators (TNF-α and 

IL-6) in their peripheral blood which epitomizes poor prognosis linked with mortality 

(Hojyo et al, 2020; Santa Cruz et al, 2021). Thus, the uncontrolled elevation of 

cytokines delivers distress at various systemic levels irreparably damaging organs 

essential for life such as heart and kidney (Long et al, 2020). 

Since the very beginning of the outbreak, it was clear that in SARS-CoV-2 patients the 

so-called cytokine storm played a crucial role in the pathogenesis of the disease and 

its most severe manifestations. Cytokine storm encompasses disorders of immune 

dysregulation characterized by systemic inflammation and multiorgan dysfunction. 

This is recapitulated in the severe COVID-19 cases in which the exacerbation of 

inflammation is a consequence of the unrestrained pathogen-associated molecular 

patterns. Clinical manifestations of the COVID-19 include acute respiratory distress 

syndrome (ARDS), systemic inflammatory response syndrome (SIRS) and cardiac 

failure (Patel, Saxena and Mehta, 2021). Specifically, in COVID-19 cases the 

uncontrolled inflammatory response associates with leukopenia reflecting an high 

degree of cell lysis which follows the uncontrolled cellular demise consequence of the 

sustained pyroptosis (Ferreira et al, 2021). In addition, poor prognosis associates with 

coagulopathy (Klok et al, 2020) which is also linked with the inflammasome-mediated 
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pyroptosis in macrophages which release tissue factor (TF): an essential mediator of 

blood coagulation cascades (Wu et al, 2019). 

Pyroptosis was firstly described in myeloid cells infected by pathogens (Cookson and 

Brennan, 2001) and originates etymologically from the Greek words pyro (fire) and 

ptosis (falling). It is a programmed execution of the cell which follows the stabilization 

of the supramolecular protein complexes called inflammasome. Pyroptosis 

(schematically summarised in Figure 1) is characterized by cellular swelling and 

rupture (lysis) to release the pro-inflammatory molecules such as pro-Interleukin 1β 

and pro-Interleukin 18 (IL-1β and IL-18) whose maturation follows activation of the 

caspase-1 (Yang et al, 2019). Pyroptosis is therefore a caspase-dependent process 

in which gasdermin D (GSDMD) is proteolytically cleaved to form pores on the plasma 

membrane instrumental for the release of cytokines (Shi et al, 2015).  

Infection by pathogen drives pyroptosis by activating the nucleotide-binding 

oligomerization domain (NOD)–like receptors required for the assembly of the 

inflammasome. The latter establishes a platform for the mass recruitment and 

activation of caspase-1 with the help of apoptosis-associated speck-like protein 

containing a caspase recruitment domain (ASC) acting as a bridging molecule. The 

NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is 

the most well-characterised among the NOD-like receptors. It is implicated in a 

plethora of diseases ranging from autoinflammatory to neurological disorders as well 

as virus-associated illnesses and antiviral responses. Activation of the NLRP3 

inflammasome is now confirmed in COVID-19 patients in which acts as an indicator of 

the disease severity (Toldo et al, 2020; Courjon et al, 2021).  

SARS-CoV-2 (not dissimilarly to its predecessors) expresses at least three proteins 

capable to activate the NLRP3 inflammasome: ORF8b, envelope (E) and ORF3a, 

(Yap, Moriyama and Iwasaki, 2020).  

ORF8b (i) holds the potential to directly activate the inflammasome via the leucine-

rich repeat (LRR) domain of the NLRP3 protein and has been demonstrated to co-

localize with both NLRP3 and ASC (Shi et al, 2019).  

The E protein (ii) is a viroporin (oligomeric complexes that act as ion channels) found 

on the membrane encapsulating the ER-Golgi intermediate compartment (ERGIC) 

(Torres et al, 2007) capable to mobilize Ca2+ in the cytosol via which the NLRP3 

inflammasome responds (Murakami et al, 2012; Nieto-Torres et al, 2015). 
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Independently from this the viroporin protein E promotes the transcription of 

inflammatory cytokines and chemokines, including IL-1β, and IL-18.  

Finally, ORF3a (iii) establishes NLRP3 inflammasome assembly via its activity as a 

K+ channel (Chen et al, 2019). Furthermore, the intracellular accumulation of Reactive 

Oxygen Species is per se an activator of NLRP3 inflammasome whose assembly can 

be also obtained through ASC ubiquitination mediated by binding to TNFR-associated 

factor 3 (TRAF3) (Siu et al, 2019).  

Activation of the NLRP3 inflammasome therefore emerges as a molecular signature 

which predicts release of inflammatory cytokines prodromal to organ damage and 

immune system deregulation central to COVID-19 pathogenesis.  

More recent research has indicated mitochondrial dysfunction as key event for NRLP3 

activation, and with the increased understanding of the COVID-19 pathogenesis, we 

are keen to advocate further attention on the role mitochondria play in pyroptosis.   

Mitochondria are pivotal to initiate assembly and activation of the inflammasome 

following engagement of pathogen associated molecular patterns (PAMPs). Their 

dysfunction associates with the increase in Ca2+, metabolic modifications and 

lysosomal damage. More specifically mitochondrial ROS (mtROS) (i), oxidized 

mitochondrial DNA (mtDNA) in the cytosol (ii) and mitochondrial antiviral signalling 

protein (MAVS) (iii) aid formation of the inflammasome.  

Even though the accumulation of mtROS is key to this (Zhou et al, 2011; Nakahira et 

al, 2011) ill-defined remains the hierarchy of molecular events which define, 

accompany or characterize the redox stress. On the other hand, established is that 

the oxidised mtDNA is consequence of the boost of ROS triggered by the 

accumulation of Ca2+ (Murakami et al, 2012) and the promoted synthesis of mtDNA is 

now linked to a specific signalling cascade subsequent to TLR binding (Zhong et al, 

2018).  

MAVS facilitates inflammasome assembly by directly interacting with NLRP3 alike 

Cardiolipin and Mitofusin-2 (Ichinohe et al, 2013; Iyer et al, 2013). However, MAVS ia 

also able to recruit the E3 ligase TRAF3 which mediates ASC ubiquitination amplifying 

inflammasome activation (Guan et al, 2015).  

It is therefore evident that despite the attempts to uncover the precise upstream 

molecular events that culminate in inflammasome stabilization at mitochondrial level 

more is needed to exhaustively inform those.  
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Hitherto evident is that the promotion of mitochondrial quality control via selective 

autophagy (mitophagy) limits NLRP3 activation by eliminating damaged or stressed 

mitochondria (Zhong et al, 2016; Lin et al, 2019). Accordingly, de-ubiquitination of 

mitochondrial proteins by ROS drives the NLRP3 inflammasome complex assembly 

for the blockage of mitophagy (Zhang et al, 2019). Finally, NF-kB which is a bonafide 

read-out of mitochondrial distress signalling pathway (Desai, East et al, 2020) primes 

NRLP3 expression. 

Deciphering the role of mitochondrial dysfunction in pathogen-induced NLRP3 

activation will unveil novel opportunities for targeting the inflammasome and the 

mediated cell death which holds severe and systemic consequences.  

The increased mechanistic awareness of the upstream processes of pyroptosis will 

therefore pave the way to an improved pharmacology to prevent feed forward 

mechanisms which amplify the inflammasome. Thus could also deliver better 

protocols for the management of COVID-19 patients. 

Most of the efforts to this end are devoted to prevent intracellular access of the virus 

(of which vaccines are the archetype) but very few to repress and prevent pyroptotic 

cell death once the virus has entered the cell.  

Considering this an aspect in need of greater attention, we are highlighting that 

mitochondrial-dependent upstream events of NLRP3 inflammasome activation may 

provide early molecular read-outs to predict and/or counteract severity of toxicity in 

SARS-CoV-2 infected cells. This will form the basis for innovative treatments against 

the uncontrolled inflammation in COVID-19 patients.  
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