
1 
 

 1 
 2 
 3 
 4 
 5 

Is Bray-Curtis differentiation meaningful in Molecular Ecology? 6 

William B. Sherwin1* 7 

 8 
1Evolution and Ecology Research Centre, School of BEES, UNSW-Sydney, NSW, Australia.  9 

*e-mail: W.Sherwin@unsw.edu.au (corresponding author) 10 

 11 

 12 

 13 

 14 

 15 

Running Title: Bray-Curtis in Molecular Ecology 16 

 17 

 18 

  19 

mailto:W.Sherwin@unsw.edu.au


2 
 

ABSTRACT 20 

A popular measure of differentiation in biodiversity is the Bray Curtis index of dissimilarity.  21 

It has recently also been proposed for use in molecular ecology.  However, this measure 22 

currently cannot be predicted under specified conditions of population size, dispersal and 23 

speciation or mutation.  Here I show forecasts for Bray-Curtis for two-variant systems such 24 

as single-nucleotide polymorphisms (SNPs) (or two species ecosystems).  These are derived 25 

from well-known equations in population genetics, for forecasting measures such as 𝐺𝑆𝑇, 26 

and shown to be appropriate by simulation.  Thus, Bray-Curtis can now be used for 27 

assessment of differentiation, in order to understand natural or artificial processes, thus 28 

complementing other measures with different sensitivities, such as Morisita-Horn/𝐷𝐸𝑆𝑇, 𝐺𝑆𝑇 29 

and Shannon Mutual Information/Shannon Differentiation. 30 

 31 
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1. INTRODUCTION 36 

Comparisons of biodiversity between regions are important aspects of understanding both 37 

ecological and genetic systems.  As in all science, it is important to test for departure from 38 

predicted values, because any departure reveals either incorrect assumptions about a wild 39 

population, or failure to achieve expected results in a managed population.  It is therefore 40 

surprising that until recently, even some very popular measures of biodiversity have had 41 

very poor ability to either assess biodiversity, or to be forecast from the underlying 42 

biological processes (Nei 1973, Jost 2008, Jost et al. 2010, Chao et al. 2014, Sherwin et al. 43 

2017).  Recently, there have been attempts to rectify problems of measurement (Jost, 44 

DeVries et al. 2010, Leinster & Cobbold 2012, Sherwin et al. 2017, Chao et al. 2019), and 45 

new methods have been developed to derive expectations for various biodiversity 46 

measures, from an understanding of the underlying biological processes such as population 47 

dynamics, dispersal and mutation (or the parallel process in macroecology, speciation) 48 

(Hubbell 2001, Rosindell et al. 2010, Sherwin et al. 2017, Sherwin 2018).  Much of this work 49 

has focused on the family of biodiversity measures derived from, or closely related to, the 50 

’Hill Numbers’, such as Gini-Simpson, Heterozygosity, nucleotide diversity, Shannon Entropy, 51 

Mutual Information, Shannon differentiation, 𝐹𝑆𝑇, 𝐺𝑆𝑇, Morisita-Horn, and Jost’s 𝐷𝐸𝑆𝑇  (Jost 52 

2008, Jost et al. 2010, Chao et al. 2014, Sherwin et al. 2017, Gaggiotti et al. 2018). 53 

 54 

This article will concentrate upon an extremely popular method of assessing differentiation 55 

which is not part of the Hill-number family, but has recently been proposed for use in 56 

molecular ecology (Shriver et al. 1997, Berner 2019a,b, Price et al. 2020), following a trend 57 

for unification of ecological and genetic work (Rosindell et al. 2015, Sherwin 2018).  This is 58 
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the Bray-Curtis index (Bray & Curtis 1957), which was originally used to compare diversity 59 

between forests (11), but is now used very widely, including for metagenomics (Peng et al. 60 

2020). During 2020 alone, this index was cited throughout biology, medicine, and other 61 

sciences, being mentioned over 800 times in Google Scholar.  Bray-Curtis (B) can be 62 

expressed in a way that facilitates comparison with differentiation measures derived from 63 

Hill numbers (Chao & Chiu 2016, Ricotta & Podani 2017, Ricotta et al. 2021): 64 

                        𝐵 =  
∑ |𝑎1𝑗−𝑎2𝑗|𝑆

𝑗=1

∑ (𝑎1𝑗+𝑎2𝑗)𝑆
𝑗=1

                                                                                           Equation 1 65 

where 𝑎1𝑗 and 𝑎2𝑗 are the abundances in each of two locations (1,2), for variant j (1 ≤ 𝑗 ≤66 

𝑆) and S is the total number of species or allelic types.  This measure satisfies many of the 67 

requirements of a good measurement of differentiation between assemblages (Chao & Chiu 68 

2016, Ricotta & Podani 2017).  Its connection to other biodiversity measures has been 69 

explored (Ricotta et al. 2021). 70 

 71 

Recently, two authors have also proposed that Bray-Curtis should be used for differentiation 72 

in molecular ecology and evolution, particularly for studies based on SNPs (two-allele single-73 

nucleotide polymorphisms) (Shriver, Smith et al. 1997, Berner 2019a,b, Price et al. 2020).  In 74 

these papers, Bray-Curtis was referred to as AFD, allele frequency difference (although it 75 

was admitted that AFD is really differentiation of proportion between zero and unity, rather 76 

than frequency between zero and infinity).  In this two-variant case, Bray-Curtis simplifies to 77 

the unsigned difference of proportions of either of the two allelic variants between 78 

locations 1 and 2 (Berner 2019a,b)  79 

            𝐵 = |𝑝1 − 𝑝2|                                                                                     Equations 2 and A1.1 80 

where 𝑝1 =  𝑎1 (𝑎1 + 𝑎2)⁄  and 𝑞1 = 1 − 𝑝1, and similarly for  𝑝2 and  𝑞2. 81 
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 82 

This paper deals with genetic use of Bray-Curtis, responding to the suggested use in 83 

molecular ecology (Shriver et al. 1997, Berner 2019a,b, Price et al. 2020).  Therefore the 84 

focus of this paper is on making forecasts for Bray-Curtis for SNPs, under various scenarios 85 

of population size, mutation, and dispersal, so that measures of Bray-Curtis can be used to 86 

evaluate competing models of population history, or make projections for the future.  I then 87 

test these predictions by simulation, in comparison to Bray-Curtis’ closest competitor 88 

measure, 𝐺𝑆𝑇.  Additionally, although Bray-Curtis is known to conform to many of the basic 89 

desirable properties of differentiation measures (Magurran 2004, Ricotta & Podani 2017), 90 

this paper also assesses Bray-Curtis’ ability to satisfy another important property of 91 

differentiation measures – independence of alpha (within location) and beta (between 92 

location) variation (Jost 2008, Jost et al. 2010, Sherwin et al. 2017).  A between location 93 

(beta) differentiation measure can be confounded by two aspects of within-location (alpha) 94 

diversity:  proportions of variants, and number of variant types.  With the restriction to two-95 

variant SNPs, the latter is not a problem, but the effect of proportions of variants will be 96 

examined in this paper. 97 

 98 

2. MATERIALS AND METHODS 99 

This article constructs the forecasting apparatus for the simplest possible case of a single 100 

neutral biallelic SNP locus, with two locations (1,2); the measure can be averaged over 101 

multiple loci, and can be applied to haploids, or to diploids with linkage equilibrium.   102 

When there are only two variants, the Bray-Curtis equation is  103 

                𝐵 = |𝑝1 − 𝑝2|                (Berner 2019a,b)                                    Equation 2, above 104 
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where p1 p2 are proportions of one of the two alleles at each location (𝑞1 = 1 − 𝑝1 ;  𝑞2 =105 

1 − 𝑝2).   106 

 107 

The quantity in equation 2 is a transform of two well-known differentiation measures 108 

𝐺𝑆𝑇 =  [𝐻𝑇 −  𝐻1, 𝐻2
̅̅ ̅̅ ̅̅ ̅̅ ] 𝐻𝑇⁄        ≈        𝐹𝑆𝑇 =  𝜎𝑝

2 𝑝𝑞⁄                  ((Halliburton 2004) Box 9.5) 109 

                                                                                                                        Equations 3 and A1.2 110 

where 𝜎𝑝
2 is the variance of p between locations, 𝐻 is the Hardy-Weinberg (Binomial) 111 

expected heterozygosity eg 𝐻𝑇 =  1 − 𝑝2 − 𝑞2 ;  𝐻1 = 1 − 𝑝1
2 − 𝑞1

2;  and p is the average p 112 

over the two locations (1,2);  𝑞 = 1 − 𝑝 .  The measures 𝐺𝑆𝑇 and 𝐹𝑆𝑇 in equation 3 are 113 

identical in the two-allele, two location case ((Halliburton 2004) Box 9.5).  Appendix A1 114 

shows that   𝐵2 = 4𝑝𝑞𝐺𝑆𝑇 = 2𝐻𝑇𝐺𝑆𝑇                                                      Equations 4,  A1.4 115 

 116 

Because Bray-Curtis is closely related to GST or FST, Bray-Curtis forecasts can be based on 117 

well-known forecasts for these measures (Appendix A1).  The expectation for diploid Bray-118 

Curtis is:      119 

                               𝐵     = √ 
2 𝐷2 −2

𝐷2 (1+8𝑁(2𝑚+𝜇))
                                                      Equation 5, A1.7 120 

Where m is symmetrical dispersal between the two locations (0≤m≤1); μ is the rate of 121 

mutation (or speciation; 0≤μ≤1); N is the effective population size at each location 122 

(identical); and 𝐷2  is the second order diversity, or effective number of alleles  123 

𝐷 =  1 (1 − 𝐻𝑇)⁄2 . 124 

The equivalent equation for the haploid SNPs simulated in this article is:    125 

                              𝐵 =  √ 
2 𝐷2 −2

𝐷2 (1+4𝑁(2𝑚+𝜇))
                                                         Equation 6, A1.8 126 
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This haploid equation is also appropriate for a pair of species variants in two local 127 

communities, if the mutation rate is replaced by the speciation rate, or considered to be 128 

negligible relative to the dispersal rate. 129 

 130 

Using equation 6, forecasts of equilibrium Bray-Curtis (B) were devised for biallelic neutral 131 

single-nucleotide polymorphisms (SNPs) in two haploid subpopulations, for scenarios 132 

covering all possible combinations of symmetric dispersal (rate m = 0.01, 0.03, 0.1, 0.3), 133 

mutation rate (μ = 10-9, 10-6) subpopulation effective sizes (N = 1000, 10000, 100000) and 134 

starting allele proportion in each subpopulation (p = 0.1, 0.5; q = 1-p).  The latter allows 135 

examination of the effects of alpha (within locality) variation on Bray-Curtis. 136 

 137 

For each scenario, the predictions of Bray-Curtis (B, equation 6) were tested by comparison 138 

with the output of the haploid simulation programs (MATLAB, Appendix A2, (Dewar et al. 139 

2011)), which also assessed ability to predict 𝐺𝑆𝑇 (equation A1.5).  There were 100 iterations 140 

of each scenario.  Each iteration was run for 200 generations, and each generation included 141 

stochastic binomial sampling of the parents to establish the allele proportions for the 142 

offspring, followed by symmetrical dispersal to create the parent populations for the next 143 

generation.  At the final generation, Bray-Curtis index B and 𝐺𝑆𝑇 were calculated, and 144 

regression was used to compare the simulation output to the predictions of equations 6 and 145 

A1.5 respectively. 146 

 147 

  148 
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3. RESULTS 149 

Figure 1a shows the result of Bray-Curtis at the final generation of a MATLAB simulation of 150 

two equal-sized populations with two neutral (non-adaptive) variants such as SNP alleles, in 151 

48 different scenarios with various: starting allele proportions 𝑝 = 0.1, 0.5; effective 152 

population sizes N=1000, 10000,100000; mutation (or speciation) rates 𝜇 = 10−6, 10−9; and 153 

symmetrical dispersal rates m= 0.01, 0.03, 0.1, 0.3 (further details are in Methods, or 154 

Appendix A1 for forecasts, A2 for simulations).  Figure 1a shows simulated Bray-Curtis, 155 

(Equation 2), regressed against algebraic predictions of Bray-Curtis (B) (Equation 6). Three 156 

things are apparent in Figure 1a:  157 

- there is an extremely good regression of simulated Bray-Curtis on predicted 158 

(P=3.5*10-23 see caption of Figure 1a) 159 

- however, the slope is slightly below the expected 45 degree line for perfect 160 

prediction (slope = 0.80 see caption of Figure 1a; the 95% confidence limits for the 161 

slope were 0.766 to 0.840).   162 

- Therefore the empirically best forecasting equation for haploids would be, 163 

combining equation 6 and the correction for regression slope: 164 

𝐵 =  0.8√ 
2 𝐷2 −2

𝐷2 (1+4𝑁(2𝑚+𝜇))
                                                                                 Equation 7 165 

 166 

or the same for unlinked diploid loci, replacing 4𝑁 with 8𝑁: 167 

𝐵 =  0.8√ 
2 𝐷2 −2

𝐷2 (1+8𝑁(2𝑚+𝜇))
                                                                                  Equation 8 168 

 169 
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Figure 1b shows the result of regressions of simulated 𝐺𝑆𝑇 on the algebraic predictions of 170 

𝐺𝑆𝑇  (Takahata 1983) (equation A1.5).  Several things are apparent:  171 

- there is also a very good regression of simulated 𝐺𝑆𝑇 on predicted (P = 1.4*10-54) 172 

- unlike Bray-Curtis, the slope is almost exactly the expected 45 degrees (1.01116 see 173 

caption of Figure 1b). 174 

  175 
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 176 

 177 
FIGURE 1 | Comparison of simulation results with algebraic predictions.  (a) Bray-Curtis, 178 

with regression equation Simulated-Bray-Curtis= 0.80*Predicted-Bray-Curtis + 0.0007; 179 

Significance p = 3.5*10-23; predicted Bray-Curtis from equation 6 in methods, A1.8 in 180 

appendix; simulation result calculated by equation 2.  (b) 𝐺𝑆𝑇, with regression equation 181 

Simulated-𝐺𝑆𝑇 = 1.01116*Predicted-𝐺𝑆𝑇 + 0.000006; p = 1.4*10-54; predicted 𝐺𝑆𝑇 from 182 

equation A1.5 (Takahata 1983).  The red lines are the expected 1:1 relationships. 183 

  184 
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4. DISCUSSION 185 

It is obvious from equations 7 and 8, and Figure 1a, that Bray-Curtis can now be used either 186 

for biological-inventories, or for studying underlying biological processes such as population 187 

size, speciation/mutation, reproduction, and dispersal (Vellend 2016, Sherwin 2018).   These 188 

are the processes which some conservation initiatives aim to conserve (Anonymous 1988), 189 

and of course underly all biology.  This paper shows that we can now have some ability to 190 

use these processes to predict Bray-Curtis, in a simplified two-location two-variant system, 191 

based upon equation 8 for diploid genes, or equation 7 for haploids (or for species). 192 

 193 

However, two caveats apply here.  Firstly, the forecasts in equations 7 and 8 are based upon 194 

selectively neutral assumptions, which sounds far-fetched, yet these forecasts have proved 195 

very useful in genetics despite the strong likelihood of intermittent selection.  Secondly, 196 

Equations 5,6,7,and 8 show that Bray-Curtis has strong dependence on average within-197 

location heterozygosity 𝐻𝑇 = 1 − 1 𝐷2⁄ , and thus on variant proportion p, which are 198 

aspects of within-location (alpha) variation, and therefore should not influence a 199 

differentiation (beta) measure such as Bray-Curtis (Jost et al. 2010, Chao et al. 2014, 200 

Sherwin et al. 2017).  How the influence of within-location allele proportion occurs can be 201 

demonstrated with a simplified example: it is apparent from equation 2 that if either 𝑝1 or 202 

𝑝2 is zero, then the value of Bray-Curtis will be equal to the other, more abundant, 203 

proportion.  It should be noted that 𝐺𝑆𝑇 cannot be used to remedy this failing of Bray-Curtis, 204 

because it also unfortunately has dependence on alpha within-locality diversity (Nei 1973, 205 

Nei 1977, Jost 2008, Meirmans & Hedrick 2010).  The latter paper offers a correction for the 206 

unwanted dependency of 𝐺𝑆𝑇, but using this correction in the theory for Bray-Curtis would 207 
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have two drawbacks: it considerably complicates the correspondence to theoretical 208 

expectations; and it does not remove the effect of alpha variation on Bray-Curtis, but simply 209 

makes the effect more explicit (Appendix equation A1.14). 210 

 211 

Biological scientists are now able to use the Bray-Curtis measure to either catalogue 212 

differentiation between-locations (or times) or even to investigate possible mechanisms of 213 

population dynamics, mutation, and dispersal in natural or managed systems.  Thus Bray-214 

Curtis can now complement other measures with different sensitivities, becoming part of a 215 

spectrum to represent biodiversity fully, as advocated by a number of authors (eg, Sherwin 216 

et al. 2017).  These complementary measures derived from Hill-numbers for alpha and beta 217 

diversity have been well investigated, with many having good predictions from underlying 218 

factors such as population size, speciation/mutation, and dispersal, as well as showing 219 

independence of alpha and beta diversity (Sherwin et al. 2017).  Shannon Mutual 220 

Information/Shannon Differentiation and Morisita-Horn/𝐷𝐸𝑆𝑇  are differentiation measures 221 

that have available forecasts, and avoid errors such as dependency on within-location 222 

variation; the Shannon measures also avoid the heavy emphasis of effects of common 223 

variants, such as is seen with Morisita-Horn/𝐷𝐸𝑆𝑇  (Magurran 2004, Jost 2008, Sherwin et al. 224 

2017).  It should also be noted that unlike the Hill-family of diversity measures, which can be 225 

corrected for incomplete sampling by the Good-Turing method (Chao & Jost 2015), the 226 

general Bray Curtis measure cannot currently use this optimum correction (A. Chao pers. 227 

comm.).  However, this correction method is also inapplicable to any two-variant system 228 

such as SNPs. 229 

 230 
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This paper is the first introduction of predictive modelling for Bray Curtis in molecular 231 

ecology.   It can be extended in many ways.  The equations for 𝐺𝑆𝑇 are based upon a number 232 

of assumptions (Whitlock & McCauley 1999, Semenov et al. 2019, Ochoa & Storey 2021) and 233 

each of these needs to be investigated if it is proposed to apply the Bray-Curtis equation 7 234 

or 8 to any particular case.  Firstly, it was assumed that there are only two locations, of 235 

approximately equal effective size, which may be the case especially in some conservation 236 

applications, but other possibilities would require further theory.  Secondly, it was assumed 237 

that there is symmetric dispersal  𝑚, the same for both locations, so that addressing a 238 

source-sink situation would require further theory based on the continent-island model.  239 

Thirdly, it was also assumed that there are only two alleles, as is often the case for SNPs, but 240 

not for haplotypes.  In future, all the theory in this paper might be extended to cases with 241 

multiple alleles, broadening its use.  With greater than two variants, there may be a need 242 

for correction for S, number of variant alleles or species, as well as correction for variant 243 

distribution.  Fourthly, it was assumed that during filtering of data, these SNPs are chosen to 244 

be neutral and unaffected by strong selection at nearby locations in the genome.  Additional 245 

theory would be required for loci under selection, which of course are very important in 246 

evolution and conservation (Teixeira & Huber 2021).  Fifthly, mutation rates are probably 247 

negligible compared with dispersal rates; for example, typical SNP mutation rates are 10−9 248 

to 10−6.  However if the mutation (or speciation) rate is not negligible, then it needs to be 249 

estimated.  Finally, the equilibrium calculations presented above are appropriate in many 250 

cases, with Tables A2.1 and A2.2. showing that there is a wide window of generation times 251 

for which equilibrium is a reasonable assumption.  However, in both natural and modified 252 

habitats, often there is a non-equilibrium situation such as a sudden reduction in 253 

connectivity, eg due to new human infrastructure.  Therefore, dynamic (non-equilibrium) 254 
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equations are also needed, and one such equation is shown in equation A1.11, for time 𝑡 255 

generations after a complete cessation of dispersal between two locations. 256 

 257 

The other major direction for future development of this theory is to species-assemblages – 258 

the original use of Bray-Curtis (Bray & Curtis 1957).  The haploid case above is also 259 

equivalent to species in an ecosystem, using the same underlying concepts: population 260 

dynamics, dispersal, selection and speciation (in place of mutation).  However, this might 261 

require various refinements.  Firstly, the extension to multiple species/alleles discussed 262 

above will be very important.  Secondly, the simulations use effective population size, not 263 

actual size.  Those using Bray-Curtis in evolution would be very familiar with effective 264 

population size and its calculation, but this measure may not be so familiar to ecologists 265 

dealing with arrays of species rather than alleles.  Effective size is the reciprocal of the rate 266 

at which variation is lost by random processes (eg loss of allele- or species-diversity through 267 

stochastic drift (Vellend 2016)).  It is best calculated from demographic data such as 268 

reproduction and mortality (Engen et al. 2005), but can also be back-calculated from its 269 

effect on genetic variation, and is typically much smaller than the actual number of 270 

individuals of all types in the assemblage (Frankham 1995).  There is a precedent for 271 

calculating an equivalent of effective size for assemblages of species 𝐽𝑀 (Hubbell 2001).  272 

Thirdly, the simulations used a binomial mechanism because of the initial focus on 2-allele 273 

SNPs.  However other mechanisms such as Poisson or negative binomial might give different 274 

dependency (Warton & Hui 2017), and this might be appropriate in other cases, including 275 

where the underlying biological process for generating variants (speciation) is not fully 276 

understood at present.  Finally, as mentioned before, the forecasts in equations 7 and 8 are 277 

based upon selectively neutral assumptions, and although some neutral genetic theory has 278 
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been applied to species assemblages (Hubbell 2001, Rosindell et al. 2010), it is best to add 279 

selection to these models (Rosindell et al. 2010, 2015). 280 

 281 
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APPENDICES: Is Bray-Curtis differentiation meaningful in Molecular Ecology? Sherwin 423 

 424 

A1 Forecasting equilibrium Bray-Curtis with mutation, dispersal and drift due to small 425 

population size, for two locations, with a single neutral biallelic SNP locus. 426 

 427 

i = 1,2, – indices for locations.  Where there is no index, or the index is 𝑇, it is the value 428 

calculated for the pooled locations (metapopulation), eg pooled allele proportion, 429 

overall heterozygosity. 430 

B  - Bray-Curtis between locations “1” and “2”, the unsigned difference of proportions, ie  431 

𝐵 = |𝑝1 − 𝑝2|  (Berner 2019a,b) (equation 2 in main article). (This is also called AFD – 432 

Difference of Allele “Frequency” ie proportion).  The algebra below deals with a single 433 

locus, but Bray-Curtis can be averaged over loci. 434 

𝐷2  – Second order diversity, or effective number of alleles  𝐷 =  1 (1 − 𝐻)⁄2  or 𝐻 = 1 −435 

1 𝐷2⁄  436 

FST – Wright’s measure of differentiation for biallelic SNPs   437 

𝐺𝑆𝑇 = 𝐹𝑆𝑇 =  𝜎𝑝
2 𝑝𝑞 =  [𝐻𝑇 − 𝐻1, 𝐻2

̅̅ ̅̅ ̅̅ ̅̅ ] 𝐻𝑇⁄⁄  ((Halliburton 2004) Box 9.5) 438 

GST – See FST ; these are equivalent in the 2-allele, 2-location case. 439 

𝐻  – Binomial (Hardy-Weinberg) expected heterozygosity eg 𝐻𝑇 =  1 − 𝑝2 − 𝑞2 ; 𝐻1 = 1 −440 

𝑝1
2 − 𝑞1

2   441 

m – dispersal per generation between the two populations, symmetrical (0≤m≤1) 442 

μ – mutation (or speciation) rate per generation (0 ≤ 𝜇 ≤ 1) 443 

N – effective population size at each location (identical) 444 

p1 p2 – proportions of the chosen allele at each location 0 ≤ 𝑝𝑖 ≤ 1  (for the other allele, 445 

q1=1-p1 etc) at generation t 446 

p – average p over the two locations at beginning of generation t :   𝑝 = 𝑝𝑖̅ = (𝑝1 + 𝑝2) 2⁄ ; 447 

𝑞 = 1 − 𝑝 448 

p’ – proportions partway through generation t. 449 

p” etc – proportions one generation after time t (at time t”). 450 

s – number of localities (always two unless stated otherwise) 451 

t - generation index (t” after one full generation). 452 

𝑇 –  is the index for the pooled locations (metapopulation), eg overall heterozygosity. 453 

 454 

I restricted analysis to cases where there are two locations: 455 

- with identical effective population size,  456 

- reproduction with stochastic drift in each population is followed by dispersal 457 

- deterministic symmetric dispersal between the two locations  458 

- locations were followed for a single generation t to t”, during which the expected 459 

change of proportions is zero when the system is at equilibrium 460 

- two alleles per locus (eg conventionally filtered SNP data) 461 

 Location 1 Location 2 

Generation t, 
initially 

𝑝1, 𝑞1 𝑝2, 𝑞2 

After Drift 𝑝′1, 𝑞′1 𝑝′2, 𝑞′2 

After Dispersal 𝑝"1 =  𝑝′1 − 𝑚𝑝′
1

+ 𝑚′𝑝2. 

𝑞"1 =  1 − 𝑝"1  

𝑝"2 =  𝑝′2 − 𝑚𝑝′
2

+ 𝑚′𝑝1. 

𝑞"2 =  1 − 𝑝"2  
  462 
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BRAY-CURTIS/AFD AT DRIFT-DISPERSAL EQUILIBRIUM 463 

Bray-Curtis between locations “1” and “2”, is   464 

                                 𝐵 = |𝑝1 − 𝑝2|(Berner 2019a,b)                                        Equations 2, A1.1 465 

 466 

At any time, for 2 localities with 2 alleles per locus, 467 

𝐺𝑆𝑇 = 𝐹𝑆𝑇 = [𝐻𝑇 − 𝐻1, 𝐻2
̅̅ ̅̅ ̅̅ ̅̅ ] 𝐻𝑇⁄ =  𝜎𝑝

2 𝑝𝑞⁄                                                         Equation A1.2 468 

where 𝜎𝑝
2 = 𝑝𝑖

2̅̅ ̅ −  (𝑝𝑖̅)
2  ((Halliburton 2004) Box9.5 (Falconer & Mackay 1996) p56, Eq3.4) 469 

IE 𝜎𝑝
2 = [(𝑝1

2 +  𝑝2
2)/2] − [(

(𝑝1+𝑝2)

2
)

2

] =  (𝑝1 − 𝑝2)2 4⁄ = 𝐵2/4                   Equation A1.3 470 

So     𝐺𝑆𝑇 = 𝐹𝑆𝑇 =  𝐵2 4𝑝𝑞⁄            471 

Or     𝐵2 = 4𝑝𝑞𝐺𝑆𝑇 = 2𝐻𝑇𝐺𝑆𝑇                                                                                 Equation A1.4 472 

 473 

Now at dispersal-drift-mutation equilibrium for s localities,      474 

𝐺𝑆𝑇 =  1 (1 +
4𝑠

𝑠−1
(𝑁𝜇 +

𝑠𝑁𝑚

𝑠−1
))⁄      (equations 8 and 20 in (Takahata 1983)) Equation A1.5a 475 

So with one pair of localities, 𝑠 = 2 476 

            𝐺𝑆𝑇 =  1 (1 + 8𝑁(2𝑚 + 𝜇))⁄                                                                       Equation A1.5b 477 

 478 

So inserting eqn A1.5b into eqn A1.4, at equilibrium, 479 

            𝐵2 =  2𝐻𝑇 (1 + 8𝑁(2𝑚 + 𝜇))⁄ =  
2 𝐷2 −2

𝐷2 (1+8𝑁(2𝑚+𝜇))
                                 Equation A1.6 480 

 481 

we get for diploid:     𝐵 = √ 
2 𝐷2 −2

𝐷2 (1+8𝑁(2𝑚+𝜇))
                                                         Equation A1.7 482 

 483 

and for haploid          𝐵  = √ 
2 𝐷2 −2

𝐷2 (1+4𝑁(2𝑚+𝜇))
                                                      Equation A1.8 484 

  485 
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DYNAMIC (NON-EQUILIBRIUM) BRAY-CURTIS/AFD OVER TIME AFTER DISPERSAL IS REDUCED TO ZERO 486 

At time t after dispersal is reduced to zero 487 

𝜎𝑝
2(𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) =  𝑝𝑞[1 − (1 − 1 2𝑁⁄ )𝑡]  ((Falconer & Mackay 1996) eqn 3.2)  Equation A1.9 488 

From equation A1.3 above, 𝜎𝑝
2 = 𝐵2 4⁄    or 𝐵 = √4 𝜎𝑝

2                                        Equation A1.10 489 

If we are averaging over many loci, it is reasonable to assume that average allele 490 

proportions for the metapopulation (p,q) do not change over time.  Then at time t after 491 

dispersal is reduced to zero, combine equations A1.9 and A 1.10: 492 

 493 

𝐵(𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) = √4𝑝𝑖𝑛𝑖𝑡𝑞𝑖𝑛𝑖𝑡[1 − (1 − 1 2𝑁⁄ )𝑡]                                                 Equation A1.11a 494 

where 𝑝𝑖𝑛𝑖𝑡and 𝑞𝑖𝑛𝑖𝑡 are the starting allele proportions for the metapopulation, ie: 495 

𝐵(𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) = √2𝐻𝑇 (𝑖𝑛𝑖𝑡)[1 − (1 − 1 2𝑁⁄ )𝑡]                                                   Equation A1.11b 496 

In equation A1.11, for haploids, 2N is replaced by N. 497 

 498 

CAN WE CORRECT FOR DEPENDENCE ON ALPHA? 499 

Note that equations A 1.4, A1.7 and A1.8 explicitly show the dependence of Bray-Curtis on 500 

within-locality (alpha) variation, 𝐻𝑇 or 𝐷2 , and such dependence is not a desirable property 501 

for a measure of between-locality (beta) differentiation.  This is additional to the 502 

dependence of 𝐺𝑆𝑇 on (alpha) heterozygosity.  There is a correction for this unwanted 503 

dependency of 𝐺𝑆𝑇 (Meirmans & Hedrick 2010), so it is interesting to ask whether using this 504 

correction would remove the effect of alpha variation on Bray-Curtis.  For a pair of locations, 505 

the corrected 𝐺𝑆𝑇 is: 506 

𝐺"𝑆𝑇 =  
2(𝐻𝑇− 𝐻1,𝐻2̅̅ ̅̅ ̅̅ ̅̅ )

(2𝐻𝑇− 𝐻1,𝐻2̅̅ ̅̅ ̅̅ ̅̅ )(1− 𝐻1,𝐻2̅̅ ̅̅ ̅̅ ̅̅ )
                                                                              Equation A1.12 507 

Combining equations A1.2 and A1.12,  508 

𝐺𝑆𝑇 =  
(2𝐻𝑇− 𝐻1,𝐻2̅̅ ̅̅ ̅̅ ̅̅ )(1− 𝐻1,𝐻2̅̅ ̅̅ ̅̅ ̅̅ )

2𝐻𝑇
 𝐺"𝑆𝑇                                                                      Equation A1.13 509 

Combining equations A1.4 and A 1.13 510 

𝐵 =  √(2𝐻𝑇 −  𝐻1, 𝐻2
̅̅ ̅̅ ̅̅ ̅̅ )(1 −  𝐻1, 𝐻2

̅̅ ̅̅ ̅̅ ̅̅ ) 𝐺"𝑆𝑇                                                   Equation A1.14 511 

Thus although this new formulation of Bray-Curtis uses 𝐺"𝑆𝑇, which is free of influence of 512 

heterozygosity, Bray-Curtis is still heavily dependent upon heterozygosity H.  Additionally, 513 

using this formulation in equation A1.14 for Bray-Curtis would considerably complicate the 514 

derivation of theoretical expectations, equations A1.5 to A1.8.  515 

  516 
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A2 The MATLAB simulation program 517 

 518 

This MATLAB program was modified from the one previously described (Dewar et al. 2011), 519 

to include calculation of the Bray-Curtis Index (equations 2, A1.1), as well as the previously 520 

calculated 𝐺𝑆𝑇(equation A1.2). 521 

 522 

The simulation dealt with two biallelic haploid subpopulations, for scenarios with every 523 

possible combination of levels of symmetric dispersal (rate m = 0.01, 0.03, 0.1, 0.3), 524 

mutation rate (μ = 10-9, 10-6), effective subpopulation sizes (N = 1000, 10000, 100000) and 525 

starting allele proportion in each subpopulation (p = 0.1, 0.5).  There were 100 iterations of 526 

each scenario.  Each generation included stochastic binomial sampling of the parent alleles 527 

to establish the allele proportion for the offspring, followed by deterministic symmetrical 528 

dispersal to create the parent populations for the next generation.  For each scenario 529 

(combination of m, μ, N, p), there were 100 independent iterations, whose results were 530 

averaged. 531 

 532 

Each iteration was run for 200 generations, which was expected to be sufficient time to 533 

allow drift-dispersal equilibration without fixation of loci (see Tables A2.1, A2.2 below).  534 

Because the calculations in appendix A1 are for equilibrium m, μ, N without fixation (ie, loss 535 

of all alleles except one), it was important to run the simulations for times that are 536 

consistent with these two conditions.  This is also important because most researchers, or 537 

the companies that do their genotyping, will filter out invariant (fixed) SNPs from the data.  538 

The two subsections below show that it is possible to choose simulation generation 539 

numbers that are sufficiently large to give approximate equilibrium, but short enough to 540 

give minimum fixation (see below).  All simulations were run for the same time, 200 541 

generations.  The program included a trap for fixation, and it was designed to then restart 542 

(ie replace) any iterations where fixation occurred, in line with the filtering normally applied 543 

to such data.  Because of the relatively short number of generations (200), there were no 544 

restarts for fixation. 545 

 546 

Expected Time to half equilibrium (for 𝐹𝑆𝑇)  (Whitlock 1992) 547 

Time to half equilibrium in generations for diploid is 548 

                                                    𝑡1 2⁄  𝑒𝑞 =  
ln 0.5

𝑙𝑛[(1−𝑚)2(1−1
2𝑁⁄ )]

                                   Equation A2.1a 549 

and for haploid is                      𝑡1 2⁄  𝑒𝑞 =  
ln 0.5

𝑙𝑛[(1−𝑚)2(1−1
𝑁⁄ )]

                                   Equation A2.1b 550 

where symbols are as in appendix A1.  Maximum time to half-equilibrium is 69 generations 551 

for the scenarios trialled in the main paper (Table A2.1).  Given that Bray Curtis is a function 552 

of 𝐹𝑆𝑇, is seems reasonable to assume that this will also approximate the time to half-553 

equilibrium for Bray-Curtis.  The simulations should be run for several times this 𝑡1 2⁄  𝑒𝑞.  A 554 

time of 200 generations was chosen, and applied to all simulated scenarios.  Iterations were 555 

each also inspected to ensure that each scenario had asymptoted to a stable value for Bray-556 

Curtis, well before the final generation, and had a variance between-generations that was 557 

much lower than variance between replicate iterations (typically one tenth). 558 

 559 

  560 
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 561 

N m  𝑡1 2⁄  𝑒𝑞 

100000  0.01 68.95041 

100000  0.03 22.75471 

100000  0.1 6.578657 

100000  0.3 1.943345 

1000  0.01 67.29324 

1000  0.03 22.57127 

1000  0.1 6.563236 

1000 0.3 1.941997 

100000 0.01 68.95041 

100000 0.03 22.75471 

100000 0.1 6.578657 

100000 0.3 1.943345 

TABLE A2.1  Time to half-equilibrium 𝑡1 2⁄  𝑒𝑞 generations for the scenario conditions 562 

simulated; see A1 for definitions of other symbols. 563 

 564 

 565 

Expected Time to fixation  566 

In this case with two equal-sized subpopulations making up a metapopulation with 567 

dispersal, N for metapopulation ≈ 2*N-subpopulation; for haploid we use 4N(metapop) 568 

instead 8N in Maruyama’s equation of expected time to fixation 𝑡𝑓𝑖𝑥. (Maruyama 1970); 569 

(Crow & Kimura 1970 eqn 8.9.4 p 431).   570 

Thus                                     𝑡𝑓𝑖𝑥 = −
4𝑁𝑝𝑙𝑛(𝑝)

1−𝑝
                                                           Equation A2.2 571 

where symbols are as in A1. Minimum time to fixation is 1023 generations, for the scenarios 572 

trialled in main paper (Table A2.2).  In an extreme case where N for the metapopulations 573 

was equal to the N for either subpopulation, the fixation times would be halved, so these 574 

times would all still be more than double the 200 generations simulated.  Note that no 575 

fixations occurred in any iterations of the simulations. 576 

 577 

Initial p N 
Fixation 
time 

0.5 100000 277258.9 

0.1 100000 102337.1 

0.5 10000 27725.89 

0.1 10000 10233.71 

0.5 1000 2772.589 

0.1 1000 1023.371 

TABLE A2.2  Expected time to fixation the scenario conditions simulated; see A1 for 578 

definitions of symbols. 579 
 580 


