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ABSTRACT 30 

Niche theory predicts specialists will be more sensitive to environmental perturbation compared 31 

to generalists, a hypothesis receiving broad support in free-living species. Based on their niche 32 

breadth, parasites can also be classified as specialists and generalists, with specialists infecting 33 

only a few and generalists a diverse array of host species. Here, using avian haemosporidian 34 

parasites infecting wild bird populations inhabiting the Western Ghats, India as a model system, 35 

we elucidate how climate, habitat and human disturbance affects parasite prevalence both 36 

directly and indirectly via their effects on host diversity. Our data demonstrates that 37 

anthropogenic disturbance acts to reduce the prevalence of specialist parasite lineages, while 38 

increasing that of generalist lineages. Thus, as in free-living species, disturbance favors parasite 39 

communities dominated by generalist vs. specialist species. Because generalist parasites are 40 

more likely to cause emerging infectious diseases, such biotic homogenization of parasite 41 

communities could increase disease emergence risk in the Anthropocene. 42 

INTRODUCTION 43 

The Anthropocene has been characterized by large, and often rapid, alterations of natural 44 

environments driven by human-mediated factors acting at various scales – from local habitat 45 

modification to global climate change (Corlett 2015; Laurance 2019). Many species have been 46 

unable to adapt sufficiently to cope with the such anthropogenic changes to their environment 47 

leading to species loss at local and global scales (Young et al. 2016; Radchuk et al. 2019; Turvey 48 

& Crees 2019 ). However, community disassembly is not a random process, with species loss 49 

often following certain general principles with specialists being more sensitive to environmental 50 

perturbations (e.g., habitat loss and climate change) compared to generalists (Swihart et al. 2003; 51 

Kellermann et al. 2009; Slatyer et al. 2013), leading to the biotic homogenization of natural 52 
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communities globally (McKinney & Lockwood 1999; Olden 2006; Olden & Rooney 2006; 53 

Clavel et al. 2010; Li et al. 2020 ). While not universal (Williams et al. 2006; Colles et al. 2009), 54 

the increased sensitivity of specialists to endangerment has been demonstrated in many taxa (Safi 55 

& Kerth 2004; Kotiaho et al. 2005; Shultz et al. 2005; Walker 2006; Boyles & Storm 2007; Essl 56 

et al. 2009; Saupe et al. 2015; White & Bennett 2015; Liang et al. 2019; Colléony & Shwartz 57 

2020). Biotic homogenization is of particular concern because the generalist species that thrive in 58 

human-dominated landscapes are also more likely to harbor greater diversity of parasites, 59 

including those can infect humans (Gibb et al. 2020; Ostfeld & Keesing 2020). Thus, human-60 

mediated landscape modification can affect disease dynamics by favoring host communities that 61 

are dominated by generalist species (Gibb et al. 2020; Ostfeld & Keesing 2020). However, the 62 

effects of such human pressures on parasite community structure remains unclear.  63 

Like free-living species, parasites can also be categorized as specialists and generalists, 64 

based on their niche breadth, with specialist parasite lineages infecting only one or few related 65 

host species, and generalists infecting broad diversity of hosts (Cooper et al. 2012; Gupta et al. 66 

2019). This dichotomization of parasites is particularly important from the perspective of human 67 

and wildlife health because generalist parasites are more capable of switching to new hosts, and 68 

are thus more likely to be associated with emerging infectious diseases (EIDs) (Timms & Read 69 

1999; Ewen et al. 2012; Hatcher et al. 2012; Farrell et al. 2013; Johnson et al. 2015a). While 70 

there is some evidence that generalist parasites are less prone to extinction (Woolhouse et al. 71 

2001; Cooper et al. 2012), and it has been hypothesized that generalist parasites are more likely 72 

to adapt to relatively common generalist hosts (Ostfeld & Keesing 2020), the question of 73 

whether human-mediated changes to the environment favor parasite communities dominated by 74 

generalist vs. specialist species, as in the case of free-living communities, remains an open one. 75 
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Here we test this question using avian haemosporidian parasites as a model system. Answering 76 

this question is critical because generalist parasites are capable of rapidly switching to new host 77 

species (Wells & Clark 2019), and thus the biotic homogenization of parasite communities will 78 

increase the risk disease emergence.  79 

Avian haemosporidian parasites are vector-borne pathogens of birds belonging to several 80 

genera including Haemoproteus and Plasmodium (Valkiūnas 2005). We have previously shown 81 

that in bird communities inhabiting an important biodiversity hotspot – the Western Ghats, 82 

Southern India (Fig. 1a) – these genera differ in host breadth, with genetic lineages of 83 

Haemoproteus being host-specialists while Plasmodium lineages are host-generalists (Gupta et 84 

al. 2019), as seen in other bird communities (Fallon et al. 2005). Indeed, Plasmodium infections, 85 

unlike Haemoproteus, have been responsible for epidemic mortalities in wild bird populations on 86 

some oceanic islands (Warner 1968; Valkiūnas 2005; Niebuhr et al. 2016), because being 87 

generalists Plasmodium lineages are more likely to emerge in novel host communities (Gupta et 88 

al. 2019). Here, using data from a sample of >1000 birds of 28 species inhabiting the Western 89 

Ghats (Table S1), we show that, the parasite community structure is predictably influenced by 90 

anthropogenic disturbance, after controlling for effects associated with the environment (i.e., 91 

climate and terrain) and host community structure. Specifically, our results indicate that 92 

anthropogenic pressure acts to reduce the prevalence of specialist parasite lineages, while 93 

increasing the prevalence of generalist lineages. Such biotic homogenization of parasite 94 

communities is a novel mechanism that can contribute to the increased risk of disease emergence 95 

in human-dominated landscapes, and thus has broad implications of human and animal health.  96 
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METHODS 97 

Field and laboratory methods 98 

The study area was located in the southern 600 km of the Western Ghats (Fig. 1a). Field 99 

sampling was carried out between 2011-2013, across the four major geographical regions 100 

separated by three biogeographic barriers—Chaliyar River valley, Palghat Gap, and Shencottah 101 

Gap (Fig. 1a). For our analyses we used samples from 28 species of birds (N = 1172) captured 102 

during the pre-monsoon season (January-May) at 42 sites (700-2500 m above sea level) across 103 

our study area (Fig. 1a; Supplementary Table 1). Procedures for bird mist-netting and blood 104 

collection have been described previously (Gupta et al. 2019). Parasite detection was carried out 105 

by sequencing 478 bp of the Haemosporidian cytochrome-b gene using genomic DNA extracted 106 

from individual bird blood samples. All lab and field methods followed those described 107 

previously in Gupta et al. (2019).  108 

Environmental and ecological variables 109 

One of the main objectives of this study was to elucidate how climate, landscape and human 110 

disturbance affected parasite prevalence, both directly and through their effects on host diversity. 111 

Environmental data were downloaded from publicly available datasets. We obtained the 112 

bioclimatic variables from http://chelsa-climate.org/bioclim/. Landscape variables included: (a) 113 

Terrain: Elevation, slope and roughness extracted from elevation data 114 

(http://www.earthenv.org/DEM) using the R package RASTER (HIJMANS ET AL. 2015), and water 115 

flow-accumulation from https://www.hydrosheds.org/page/hydrorivers; (b) Canopy height: 116 

http://lidarradar.jpl.nasa.gov; (c) Landcover data: Obtained from authors of a published dataset 117 

(Roy et al. 2015). We then used the package RASTER to calculate the proportions of 10 major 118 

habitat types (i.e., cropland, degraded habitat, grassland, gregarious forest, locale-specific forest, 119 

http://chelsa-climate.org/bioclim/
http://www.earthenv.org/DEM
https://www.hydrosheds.org/page/hydrorivers
http://lidarradar.jpl.nasa.gov/
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mixed forest, plantation, settlements, shrub and savannah and water); (d) Anthropogenic 120 

disturbance: Included distance from protected areas (calculated as the distance from the nearest 121 

boundary with negative values falling inside and positive outside protected areas, respectively) 122 

using data from http://datasets.wri.org/dataset/64b69c0fb0834351bd6c0ceb3744c5ad. We also 123 

used a Indian population dataset (http://www.ciesin.columbia.edu/data/india-census-grids/) to 124 

calculate an index of human proximity following Alexander et al. (Alexander & Wint 2013). 125 

Apart from the environmental variables we also used two host ecological variables, including 126 

host phylogenetic and functional diversity. Host diversity measures were calculated using the 127 

alpha diversity function implemented in the R package BAT (Cardoso et al. 2014), with 128 

phylogenetic diversity using phylogenetic distances between the bird species and functional 129 

diversity using the Gower distance between species based on ecological traits associated with 130 

feeding strata, sociality, habitat, and genetic connectivity. Details of all variables used at given in 131 

Table S2.  132 

Statistical analyses 133 

All statistical analyses were carried out using R ver. 4.0.0 (The R Foundation for Statistical 134 

Computing 2019), and all statistical tests and reported P values are two-sided. A complete list of 135 

R packages used for analyses are given in Table S3. All analyses were carried out at the scale of 136 

the individual site (Table S1). We pooled samples across multiple years because we found no 137 

significant effect of year (Haemoproteus: χ2 = 9.281; P = 0.158; Plasmodium: χ2 < 0.001; P = 138 

1.000). Our major objective was to test for differences in the factors affecting infection risk with 139 

specialist vs. generalist parasites. Thus, we first classified each Haemosporidian lineage as a 140 

specialist or generalist using a randomization test to evaluate if the diversity of hosts the lineage 141 

was found to infect was lower or higher than random expectation, respectively (see 142 

http://datasets.wri.org/dataset/64b69c0fb0834351bd6c0ceb3744c5ad
http://www.ciesin.columbia.edu/data/india-census-grids/
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Supplementary Methods). All further analyses were carried out only using the parasite lineages 143 

that were clearly classified as specialists or generalists.  144 

To test for the direct and indirect effects of the various predictor variables on parasite 145 

infection risk we used a hybrid approach that combined random forests, a powerful machine 146 

learning algorithm, and Structural Equation Models (SEMs). Thus, prior to building the SEM we 147 

reduced the list of predictor variables using random forests models (RFMs) as suggested by 148 

Duffy et al. (Duffy et al. 2016). Random forests models were implemented in the R package 149 

RANGER (Wright & Ziegler 2017). All RFMs were run using 100,000 trees and we optimized the 150 

model parameters (mTry, Min. node size, Split rule) using a 10-fold cross-validation procedure 151 

implemented in the trainControl function from the R package CARET (Kuhn 2008). All RFMs 152 

also included the number of birds sampled in each trap site as case weights to control for 153 

potential sample size effects. We initially included all environmental variables for all RFMs, and 154 

also added host-related variables for the parasite-related RFMs. Thus, initially environmental 155 

factors (i.e., terrain, climate, habitat and disturbance) were included in the RFMs to predict host 156 

ecological variables (host phylogenetic/functional diversity). In turn, parasite-related variables 157 

(parasite phylogenetic diversity and infection risk) were assumed to be driven by direct effects of 158 

environmental variables and the indirect effects of these variables through their effects on host 159 

ecology. For each RFM, we first fit the full random forest model with all variables (Table S2), 160 

and estimated the variable importance values (Wright & Ziegler 2017). We then used a forward 161 

step-wise selection starting from the most important variable, and adding variables in decreasing 162 

order of importance. At each step a variable was added if it’s correlation with variables included 163 

in the model until that step was ≤ 0.7 and if addition of the variable increased the coefficient of 164 

determination (R2) for the whole model. Model validation was done using three repetitions of a 165 
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10-fold cross validation procedure to maximize the r2 value of the whole model using 75% of the 166 

data to train the model and 25% to assess model prediction accuracy (Kuhn 2008). In order to 167 

calculate the relative importance of each of the four main variable groups (i.e., terrain, climate, 168 

habitat and ecology; Table S2) we calculated the weighted mean of the number of times 169 

variables in each group were used to split trees in the random forest (see 170 

https://stats.stackexchange.com/questions/92419).  171 

To better understand the mechanisms driving the spatial variation in infection risk, we 172 

modeled the direct and indirect effects between the variables identified by the RFMs using 173 

structural equation models (SEMs), which are a powerful statistical approach wherein a set of 174 

mutually interconnected equations are used to evaluate the causal relationships among a set of 175 

variables (Shipley 2016). SEM analyses was implemented in the R package PIECEWISESEM 176 

(Lefcheck & Freckleton 2015). Initially, we included as predictors all variables retained in the 177 

final random forest models of host- and parasite-related variables (see details above). We 178 

included both main and quadratic effects to model potential non-linear effects between the 179 

variables, and z-transformed these variables to obtain standardized model coefficients. We then 180 

sequentially dropped variables if dropping the variable from a specific model reduced the overall 181 

Akaike Information Criterion (AIC) of the SEM model (Shipley 2013), and if the removed path 182 

was not considered to be a significant missing path (Lefcheck & Freckleton 2015). Final model 183 

acceptance was based on the Fisher’s C statistic, with a model being accepted if the associated P-184 

value > 0.05 (Shipley 2016). Final path diagram was plotted using the R package diagram, and 185 

the strength of specific paths was assessed visually using partial residual plots using the R 186 

package VISREG (Breheny & Burchett 2017).  187 

https://stats.stackexchange.com/questions/92419
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RESULTS  188 

We identified a total of 47 unique parasite lineages infecting the birds in our study area, and 189 

found that 28 of 29 Haemoproteus lineages were host specialists and 2 of 18 Plasmodium 190 

lineages were host generalists, with the diversity of hosts infected by the remaining 17 lineages 191 

not differing significantly from random expectation (Table S4). All further analyses were carried 192 

out only using the 30 parasite lineages that were clearly classified as specialists or generalists. 193 

We found that the RFMs generally performed well, and the models for infection risk explained 194 

>70% of the variance amongst sampling sites in both parasites (Haemoproteus: r2= 0.794; 195 

Plasmodium: r2= 0.707; Fig. 1b and c; Table S5 and S6). Interestingly, in both Haemoproteus 196 

and Plasmodium, the majority of the total variance explained was due to host (61% and 49%, 197 

respectively) and landscape (21% and 26%, respectively) related factors, and least to climate 198 

(18% and 25%, respectively) (Fig. 1d). Our final RFMs revealed that there was considerable 199 

spatial variation in infection risk associated with Haemoproteus (Figure 1e) and Plasmodium 200 

(Figure 1f).  201 

To better understand the mechanisms driving the spatial variation in infection risk, we 202 

modeled the direct and indirect effects between the variables identified by the RFMs using an 203 

SEM. Our final SEM (i.e., reduced) model testing the hypothesized direct and indirect effects of 204 

our predictor variables fit the data well with no significant missing paths (ΔAICREDUCED-FULL = -205 

875; Fisher’s C = 130.651; DF = 166; P = 0.98; Table S7). The SEM revealed distinct paths 206 

affecting infection risk with specialist (Haemoproteus) vs. generalist (Plasmodium) parasites 207 

(Figure 2a and b; Table S8). Critically, human-mediated disturbance (distance to protected areas 208 

and human population proximity) affected infection risk in opposing ways through direct effects 209 

and mediation via host-related variables (Figure 2a and b).  210 
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To dissect the SEM results we focus on each of the primary variables in the model 211 

sequentially. Our analyses revealed that that BIO05 (maximum temperature of warmest month) 212 

had a negative effect on both functional host diversity (β ± SE = -0.261 ± 0.120; P = 0.037) and 213 

phylogenetic host diversity (β ± SE = -0.306 ± 0.139; P = 0.034) (Fig 2a and b; Table S8). We 214 

also found that anthropogenic disturbance, as measured by distance from protected areas, PADIST 215 

reduced both functional (β ± SE = -0.229 ± 0.113; P =0.049) and phylogenetic (β ± SE = -0.669 216 

± 0.132; P < 0.001; Fig. 2c) host diversity. Thus, the biotic homogenization of host communities 217 

occupying human-modified habitats is a characteristic of the bird communities in the Western 218 

Ghats, as in other natural communities globally (McKinney & Lockwood 1999; Clavel et al. 219 

2010).  220 

Our analyses also revealed some interesting differences in factors affecting parasite 221 

diversity. Thus, we found that BIO02 (mean diurnal temperature range) had significant non-222 

linear effects on the phylogenetic diversity of both Haemoproteus (Fig. 2d; Main β ± SE = -223 

0.080 ± 0.199; P = 0.689, Quadratic β ± SE = -0.288 ± 0.136; P < 0.041) and Plasmodium (Fig. 224 

2e; Main β ± SE = -0.528 ± 0.162; P = 0.002, Quadratic β ± SE = -0.657± 0.118; P < 0.001). 225 

Alternatively, we found that BIO05 only affected the diversity of the generalist (Plasmodium) 226 

parasites (Fig. 2f; Main β ± SE = -0.054 ± 0.158; P = 0.736, Quadratic β ± SE = -0.348± 0.144; P 227 

< 0.021). Importantly, we found that host phylogenetic diversity had a positive effect on 228 

phylogenetic diversity for specialist (Haemoproteus) parasites (Figure 2g; β ± SE = 0.683 ± 229 

0.163; P < 0.001), but did not affect phylogenetic diversity for generalist (Plasmodium) parasites.  230 

With respect to infection risk was we found a significant direct positive effect of parasite 231 

diversity in the case of both Haemoproteus (Fig. 2h; β ± SE = 0.323 ± 0.067; P < 0.001) and 232 

Plasmodium (Fig. 2i; β ± SE = 1.115 ± 0.338; P = 0.001). We also found that while the host 233 
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functional diversity had a significant direct negative effect on infection risk of the generalist 234 

(Plasmodium) parasite (Fig. 2j; β ± SE = -0.789 ± 0.289; P = 0.006), but had no effect on 235 

infection risk of the specialist (Haemoproteus) parasite. This difference between Plasmodium 236 

and Haemoproteus could be because Plasmodium, as a generalist parasite, is likely affected by 237 

host spatial proximity (and thus levels of niche overlap), but, as a specialist, Haemoproteus is 238 

primarily affected by host phylogenetic relatedness (Gupta et al. 2019). Of most importance, we 239 

also found opposite effects of anthropogenic disturbance on infection risk associated with 240 

specialist and generalist parasites. In the case of the specialist parasite Haemoproteus, infection 241 

risk was negatively affected by human population proximity (Figure 2k; β ± SE = -0.284 ± 242 

0.111; P = 0.011) but a positive association was observed in the case of the generalist, 243 

Plasmodium parasites (Figure 2l; β ± SE = 0.899 ± 0.327; P = 0.006).  244 

Taking into consideration direct and indirect effects, distance to protected areas had a 245 

significant negative total effect on infection risk for Haemoproteus [βTOT = -0.027; 95 % 246 

confidence interval (CI): -0.059, -0.013] but a significant positive total effect on infection risk 247 

for Plasmodium risk (βTOT = 0.014; CI: 0.002, 0.036) (Fig. 3). Additionally, human population 248 

proximity had a significant negative total effect on infection risk for Haemoproteus (βTOT = -249 

0.057; CI: -0.172, -0.018), but a significant positive effect on Plasmodium risk (βTOT = 0.061; CI: 250 

0.037, 0.116) (Figure 3). These opposing effects of anthropogenic pressure on infection risk in 251 

the case of specialist vs. generalist parasites is, at least partially, mediated by the opposing 252 

effects of host diversity on infection risk. Thus, while host diversity had a positive total effect on 253 

Haemoproteus infection risk (βTOT = 0.048; CI: 0.025, 0.09), it had a negative effect in the case 254 

of Plasmodium (βTOT = -0.046; CI: -0.077, -0. 014) (Fig. 3). While all the SEM analyses were 255 

carried out at the scale of each host population, qualitatively similar results were obtained with 256 
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lineage-level analyses also (Table S9; Fig. S1). Specifically, we found that as diversity of hosts a 257 

parasite lineage could infect increased (i.e., as parasites became more generalist), the effect of 258 

host diversity on observed parasite prevalence changed from being positive (i.e., an amplification 259 

effect) to being negative (i.e., a dilution effect). Similar patterns were also found in the case of 260 

the standardized prevalence calculated based on the host community composition (i.e., expected 261 

prevalence). Thus, our data indicate that host species that tend to be found in high diversity host 262 

communities (i.e., specialist hosts) are less competent hosts for generalist parasites (i.e., 263 

Plasmodium) compared to those in low diversity host communities (i.e., generalist hosts). 264 

DISCUSSION 265 

Darwin’s “Tangled Bank” (Darwin 1909) is one of the most common images brought to mind 266 

when envisioning ecological systems comprised of a complex network of interacting species, and 267 

the functional integrity of this tangled bank can severely compromised by the recent and rapid 268 

modifications to global environments (Lau & terHorst 2020). Parasites form an integral part of 269 

all ecological networks, and comprise a large, albeit relatively uncharacterized, portion of global 270 

biodiversity (Dobson et al. 2008; Okamura et al. 2018). Thus, there is an increasing recognition 271 

of the need to incorporate them into biodiversity conservation plans (Gomez & Nichols 2013; 272 

Dougherty et al. 2016). Indeed, parasites – especially specialist parasites that are closely 273 

dependent upon a very narrow set of host species – may be especially prone to extinction risk 274 

(Galetti et al. 2018; Thompson et al. 2018; Moir & Brennan 2020), and ignoring such species 275 

coextinctions can lead to gross underestimation of global extinction rates (Koh et al. 2004; 276 

Strona & Bradshaw 2018). Here we show that the loss of host diversity will negatively impact 277 

the diversity of specialist, but not generalist, parasites. Thus, our data supports the idea that 278 

specialist parasites can be especially sensitive indicators of ecosystem health (Hudson et al. 279 
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2006), because these parasites are not only more sensitive to environmental perturbations but 280 

also to co-extinction caused by loss of specific host species on which they depend (Dunn et al. 281 

2009; Colwell et al. 2012). The increased endangerment of specialist vs. generalist species is not 282 

unexpected, and has been shown to be common across numerous free-living taxa globally. Such 283 

non-random loss of species has critical impacts on ecosystem function through the biotic 284 

homogenization of ecological communities (McKinney & Lockwood 1999; Olden 2006; Olden 285 

& Rooney 2006; Clavel et al. 2010; Li et al. 2020 ).  286 

Defaunation in the Anthropocene can have dramatic impacts on multiple ecosystem 287 

services including nutrient and energy cycling, and can also directly impact disease dynamics 288 

(Dirzo et al. 2014). Specifically, biotic homogenization due to non-random species loss has been 289 

shown to alter disease dynamics by changing the relative abundance of competent vs. non-290 

competent hosts in a community (Johnson & Thieltges 2010; Johnson et al. 2013; Johnson et al. 291 

2015b). For example, it has been found that the most competent host species (i.e., the ones most 292 

likely to be infected) also tend to be generalists (i.e., the ones most likely to persist in low 293 

diversity communities) in many well-characterized host-parasite systems, such as West Nile 294 

virus infections in bird communities and Borrelia burgdorferi infections in small mammal 295 

communities (Ostfeld & Keesing 2012). In such systems increasing host diversity reduces host 296 

community competence – host species abundance weighted by its competence to transmit 297 

infection (Johnson et al. 2015b) – leading to a strong dilution effect. Here we have shown that 298 

such a dilution effect is more likely to be evidenced in the case of generalist vs. specialist 299 

parasites. Specifically, our data reveal that loss of host biodiversity can increase infection risk 300 

associated with the generalist parasite (Plasmodium) because low diversity communities are 301 

more likely contain host species that are competent to harbor and transmit the parasite (Fig. S1c 302 



 

 

14 

 

and d). Consequently, as in other disease systems, we show that host species-specific traits (e.g., 303 

levels of niche specialization) can jointly affect endangerment and infection risk (Ostfeld & 304 

Keesing 2012; Johnson et al. 2015b).  305 

Interestingly, while the effects of anthropogenic disturbance on the structure of free-306 

living communities has received much attention, relatively little attention has been paid to 307 

understanding how such disturbances impact parasite community structure. While our analyses 308 

do address this question, we lack data on the vectors that transmit the Haemosporidian parasites 309 

in our study system. This remains a critical missing piece of the puzzle because Haemoproteus 310 

and Plasmodium are transmitted by different vectors; biting midges (e.g., Culicoides spp.) and 311 

mosquitoes (e.g., Culex quinquefasciatus), respectively (Valkiūnas 2005). Thus, differences in 312 

the prevalence of these two parasites genera could be driven by underlying differences in the 313 

effects of anthropogenic disturbance on their respective vector populations. However, 314 

irrespective of the underlying mechanism, our data strongly supports the hypothesis that, as in 315 

free-living species (McKinney & Lockwood 1999; Clavel et al. 2010), human-mediated 316 

disturbance can favor parasite communities dominated by generalist vs. specialist species. 317 

Clearly this finding has critical implications for human health also. For example, a recent study 318 

has shown that species most likely to transmit pathogens to humans are also those that tend to 319 

thrive in human-dominated landscapes (Gibb et al. 2020; Ostfeld & Keesing 2020). Thus, 320 

anthropogenic disturbance can increase the risk of disease emergence in human populations. Our 321 

results add another dimension to this idea, and reveals that anthropogenic disturbance also tends 322 

to favor generalist vs. specialist pathogens. Because generalist parasites are more commonly 323 

associated with emerging infectious diseases (Shaw et al. 2020), such biotic homogenization of 324 

parasite communities could increase disease emergence risk in human-dominated landscapes.  325 
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To conclude, using data collected from >1000 birds belonging to 28 species across the 326 

Western Ghats, we show that parasite community structure is strongly influenced by 327 

anthropogenic disturbance and host community structure, after controlling for effects associated 328 

with the environment (e.g., climate). Our data reveal that the effects of anthropogenic 329 

disturbance favors parasite communities that are dominated by generalist vs. specialist species, in 330 

keeping with expectations based on niche theory. These results have broad implications for our 331 

understanding of disease dynamics in the Anthropocene. Specifically, the biotic homogenization 332 

of parasite communities driven by anthropogenic disturbance has the potential to mediate some 333 

ongoing debates in disease ecology. For example, high parasite diversity has been considered to 334 

be a sign of a healthy ecosystem (Hudson et al. 2006), while at the same time disturbed 335 

ecosystems are the ones with increased risk of disease emergence (Ostfeld & Keesing 2017; 336 

Ostfeld & Keesing 2020). Our data resolves this apparent paradox by revealing that undisturbed 337 

ecosystems are likely to have a high diversity of specialized parasites which are highly 338 

susceptible to being lost because they can only infect one or a few related host species. 339 

Alternatively, disturbed ecosystems tend to primarily retain generalist parasites, which are more 340 

robust to disturbance because they can infect multiple species, a characteristic which also 341 

increases their ability to cause EIDs. These results have critical implications for public health 342 

policy because they provide a clear mechanistic understanding of why disease emergence risk is 343 

highest in areas facing rapid human-mediated landscape modifications (Allen et al. 2017; Gibb et 344 

al. 2020; Ostfeld & Keesing 2020). 345 
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FIGURES 531 

 532 

Figure 1. Study area and random forests model results of infection risk. (a) Study area map 533 

showing sample site locations (circles) in four geographical regions which are separated by three 534 

biogeographic barriers (the Chaliyar, Palghat and Shencottah gaps). All analyses were based on a 535 

sample of birds (N = 1172) captured at the 42 sites (Table S1). Random forest model 536 

performance in predicting: (b) Haemoproteus infection risk (pInfHAEM) and (c) Plasmodium 537 

infection risk (pInfPLAS). (d) Relative importance of variables grouped into four major categories 538 

(climate-, terrain-, habitat-, and host-related factors) in predicting pInfHAEM (red polygon) and 539 

pInfPLAS (blue polygon). Random forest model predictions of the effects of climate, terrain, 540 

habitat and ecological factors on infection probability of: (e) Haemoproteus (pInfHAEM) and (f) 541 

Plasmodium (pInfPLAS).  542 
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 543 

Figure 2. Modeling the drivers of parasite infection risk. Structural equation model for: (a) 544 

Haemoproteus infection risk (pInfHAEM), with direct or indirect effects of mean diurnal 545 

temperature range (BIO02), maximum temperature of warmest month (BIO05), vegetation 546 

height (VegHt), distance to protected areas (PADIST), human population proximity (Human pop. 547 

prox.), host phylogenetic diversity (αPHY-HOST), host functional diversity (αFUNC-HOST), and 548 

Haemoproteus phylogenetic diversity (αPHY-HAEM); (b) Plasmodium infection risk (pInfPLAS), 549 

direct or indirect effects of BIO02, BIO05, VegHt, PADIST, Human pop. prox., αPHY-HOST, αFUNC-550 

HOST, and Plasmodium phylogenetic diversity (αPHY-PLAS). In the flow diagrams, circles indicate 551 

variables (with model r2 values, if applicable). Arrows indicate significant positive (black lines) 552 

or negative (red lines) relationships, with standardized coefficients for main (bold) and quadratic 553 

(italic) effects. (c-n) Partial residual plots for SEM paths for variables associated with the host 554 

(gray symbols), Haemoproteus (red symbols) and Plasmodium (blue symbols). Points represent 555 

trap sites scaled by relative sample size, with predicted fits (colored lines) and 95% confidence 556 

intervals (CIs; gray bands). All analyses were based on a sample of birds (N = 1172) captured at 557 

42 sites across the study area (Figure 1A; Table S1).  558 
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 559 

Figure 3. Indirect (white bars), direct (colored bars) and total (circles) effects of distance to 560 

protected areas (PADIST), human population proximity (HPP), and either host phylogenetic (αPHY-561 

HOST) or function (αFUNC-HOST) diversity on infection risk for Haemoproteus (red symbols) and 562 

Plasmodium (blue symbols), respectively. Error bars are 95% CIs. 563 


