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ABSTRACT:

In this study a series of GO-based adsorbents were assembled via impregnation method using N-

resources:  3-aminopropyl-triethoxysilane  (APTS) as primary amio-silane,  Piperazine  (PIP)  as

secondary cyclic diamine,  and ethanolamine (EA) as primary amine.  The influence of amine

type, adsorption  temperature and pressure were undertaken to obtain the best CO2 adsorption

performance. The characterizing techniques including FTIR, SEM, TGA, BET, BJH, and MP

confirmed well impregnation of amine functionalities to the GO framework and high thermal

stability of adsorbents. GO/APTS showed the maximum CO2 uptake (43.114 mmol/g) predicted

by the Sips isotherm model and the highest  CO2  (15% V, balanced N2)  selectivity  (33.7 %)

estimated  by  the  ideal  adsorbed  solution  theory.  The  experimental  adsorption  capacity  of

GO/APTS is 2.3 times higher than pristine GO. This behavior highlights the role of electron-

donor amine and methyl groups and high molecular weight of APTS as well as high interfacial

area of GO/APTS in CO2 capture. 

KEYWORDS: CO2 Capture, Amine, Functionalization, Porous Adsorbent.

3

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39



1. INTRODUCTION

The intensive human activities result in the fast-increasing emission of atmospheric CO2 [1]. CO2

is  recognized as the prime cause of  global  warming and literature  surveys showed the  60%

correspondence of global warming to the emission of CO2 [2–4]. Based on the fifth report of

Intergovernmental  Panel  on Climate  Change (IPCC),  the  increment  of  CO2  emissions  brings

about strict global warming with severe climate consequences [5]. Therefore, serious strategies

for the decrement of CO2  emissions should be considered. In this context, the exclusion of CO2

from flue gases is highly considered for mitigation and control of air pollution as well as global

warming [6]. Among the multitudinous technologies invented for the capture of CO2, absorption

by liquid alkanol amine solution has received extensive consideration due to its advantages such

as high CO2  selectivity or regeneration of formed carbamates during the process. Despite these

advantages, high expenditure of energy for recovery of solvent, intense corrosivity of alkanol

amine solvent, along with the oxidation of solvent hider its further commercial applications [7–

9]. In this regard, scholars try to find techniques that would respond to deficiencies of absorption

by aqueous amine. In search for an appropriate method, amine-functionalized solid adsorbents

have revealed a promising potential for the capture of CO2 [10–12]. The amine-loaded adsorbents

have attracted researchers because of their inexpensive, less corrosivity, high stability, and low

energy  consumption  for  recovery  of  adsorbents  in  comparison  with  liquid  amine  absorbing

techniques  [13–15].  Hence,  diverse  types  of  solid  adsorbents  have  been  examined  for  their

effectiveness  for  CO2 capture.  Metal-organic  frameworks  (MOFs)  [16,17],  and carbon-based

materials [18,19] are among pioneering porous solid adsorbents for the capture of CO2. Various

carbonaceous adsorbents in the forms of for example molecular sieve, nanotube, and fiber have

emerged as  prospective  CO2 capturing  materials  for  their  chemical  and thermal  merits  [20].

4

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62



Graphene is  a cheap allotrope of carbon with a high specific  surface area which makes it  a

favorable nexus of CO2 capture adsorbents [21]. 

Graphene oxide (GO) is a fascinating carbonaceous material  [22] that is fabricated from the

oxidation of graphite and contains numerous oxygen functionalities such as epoxide, hydroxyl,

carboxyl functionalities on its frameworks and borders  [23,24]. These functional groups donor

GO a striking potential of functionalization via covalent and non-covalent interactions [25]. The

oxygenous functional groups of GO make it a desirable basic candidate for the capture of acidic

CO2, however, it needs some modifications to achieve satisfying CO2  adsorption capacity. The

encouraging merit  of  GO is  its  high  content  of  oxygen-bearing groups which can be easily

functionalized with nitrogenous compounds such as amine via nucleophilic substitution reactions

[26,27]. Amine-modified GO has  higher CO2  uptake potential than pure GO by virtue of the

high  affinity  of  amino  groups  to  CO2 [28,29].  GO  can  be  functionalized  via  whether

impregnation technique or grafting method. However, the impregnation method is the more easy

technique that improves the adsorption capability of the adsorbent than the grafting method [30].

Multitudinous researches have been conducted on the adsorption performance of GO. But, the

studies  on  amine-functionalized  GO  have  been  less  carried  out  which  necessitates  further

investigations.  It  is  expected that  chemical  rectification of GO with amine-containing agents

boosts  the  adsorption  capacity  of  GO as  CO2 particles  are  bound to  the  pores  via  physical

interactions and to functional groups of the modified GO via chemical bonds[28]. 

In  the  present  study,  porous  GO was impregnated  with  three  types  of  amine  functionalities

namely  3-aminopropyl-triethoxysilane  (APTS),  Piperazine  (PIP),  and  ethanolamine  (EA)  to

investigate and compare their effectiveness in adsorption of CO2. The possible mechanisms of

interaction  of  GO  and  various  functionalities  are  described  in  Scheme  1.  The  fabricated
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adsorbents  were  characterized  for  their  surface  functional  groups,  thermal  stability,  textural

properties,  and surface  morphology.  Furthermore,  the thermodynamic  and isothermal  studies

were also carried out for the large-scale application of the prepared adsorbents.
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Scheme 1. The proposed reaction mechanism between GO (A) and amine-bearing agents: B)

GO/PIP,  C)  GO/APTS,  and D)  GO/EA.  (grey:  carbon;  white;  hydrogen,  red:  oxygen,  blue:

nitrogen, yellow: sulfur) 

2. MATERIALS AND METHODS 

2.1. Materials 

The  graphite  used  in  this  research  was  obtained  from Fluka  and  other  chemicals  including

potassium permanganate,  nitric  acid (65%), sulfuric  acid (98%),  toluene (C7H8),  1,4 dioxane

(C4H8O2), and amine functionalities of EA (C9H3C13O), APTS (C8H22N2O3Si), and PIP (C4H10N2)

were  provided  from Merck Co.  Acetone  (C3H6O) and ethanol  (C2H6O) was  purchased from

Scharlau. Highly pure gases including carbon dioxide, helium, and nitrogen had been applied.

2.2. Synthesis of GO 

The assembly of GO was carried out based on the famous procedure of Hummers [31] which can

embed various oxygen-bearing functional  groups at the edge and on the surface of the basal

plane of graphene [20]. According to this method, nitric acid (HNO3, 7.5 g) and graphite (7.5 g)

was added to sulfuric acid (H2SO4, 360 ml) solution stirring at the rate of 500 rpm under the

constant  temperature of 0 ºC (the system was equipped with the ice-bath to set the reaction

temperature at 0 ºC). After 1 h agitation, potassium permanganate (KMnO4) was gently poured

into the solution. The final solution was agitated for 3 h at 35 ºC. In the next step, H2O2 (3%) was

gradually  blended  with  the  liquid  composite  during  30  min.  The  slurry  was  separated  via

filtration with a vacuum pump and the following centrifuging at 11000 rpm for 15 min. The

remaining solid was refined by DI water and centrifuged until reaching a neutral sample, then,

impurities were volatilized in the vacuum oven overnight at 60°C.
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2.3. Synthesis of GO/APTS 

20 ml APTS was decanted to the 80 ml toluene solution and the blend was stirred for 15 min at

the rate of 500 rpm. Then, GO was added to the aqueous composite and was agitated at the

constant rate of 500 rpm for 12 h under the stable temperature of 105 ºC. Then, the amine-

functionalized GO was filtrated using a vacuum pump. In order to ensure the elimination of extra

amine functionalities, the sample was rinsed with acetone several times. Finally, the prepared

solid sample of GO/APTS was desiccated in an oven at the temperature of 80 ºC for 12 h. 

2.4. Synthesis of GO/PIP 

First, 3.73 g of PIP was dissolved in 1,4 dioxane (100 ml) and was stirred by a magnetic stirrer

(500  rpm)  at  15  ºC.  GO  was  added  to  the  obtained  solution  and  was  shaken  under  the

temperature of 85 ºC for 21 h for well-mixing. The amine-functionalized GO has been filtered

via  a  vacuum pump and  washed with  1,4  dioxane,  ethanol,  and DI  water  to  dissolve  extra

amines. The fabricated GO/PIP solid was left overnight in an oven at 80 ºC to be dewatered. 

2.5.  Synthesis of GO/EA

For the preparation of GO modified with EA, GO was poured into toluene (75 ml) and then

ethanol solvent (1.5 mmol).  The synthesized solution was agitated over a magnetic stirrer (500

rpm) for 18 h at the temperature of 80 ºC. Hereafter, the amine-doped sample was segregated by

a vacuum pump and then rinsed with ethanol and DI water for the removal of unreacted amine

groups. Finally, the synthesized GO/EA solid was desiccated via an oven at 80 ºC for 12 h.

2.6.  The volumetric setup 

A volumetric system was applied for the evaluation of adsorption experiments. The layout of the

volumetric setup is represented in Figure 1. As it is obvious from the figure, the main part of the
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system is composed of two stainless steel containers operating under elevated pressure which are

known as pressure cell and adsorption cell. A water bath was used to provide the cells with a

content  temperature  for adsorption of CO2.  In addition,  the containers  were provided with a

temperature  monitoring  and pressure transformer  for  the record of  temperature  and pressure

values during each test. Prior to the commencement of the experiments, solid samples became

free of unwanted gases by keeping them under the temperature of 100  ºC for  12 h. Then, the

prepared solid was sat in the adsorption unit and the apparatus was vacuumed by a vacuum pump

device. For the estimation of the setup volume, helium gas was exploited as an inert gas. The test

was begun by the entrance of CO2 to the pressure cell until reaching an equilibrium condition. 

Figure 1. The experimental set-up:
(1) pressure cell; (2) adsorption cell; (3) water bath; (4) pressure gauge; (5-8) valves; (9) vacuum

pump; (10) regulators.

2.7.  Material Characterizing 

The textural characteristics of the virgin and amine-modified GO series were estimated by N2

adsorption-desorption isotherms at  77 K at the relative pressure (P/P0) range of 0.0001–0.99

using BELSORP mini II, Japan Inc instrument. The samples became devoid of any redundant

substance under the temperature of 393 K for 15 h heretofore being exerted.
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Further textural properties of the GO adsorbents including superficial area, mean pore diameter,

and pore volume were appraised by the Brunauer–Emmett–Teller (BET) method. Moreover, the

MP  method  was  applied  for  the  examination  of  micropore  size  distribution  from  the  N2

adsorption  curve  and  the  mesopore  size  distribution  via  the  Barret–Joyner–Halenda  (BJH)

technique.

The morphology of the GO, GO/PIP, GO/EA, and GO/APTS adsorbents were characterized by

high resolution scanning electron microscopy (SEM, VEGA IILMU, Tescan, Czech Republic)

analyzer at the voltage ranging from 1 to 30 kV. All solids were covered with a tenuous layer of

gold for premiere conductance.

For  the goal  of studying the superficial  functional  groups of  the synthesized  GO series  and

proper  modification  of  GO  with  amine-containing  agents,  the  Fourier  Transform  Infrared

spectroscopy (Bruker Vertex-70 FTIR) was employed. In this regard, the solids were blended

with KBr and their patterns were tracked in the wavelength region of 400–4000 cm-1.

The  thermal  resistance  and  dehydration  quality  of  the  adsorbents  were  measured  by  the

thermogravimetric  analysis  (TGA)  (Mettler  Toledo  TGA-851,  Switzerland)  under  the  heat

treating of 10 °C/min in the temperature zone of 10-800 °C.

2.8.  Sips Isotherm Model

Finding a  proper  isotherm model  is  a  highly  beneficial  tool  in  estimation  of  the  adsorption

equilibrium for commercial  utilization of an adsorbent  [32],  expansion of its  behavior  under

different  temperatures  and  even  for  different  gases  [33].  In  order  to  address  this  point,  the

experimental data were modeled on Sips isotherm. Sips or Langmuir–Freundlich isotherm is a

semi-empirical  equation  for  predicting  the equilibrium data  of  a  real  system  [34].  Since the
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common  adsorbents  used  for  the  capture  of  gas  have  non-homogeneous  surface  and  pore

structures, semi-empirical isotherm patterns predict the data with better fitment to reality  [35].

The equation of this model which is derived from the Langmuir and Freundlich isotherm models

is provided below [13]:

q=qm
b p

1
n

1+b p
1
n

                                         (1)

where  qm is  the  highest  adsorbed  CO2 (mmol/g),  b  is  the  Langmuir  constant,  and  n  is  the

representative of the system heterogeneity. n=1 shows the Langmuir isotherm and values lower

than 1 suggest the CO2 chemisorption over a homogenous surface and values greater than 1

indicate the physisorption of CO2 over a heterogeneous surface.  

2.9.  Adsorption Selectivity

The ideal adsorbed solution theory (IAST) predicts the selectivity of the composite gases system

based on the isotherm of each element in a separate system [36]. Basically,  IAST hypothesizes

that the temperature of the system for the capture of an ideal gas mixture over the adsorbent is

the  same  as  the  temperature  of  the  single-component  adsorption  systems.  This  theoretical

approach is considerably helpful since it eliminates the laboratory tests need for the evaluation

and isothermal study of multiplex-gas systems [37]. The main assumptions of this theory are as

follows: all gas components have identical interaction in the gas phase and have even access to

the homogeneous adsorbent surface [38]. According to IAST, spreading pressures for pure and

mixed gas are equivalent at equilibria [39]. In the current study, the selectivity of the adsorbent

series toward CO2 coexisting with N2 was calculated. The spreading pressure in this system can

be obtained according to  equation  (2),  and  Raoult's  law for each component  is  described in
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equations (3) and (4), and finally, the total amount of gas uptake is defined based on the equation

(5).

∫
0

P CO2
0

qCO2
P
dP=∫

0

PCO2
0

qN2
P
dP=

πA
RT

                                         (2)

P yCO2=PCO2
0 xCO2

                                                                   (3)

y N2=PN2
0 xN2                                                                          (4)

1
qt

=
xCO2

qCO2 (PCO2
0 )

+
xN2

qN2 (PN2
0 )

                                                       (5)

In the above equations, qt is the total adsorption capacity, and qCO2  and qN2 are the adsorption

potential  of  the  adsorbent  for  the  capture  of  CO2 and  N2,  respectively.  P֯CO2  and P֯N2  are  the

hypothetical  pressure  of  CO2 and  N2,  respectively.  xi and  yi  are  representative  of  the  molar

proportion of gas components and A is the surficial area of the sorbent. 

The adsorbent selectivity toward CO2 is calculated via the below formula: 

SCO2/N 2
=
xCO 2
x N 2

×
yN 2
yCO2

                                                            (6)

2.10. The Isosteric Heat of Adsorption 

The adsorption equilibrium and the isosteric  heat  of  adsorption (∆Hst)  are  considered  as  the

fundamental theoretical variables for the design and optimization of adsorptive removal of gases

[40]. The adsorption of gases over porous adsorbents can lead to different ∆Hst as the surface

coverage (or pressure) changes.  First,  a constant  value of ∆Hst with an increment  of surface

coverage suggests homogeneous adsorption. Second, the reduction of ∆Hst with the development

of surface loading alludes to the heterogeneity of adsorption. Third, the enhancement of ∆Hst
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with the growth of adsorbent uptake suggests the strong lateral  interactions  between the gas

molecules  [41]. Moreover,  it  has been approximated by multitudinous researches that ∆Hst  is

independent of temperature in the systems employing porous adsorbent or having heterogeneous

surface [42]. Various equations have been developed for the theoretic calculation of ∆Hst, among

which,  the  Clausius-Clapeyron equation  is  the  common  and  straight  equation assuming  the

adsorption of ideal gases which is reliable under the low-pressure ranges [43]. The equation is:

∆ H st=R [
dln p

d (
1
T

) ]
q

                                   (7)

where ∆Hst (KJ/mol) is the isosteric heat of adsorption, T (K) is the temperature, P (bar) is 

pressure, and R is the ideal gas constant (J/mol K).

3. RESULTS AND DISCUSSIONS

3.1. Characterization of Adsorbents

The FTIR spectrum was carried out to study the functional groups of GO precursor and amine-

impregnated GO series (see Figure 1). 

Figure 1 confirms the proper synthesis of GO due to the presence of GO characteristics peaks at

3440,  1738,  and  1020  cm-1 contributed  to  the  O―H  vibrancy  in  hydroxyl  groups,  ―C=O

vibrancy in  carboxyl groups, and C―O―C stretching in epoxy groups, separately. The peak

observed in 1649 cm-1  was dedicated to the  vibrations of unoxidized sp2-hybridized carbons of

the  graphite  framework.  The  bands  at  2923  and  2852  cm-1  were  characteristics  of  the

unsymmetrical and symmetrical vibrancy of CH2 [20]. These bands were present in the spectra of

all the modified samples with some changes in their intensity (mainly weakened) suggesting the

incorporation and interaction of these oxygen functionalities with amine groups. The spread peak

13

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237



around 3440 cm-1 for amine-doped adsorbents was pertained to the O―H stretching and N―H

stretching  vibrancies  which  were overlapped.  The bands  at  around 1095 and 790  cm-1  were

observed  for  GO/APTS  sample  which  are  representatives  of  vibrant  Si―O―Si  and  Si―C

bonds, respectively [44]. The peaks at 1470 and 1650 cm-1 showed the vibration of C―N group

[45]. 

GO mainly contains hydroxyl and epoxy groups in its skeleton and carbonyl groups in the form

of carboxylic acid in the edges. The chemical interplay between amine groups and oxygenated

functional  groups  of  GO  occurs  via  i)  covalent  bonding  between  epoxy  groups  and  amine

groups; ii) hydrogen bonding between hydroxyl groups and amines in the basal planes of GO

sheets [44] iii) amidation reactions between carboxyl and amine-bearing groups in edges of GO

sheets.  Furthermore,  hydroxyl and carboxylic  acid functional  groups of GO may interact  via

hydrogen bonds and electrostatic  interactions  [46].  According to  the mentioned explanations

along with the spectra pattern of GO samples, well impregnation of amine-containing chemicals

on the GO surface was verified.  
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Figure 1. FTIR spectra of the unmodified and modified GO adsorbents

A favorable adsorbent for CO2 capture should possess desirable stability.  Indeed, the thermal

stability of adsorbents enriched with amine-oriented agents is highly important, in particular, in

the desorption stage which is usually conducted under higher temperatures [18,47]. 

Figure 2 summarizes TGA thermograms of pristine and amine-functionalized GO series. The

three-stage decomposition  pattern  is  observable  for all  adsorbents.  The initial  decomposition

stage  emerged  below  100  ºC  for  all  adsorbents  which  was  ascribed  to  the  evaporation  of

physisorbed moisture and other fugacious elements  [48]. The further decomposition stages of

GO occurred at temperatures of about 205 ºC and 310 ºC with mass loss of about 13% and 11%,

respectively. The second decomposition region was related to the rupture of unstable oxygenated

functional groups namely OH, CO, and COO- groups [49]. The third decomposition region can

be  assigned  to  the  dissociation  of  resistant  oxygenated  functional  groups  namely  acidic
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carboxylic and lactones. The mass loss in the second phase, in the temperature range of 170 ºC to

600 ºC, was 30.53 % for GO/ATPS, 9 % for GO/EA, and 17.35 % for GO/PIP. In this stage,

deoxygenation and dissociation of physically adsorbed amines agents happened since EA, PIP,

and APTS were not quite involved in the grafting reaction and some unreacted agents remained

on surfaces [50]. The weight reduction in the third region at temperatures of 600 ºC, 240 ºC, and

430  ºC  was  around  3.17  %,  17.46  %,  and  8.99  %  for  GO/ATPS,  GO/EA,  and  GO/PIP,

respectively, suggesting the pyrolysis of physisorbed amine groups. The TGA results unfolded

that  the  thermostability of adsorbents improved after  modification with the amine-containing

agents [51].

Figure 2. TGA analysis of the unmodified and modified GO adsorbents 
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The high-resolution surface morphology of the synthesized GO samples is presented in Figure 3.

The unmodified GO adsorbent had a flacked structure with flocculent and wrinkled morphology

which is the typical morphology of GO. This morphology is stemmed from the oxidation of

graphite  clusters  in  which  the  irregularity  of  the  stacks  of  the  graphite  clusters  leads  to  a

disrupted structure  [52]. The modified GO sorbents showed  morphologies with  less stack and

more wrinkles than pristine GO. These records convey that amine functionalities extended the

interlayers of GO which were linked via peroxide-like linkages [26,53]. Furthermore, the results

indicated the successful chemical modification of the GO surface. 
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Figure 3. SEM images of a) GO, b) GO-APTS, c) GO-PIP, and d) GO-EA

The functionalization of adsorbents gives new physical characteristics to them which affects the

capability of adsorbents for adsorption of CO2.  The physical characteristics of the assembled

adsorbents comprising the surficial area and pore volume were quantified using N2 adsorption-

desorption isotherm. Figure 4 confirms the dominance of the mesoporosity of the adsorbents as
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they exhibit an IV-type isotherm with a hysteresis loop. The N2 adsorption-desorption curve of

GO shifted to the lower values after grafting with amine-oriented agents. The main reason was

the pore filling via modification by aminated agents, giving rise to the reduction of free pores

available  for  N2 molecules.  The  diminution  of  pore  volume  and  surface  area  asserted  the

successful insertion of amine to the GO matrix [54]. Based on the BET results (Table 1), the pore

diameter of all adsorbents was between 2 and 50 nm, confirming the mesoporous structure of the

synthesized GO series. The results of BJH and MP methods presented in Figure 5 imply the

mesopore and micropore size distribution in samples.  Figure 5A indicates  the mesopore size

distribution  of  samples  was between 2 and 5 nm. According to Figure 5 B, micropores  are

distributed  more  abundantly  around 0.7~1.2 nm for  GO and GO/APTS samples  and around

1.6~2 nm for GO/PIP and GO/EA samples. 

Figure 4. N2 adsorption/desorption of the unmodified and modified GO adsorbents
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Table 1. The surface characteristics of the unmodified and modified GO adsorbents

Sample
SBET

(m2/g)

Vmic

(cm3/g)

Vmes

(cm3/g)

Vtotal

(cm3/g)

Vmic

(%)

Dp

(nm)

GO 134.51 0.082 0.012 0.094 0.302 2.81

GO-APTES 36.44 0.026 0.013 0.039 0.662 4.36

GO-PIP 10.39 0.009 0.003 0.013 0.706 5.18

GO-EA 7.91 0.006 0.002 0.009 0.690 4.65

Figure 5. The pore size distribution by A) BJH and B) MP methods

3.2. Adsorption experiments 

The CO2 adsorption uptake of GO, GO/APTS, GO/PIP, and GO/EA was measured at 298, 308,

and 318 K under the  pressure range of 0-14 bar (Figure 5).  It can be perceived that the  CO2

capture capacity of all GO sets was detracted as the temperature heightened from 298 to 318 K.

Because the adsorption of CO2 was exothermal, thus, higher temperature hindered the adsorption

of  CO2 [55]. Moreover, with the rise of pressure, the CO2  adsorption quantity increased for all

prepared samples. The adsorption capacity of adsorbents increased sharply at low pressures and
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grew  slightly  at  higher  pressures.  Under  the  high-pressure  zone,  pores  of  adsorbents  were

engaged in CO2 molecules which resulted in the decrement of the rate of adsorption. 

It is also evident from Figure 6 that amine-doped GO samples presented higher CO2 adsorption

capacity  compared  to  the  virgin  GO.  According  to  papers,  a  high  volume  of  micropore  is

concerned with high CO2 adsorption capacity [56]. In this regard, it was expected that GO had

the highest  CO2  uptake  capacity  due to its  better  physical  properties.  However,  the physical

properties of the samples (Table 1) contradicted this point. The reason for this behavior is the

amelioration  of  functionalities  of  the  amine-anchored  adsorbents  that  compensates  for  the

physical properties. The basicity of GO improved via deposition of basic amine groups giving it

a higher affinity toward acidic  CO2. This interaction is called Lewis acid-base interaction,  in

which, amine groups are recognized as Lewis base for their pair electrons and CO2 is classified

as a Lewis acid due to the absence of paired electron [55]. 

Among the modified samples, GO/APTS showed better CO2  adsorption potential than GO/PIP

and  GO/EA,  which  may  be  attributed  to  its  both  better  surface  characteristics  and basicity.

GO/APTS had the highest surface area and micropore volume in comparison with the GO/PIP

and GO/EA samples. In addition, it was assumed that the existence of electron-donating oxygen

atoms and primary amine groups of APTS donated GO/APTS a strong basic character among the

other  amine-modified  adsorbents  [6,51].  PIP contains  two secondary amines  in  its  structure,

which provides it with higher number of active sites compared to EA, having a primary amine in

its chain.
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Figure 6. The CO2 adsorption capacity of prepared adsorbents at different temperatures and

pressures

3.3. Isotherm study

The Sips isotherm was fitted to predict experimental data of CO2 and N2 adsorption over the as-

prepared GO series (see Figure 7). The constants and variables of the Sips model are tabulated in

Table 2 which indicates that the Sips model correlated the experimental data of CO2 capture with

great  coefficients  of  0.999.  The  Sips  model  predicted  the  adsorption  of  N2  over  N-doped

adsorbents precisely (correlation coefficient=1). The values of n which are higher than the unit

indicated the physisorption of gas molecules over the heterogeneous adsorbents. 
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It was also implied from the table that  GO/APTS and unmodified GO adsorbents had the best

adsorption  capacity  for  the  capture  of  CO2 and  N2,  respectively.  The  highest  affinity  of

GO/APTS for CO2 capture might be attributed to its better physical and chemical properties. In

the case of chemical  characteristics,  the improvement  of the basicity of GO gave rise to the

higher CO2  adsorption. To be more specific, the electron donor amine-anchored GO adsorbents

revealed  the  higher  CO2  adsorption  potential,  among  which,  APTS  manifested  the  best

performance by reason of the presence of primary amine groups along with the electron donor

methyl groups in its structure. The lowest CO2 adsorption capacity of GO/PIP can be associated

with  the  amine  aromatic  ring  which  has  the  least  basicity  properties  giving  rise  to  the  less

improved adsorption capacity  [55]. Moreover, it can be perceived that the quantity of captured

CO2  increased  aligned  with  the  enhancement  of  the  molecular  weight  of  amine-entailed

chemicals [57]. In addition, the highest BET exterior area of GO/APTS among the other amine-

modified samples made GO/APTS the most favorable adsorbent. As was mentioned, GO showed

the highest N2 adsorption uptake among the as-prepared samples implying the unreactive nature

of N2 toward amine-modified adsorbents. 

Table 3 indicates the reports of some recent studies in regard to the CO2  adsorption potential of

various  amine-doped  graphene  adsorbents.  The  results  vividly  demonstrate  the  remarkable

adsorption  potential  of  the  as-prepared  samples  in  this  study,  with  the  superior  adsorption

capability  related  to  the  GO-APTS  at  the  environmental  condition.  From  an  industrial

perspective, an adsorbent working under the ambiance conditions is valuable since it is difficult,

energy-intensive,  and  costly  to  employ  adsorbent  operating  at  severe  conditions  (high

temperature  and  pressure)  for  large-scale  applications.  Therefore,  the  results  of  the  present
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research show the well-application of our modified GO adsorbents in comparison with other

amine-functionalized GO prepared via different methods. 

Table 2. The parameters of the Sips isotherm model

Gas type Adsorbent qm(mmol/g) b n R2

qexp (mmol/g)

at 298K and

1bar

CO2

GO 13.263 0.030 1.284 0.999 0.39

GO-APTS 43.114 0.021 1.574 0.999 0.90

GO-PIP 30.048 0.021 1.521 0.999 0.61

GO-EA 16.260 0.027 1.253 0.999 0.45

N2

GO 7.409 0.029 1.182 0.997 0.23

GO-APTS 3.400 0.027 1.131 1.000 0.09

GO-PIP 5.117 0.026 1.006 1.000 0.14

GO-EA 5.166 0.031 1.023 1.000 0.16
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Figure 7. The Sips isotherm of adsorption of CO2 and N2 over the GO-based adsorbent  

25

369

370



Table 3. The CO2 adsorption capacity of amine-functionalized adsorbents

Adsorbent CO2 adsorption capacity

(mmol/g)

Experimental

conditions 

Ref

GO-APTS 0.90 298 K, 1 bar Present study 

GO-PIP 0.61 298 K, 1 bar

GO-EA 0.45 298 K, 1 bar

PEI-GO 2.91 348 K [8]

EDA-GO 1.18 298 K, 1 bar [26] 

PEI-GO 0.49 273 K, 1 bar [58] 

TEPA-GO 1.22 338 K, 1 bar [59] 

AMS-5% RGO 1.68 323 K [60] 

TEPA(3%)/GO 2.08 298 K, 30 bar [61] 

TEPA(5%)/GO 1.95 298 K, 30 bar

TEPA(10%)/GO 1.20 298 K, 30 bar

TEPA(50%)/GO 0.98 298 K, 30 bar

PEI(60%)-GO 0.74 298 K, 1 bar [62] 

APTS-Gr 1.16 303 K, 1 bar [63]

Semi-coke/GO/DEA 7.11 298 K, 30 bar [64]

APTES-GO 1.50 303 K, 1 bar [7]

PTES-GO 1.79 303 K, 15 bar [65]

3.4. The isosteric heat of adsorption 
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Figure 8 presents the isosteric heat of adsorption of CO2 over synthesized GO series as a function

of superficial coating. Decreasing patterns with different slopes  were obtained for all prepared

samples representing the exothermal reaction of  CO2  with active sites of the solid adsorbents.

The  figure  also  signifies  that  the  isosteric  heat  of  CO2  adsorption  relied  on  the  surface

occupation.  This  trend  shows  the  heterogeneous  adsorption  reaction,  in  which,  interactions

between CO2 and active sites proceeded unevenly [66]. In addition to the mentioned points, the

isosteric heat of adsorption is also a key parameter to help in order to figure out the mechanism

of  adsorption.  The  physical  adsorption,  which  is  regarded  as  weak  interactions  between

adsorbate and adsorbent, have the heat in between 25-50 kJ/mol, while, the chemical adsorption,

which is known as strong adsorption, possesses the heat of adsorption in between 60–90 kJ/mol

[67].  Accordingly,  the  adsorption  of  CO2  over  virgin  and aminated  GO was  categorized  as

physisorption. 

It is also obvious from Figure 8 that the isosteric heat of adsorption decreased quickly at low

surface coating and reduced slightly at  high surface occupation.  This behavior suggested the

dominance of adsorbent-adsorbate reactions at a low loading of CO2. With the expansion of CO2

loading,  the  active  sites  of  adsorbents  were  occupied  and  adsorbate-adsorbate  interactions

became the main interactions [68].

Among the synthesized adsorbents, GO/APTS revealed the highest heat of adsorption under any

ranges of surface coverage. The availability of more active sites (primary amine groups) may be

concerned with this observation as was reported by Watabe et al [69]. It is known that the high

isosteric heat of adsorption intensifies the required energy consumption for the regeneration of

adsorbent. Although the greater isosteric heat of adsorption is an unfavorable parameter in the
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regeneration  stage,  it  escalated  the  purity  of  adsorbed  CO2   owing  to  the  enhancement  of

adsorbent selectivity [70].

Figure 8. The isosteric heat of CO2 adsorption versus surface loading

3.5. Selectivity 

The selectivity of an adsorbent for the capture of CO2 is a high-priority characteristic as this

momentous greenhouse gas exhausted from industrial flue exists in accompany with other gases.

Figure 9 depicts the selectivity of the unmodified and alkyl-modified GO adsorbents toward CO2

in the presence of N2 (N2:85%) and Table 4 itemizes the selectivity of adsorbents for CO2 at

ambiance conditions. As the figure illustrates, the selectivity of amine-treated adsorbents toward

CO2 was  significant  under  low-pressure regimes  and reduced promptly  with  the  increase  of
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pressure from 0.01 to 0.25 bar. The better selectivity of amine-decorated adsorbents is vivid from

the  outcomes,  confirming  the  successful  modification  of  GO.  The  highest  selectivity  of

GO/APTS among the modified samples supports the improved characteristics of the adsorbent

via the insertion of reactive primary amine groups to GO. 

Figure 8. The selectivity of the unmodified and modified GO adsorbents for CO2 over N2

Table 4. The CO2 selectivity of the adsorbents at CO2: N2 =0.15:0.85, 298 K, 1 bar

Adsorbent Selectivity (%)

GO 2.44

GO/APTS 33.73

GO/PIP 12.54

GO/EA 4.26
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4. CONCLUSION

Functionalization  of  GO  precursor  with  three  amine  functionalities  (APTS,  PIP,  EA)  were

carried  out  in  order  to  capture  CO2.  The experimental  tests  were considered  under  different

temperatures (298, 308, and 318 K) and pressures (0-14 bar) in a dynamic adsorption setup. The

proper functionalization was validated by analyzing tools of FTIR, TGA, SEM, BET, BJH, and

MP. Indeed, the as-fabricated aminated samples had a mesoporous structure with remarkable

thermal resistance and a lower specific surficial area than pristine GO. The best performance was

dedicated to GO/APTS adsorbent with the maximum CO2 adsorption capacity of 43.114 mmol/g

obtained  by  the  Sips  isotherm  model  and  the  IAST  selectivity  of  33.73  %  toward  CO2

(CO2:N2:0.15:0.85). This great performance was due to: 1) its great physicochemical qualities i.e.

highest  surface  area  (36.44  m2/g)  and  molecular  weight,  2)  the  existence  of  electron-donor

primary amine and methyl groups in APTS result in intense affinity toward the acidic CO2. The

adsorption of CO2 was classified as physical adsorption since the isosteric heat of adsorption for

all adsorbents was lower than 50 KJ/mol. The result of this study confirmed the importance of

the  proper  choice  of  a  modifying  agent  which  can  drastically  alter  the  performance  of  the

adsorbent.
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