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Abstract

Dissolved oxygen is  one of  the  prime parameters  for  assessing  the  water  quality  of  any

stream and the health status of aquatic life. The dissolved oxygen present in the water body

plays an essential role in deciding water treatment processes to enhance water quality up to

the design standards for the specified water use. Thus, the accurate estimation of dissolved

oxygen concentration is necessary to evolve measures for maintaining the riverine ecosystem

and  designing  the  appropriate  water  treatment  plants.  Machine  learning  techniques  are

becoming useful tools for the prediction and simulation of water quality parameters. With

these viewpoints, a study was carried out in the Delhi stretch of Yamuna River, India, and

physiochemical parameters were examined for five years to simulate the dissolved oxygen

using  different  machine  learning  techniques.  Simulation  and  prediction  competencies  of

ANFIS grid partitioning (ANFIS-GP) and ANFIS subtractive clustering (ANFIS-SC) were

tested on various water quality parameters. Variation in dissolved oxygen was examined on

various  combinations  of  parameters.  ANFIS-GP  has  been  designed  using  the  Gaussian

function, and ANFIS-SC works on the likelihood of cluster centers. Results obtained from the

models  were  evaluated  using  root  mean  square  error  (RMSE)  and  coefficient  of

determination  (R2)  to  identify  the  optimum  solution  and  appropriate  combination  of

parameters that simulate the observed dissolved oxygen. Results of ANFIS-GP and ANFIS-

SC indicate  that  both  the  models  produce  suitable  solutions  for  the  prediction;  however,

ANFIS-GP outperforms the ANFIS-SC and could act as a useful tool for defining, planning,

and management of water quality parameters.
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1 INTRODUCTION

The  production  and  consumption  of  dissolved  oxygen  (DO)  in  rivers  are  dynamic

(Zahraeifard and Deng, 2012). Dissolve oxygen remains  in water as free oxygen, and its

concentration varies due to diffusion. The concentration of DO in water depends upon several

sources, sinks, and solubility rates. The atmosphere is the most significant external source of

oxygen to stream, and photosynthesis plays a significant role as an internal source of oxygen.

Photosynthesis contributes more oxygen to water, as the oxygen generated from the algae

contains  pure  oxygen,  whereas  the  atmospheric  diffusion  contains  only  20% oxygen  in

overall  gas transfer at the air-water interface.  All the microorganisms, aquatic plants, and

aquatic  animals  consume the  oxygen  through  respiration,  known as  sinks.  All  the  sinks

consume oxygen throughout the day and night.

In contrast, photosynthesis generates oxygen during the daytime only, whereas the algae

act  as both sources and the sink of oxygen (Arora and Keshari,  2020).  There should be

synchronization in the source and sinks of oxygen to maintain a healthy riverine ecosystem.

Another factor is solubility that further depends upon the pressure, temperature, and salinity

of the water. The higher pressure increases the solubility of gas, whereas higher salinity and

temperature reduce the solubility rate. All these factors affect the DO concentration in the

river along with the depth of the water body. Mathematically, the concentration of DO  can

be expressed as:

DO=DOsoS−DOsi

Where, DOso is the source of DO and DOsi is the sink of DO at S solubility. The low

concentration of dissolved oxygen in the river for a longer duration increases the inception of

several  environmental  problems  (Kisi  and  Murat,  2012).  The  river  system's  Biota  starts

getting affected if the oxygen content reduces below 30% to the saturation limit. Variation in

DO concentration occurs rapidly based on flow available in rivers, velocity, turbulence, the

number of organics, and atmospheric reactions involved in the riverine system (Cox, 2003).

Anthropogenic  activities  are  becoming  the  significant  sinks  of  oxygen that  consume the

available  DO  through  partially  or  untreated  wastewater  from  the  domestic,  industrial,

commercial and agricultural sectors (Arora and Keshari, 2018). It is mandatory to maintain

the equilibrium between the sources and sinks for the aquatic ecosystem's sustainability. 

River systems are greatly affected by water abstraction for the municipal supplies and

urban wastewater discharge through drains/tributaries during the low flow period. Estimating

DO concentration variation for the heavily polluted rivers based on the statistical methods is
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not  the  appropriate  approach  nowadays  due  to  the  complex  and  nonlinear  water  quality

parameters  (Cox, 2003; Parmar and Keshari,  2012).  Various researchers  have profoundly

used machine learning techniques to predict the variation in various water quality parameters.

For  the simulation  and forecasting  of water  quality  parameters,  artificial  neural  networks

(Singh et al., 2009; Heddam, 2016) and ANFIS (Chen and Liu, 2013; Ay and Kisi, 2016)

have  been  successfully  utilized  by  several  researchers.  Cox  (2003)  illustrated  various

mathematical models available for predicting DO concentration in a lowland river; however,

such models require a significant amount of data for the excellent prediction (Kannel et al.,

2011). 

1.1 Literature Review

Fuzzy logic has several advantages in classification,  data mining, interpretation,  and

optimization of time series data of various fields (Nguyen et al.,  2013; Wijayasekara and

Manic,  2014).  The  derivation  of  fuzzy  models  significantly  depends  on  linguistic  terms

designed via membership functions (MFs) and delivers input parameters to the optimization

model  (Cordon,  2011).  The  fuzzy  theory  has  been  widely  used  to  model  the  nonlinear

behavior for various hydrological applications (Altunkaynak et al., 2005; Keskin et al., 2006;

Chang et al., 2015; Khan and Valeo, 2015; Ay and Kisi, 2017; Arora and Keshari, 2020). The

fuzzy system can remove the uncertainties from the data and develop the model structure

through the rule-based system (Guyonnet et al., 2003; Huang et al., 2010). The identification,

validation,  optimization,  and  interpretation  can  be  applied  before  decision  making  using

fuzzy to manage water resources. Altunkaynak et al. (2005) used the Takagi–Sugeno fuzzy

logic approach to model fluctuations in DO at Golder Horn and compared the results with

ARMA models. The results reveal that the fuzzy models are more superior to ARMA in the

prediction of DO fluctuations. Guldal and Tongal (2010) identified the variation in the depth

of water in the lake and compared the accuracy of RNN, ANFIS, and stochastic models using

the coefficient of determination. Authors found that RNN and ANFIS perform exceptionally

over  stochastic  models.  Moosavi  et  al.  (2013)  compared  different  data-driven  models  to

predict the reservoir's groundwater level at two distinct basins. The author used ANN, ANFIS

and ANN-ANFIS coupled models and found that the ANFIS and various combinations of

ANFIS perform better over the ANN due to the errors involved in selecting the adequate

number of neurons for the ANN model. ANFIS is also advantageous over ANN with the

capability of former of analyzing uncertainties in input parameters.  Parmar and Bhardwaj

(2014) compared the regression, ANN, Wavelet, and ANFIS, to predict the COD in India's
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Yamuna River. They also compared the conventional techniques with the wavelet coupled

model. Khan and Valeo (2015) applied fuzzy regression and compared it with the Tanaka and

Diamond method of fuzzy modeling to predict the DO and found that the ability to record

water  quality  parameters'  uncertainty  makes  the  fuzzy  regression  technique  a  substantial

approach for the prediction of DO. The literature review reflects  that the fuzzy modeling

techniques can be applied to a wide area with high accuracy. However, detailed studies over

the differences between the two approaches (subtractive clustering and grid partitioning) of

fuzzy modeling are not available. The application of a correct approach for the prediction of

the parameter can improve the results significantly. 

As the DO acts as the health indicator of the riverine system, accurate prediction of DO

for  assessing  the  state  of  the  water  body,  designing  policies  for  the  water  resource

management, and appropriate allocation of available water keeping the sufficient amount of

flow in rivers are the predominant task. In this study, the grid partitioning and subtractive

clustering approaches are analyzed to model the stream passing through a highly urbanized

area, discharging tremendous wastewater from domestic, industrial, and agricultural sources

through multiple drains. 

2 MATERIAL AND METHODOLOGY

ANFIS  models  are  developed  for  the  simulation  and  prediction  of  DO.  A  hybrid

algorithm combining the least-squares method and the gradient descent method is used to

conserve the search space and minimize the model's operational time. The model's structure

is  designed  using  subtractive  clustering  and  grid  portioning  methods,  and  various

combinations of input parameters are tested out using both methods. 

2.1 Adaptive Neuro-Fuzzy Inference System

Adaptive neuro-fuzzy inference system (ANFIS) is the combined structure of the neural

network and fuzzy logic. This composite structure allows neurons to record the input data and

fuzzy rules to optimize the solution. The fuzzy sets in the model define the fuzzy rule base

and make the ANFIS capable of simulating the nonlinear behavior of input parameters. The

rule base of the network increases with the number of input parameters. However, it  also

increases  the  computational  time  of  the  model  (Chang  and  Chang  2006).  The  ANFIS

structure  is  designed  using  five  different  layers  that  include  input,  fuzzification,

normalization, defuzzification, and output layers. The number of input parameters is defined
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in the first layer. Fuzzification includes the distribution of membership function to each input

parameter and allocation of type of membership function. 

If-then rules bases are formed based on the number and type of membership functions

defined in the previous step. The fuzzification covers the input into breakable fuzzy sets, and

defuzzification again converts the fuzzy sets into output after applying inference processes,

normalization, and optimization (Chang and Chang, 2006). However, the FIS rule base can

be  altered  by  understanding  the  relationship  between  input  parameters  and  reducing  the

computational time with optimized output. The alteration of the rule base and the modified

structure of FIS make it worthwhile for wide application over neural networks (Arora and

Keshari,  2020). FIS is designed using Gaussian type membership functions with a hybrid

learning algorithm to optimize the model. The structure of FIS dominantly depends upon the

type  and  number  membership  function  selected  for  modeling.  (Babuska  and Verbruggen

2003; Sonmez et al. 2017). The overall architecture of the FIS model is shown in figure 1. 

[Insert Figure 1]

2.2 Grid Partitioning

Grid partitioning is  commonly used to  design the FIS, which is  a  fuzzy portioning

method. The minimum distance between two variables is required for each input parameter.

The problem region is divided into sub-regions, and input space is further divided into sub-

regions to refine the space depending upon the type and number of membership functions

selected for designing the model. The rule base of grid partitioned FIS is defined as: 

x1=A1
k 1 , x2=A2

k 2 ,…, xn=Am
kn

ym= y
k1k2 ,… ,kn , k i=0,1

If, ki=0, then Am
kn= a i, where a iis the minimal value of the input parameter. If, ki=1, then

An
kn= b i, where b iis the maximal value of the input parameter, and both the values would be

computed using the least square method. The input sub-region is divided into mth sub-regions,

where x = x1, x2, x3, …,xm. The membership function for the fuzzy term Am
ki would be:

μm
0

(x i )=
bm−x i
bm−am

For ki=0
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μm
1

(x i )=
x i−am
bm−am

For ki=1

The output corresponding to mth sub-region is written as:

O= ∑
k1k2 , …, k n

Am
k 1k2 ,…, kn (x i )∗ym

k1k2 ,… ,kn

The  sub-regions  are  divided  on  the  maximum  value  of  error  from  the  training

samples. Once the maximum errors of every sub-region are achieved, the region splits into

two regions, and the new approximation error is the minimum of the new sub-region. The

sub-region splitting  continues  until  the two regions'  errors  become constant,  as shown in

Figure 2. The maximum error obtained from the sub-region at which split occur is written as:

Em=
1
N m

∑
xm

[ 12 (x j−t j )
2]

Where, Em is the error obtained from mth sub-region from the Nm training samples and x jand

t j are the output generated from the model and targeted respectively from jth training samples.

2.3 Subtractive Clustering

The partitioning method is preferred when the knowledge about the center's distribution

is not adequate (Benmouiza and Cheknane, 2018).  In subtractive clustering,  the rule base

formed is equivalent to the membership function formed. In this method, each data point is

considered the center, and the importance of each center is identified through the data point in

the center's neighborhood. The process runs through several iterations and allocates the center

by  identifying  the  most  influential  center  with  the  highest  number  of  data  points  in  its

surrounding. The radius of the cluster of points is identified using the center of neighboring

points. The process repeats until all the data points fall within the radius of every cluster. The

potential of the data point is written as: 

Pi=∑
j=1

n

exp(−‖x i−x j‖
2

0.5 r2 )
Pi is the potential index of xi data points, r is the radius where all the neighborhood's data

points fall. The second iteration is calculated as:

Ṕi=Pi−P c1 exp(
−‖xi−xc 1‖

2

0.5 ra
2 )
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Where, Pc1 represents the potential of cluster 1 and ra is the Kr, where Kr is the positive integer

usually 1.5. The process is repeated, and a radius of cluster is recalculated until a sufficient

number of cluster centers are not generated. 

[Insert Figure 2]

2.4 Model Development

The sampling data is divided into two parts of 70:30 to design the model, where 70

percent  of sampling data  points are used for model training,  and 30 percent  are used for

testing the model. Different sets of parameters are selected for designing the model. The four

models are designed using temperature, BOD, COD, conductivity, and ammonia. To estimate

the DO of any stream, the concentration of organic matter present in water plays a significant

role as for the decomposition of organic content, DO acts as a source of energy for aerobic

bacteria. The type of bacteria that would develop depends upon the temperature of the stream.

Hence, the first model (M1) is developed with the temperature,  BOD, and COD as input

parameters. The addition parameter selected in the second model (M2) is conductivity. The

amount of DO also varies with dissolved solids due to the oxygen demand of solids. The

presence of ammonia reflects the generation of algae in the water, which acts as both the

source  and  sink  of  oxygen.  The  third  model  (M3)  is  designed  by  combining  the  base

parameters  with  ammonia.  Moreover,  the  fourth  model  (M4)  is  designed  to  look  at  the

combined  effect  of  conductivity  and  ammonia  and  the  base  parameters  on  the  river's

dissolved oxygen. 

Both  the  fuzzy  portioning  methods  are  used  to  design  the  model  with  similar

parameters. The input parameters selected to design the FIS models, as shown in Table 1, are

used for both the grid partitioning and subtractive clustering method.

[Insert Table 1]

The  coefficient  of  determination  (R2)  and  root  mean  square  error  (RMSE)  are

evaluated and compared with the observed dissolved oxygen to analyze models' performance.

The lowest RMSE nears to zero value indicates the adequate model and when R2 nears to 1

represents a better correlation between the observed and the predicted values obtained from

the FIS model. Formulas used to identify the performance of models are as follows:
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RMSE=√∑i=1
n

( pi−oi )
2

n

R2=1−
∑
i=1

n

(p i−o i )
2

∑
i=1

n

(p i−o i )
2

3 STUDY AREA

Delhi is one of India's biggest and dense cities, and all the wastewater generated from

various  sectors  (domestic,  commercial,  industrial,  and  agricultural)  of  Delhi  joins  the

Yamuna River.  Some part  of  the  wastewater  before  its  confluence  with  the  river  passes

through the treatment processes. However, the percentage of wastewater that gets treatment is

too  less  than  the  wastewater  directly  discharged  into  the  drain  through  irregular  means,

ultimately joining the river.  The samples were collected from Nizamuddin,  Delhi,  16 km

downstream of the Wazirabad barrage in Delhi. Yamuna river travels around 375 km before

reaching Delhi, and the flow of the river gets obstructed at the Wazirabad Barrage for water

supply to Delhi.  The fresh water  remains  low in the river  throughout  the year,  and only

wastewater from Delhi flows in the river except during the monsoon period. In between the

Wazirabad  barrage  and  the  Nizamuddin,  Yamuna  River  receives  effluents  from  several

drains,  out of which maximum effluents  are  discharged from the Najafgarh drain,  which

contains the flows 2.5 times to the water available in the river. As the Najafgarh drain joins

the river just after the Wazirabad barrage (0.5 km downstream), it causes maximum damage

to the river's water quality (CPCB, 2006).

The stretch of river Yamuna in Delhi is one of the most polluted sections of the river,

having a total length of 1376 km. The water quality falls in category E, which indicates that

the river's water is not designated for any use. The BOD load increases in the river up to 80

tons/day  after  the  Najafgarh  drain's  confluence.  The  sampling  location  also  receives  the

effluents from a thermal power plant located at the river's right bank. The river observes one

road bridge, one railway bridge, and one metro railway bridge that further obstructs the flow

and causes silting near the bridges' piers. The dissolved oxygen content of the river falls to

zero in this stretch and causes the significant degradation of aquatic plants and animals. The

generation  of  anaerobic  conditions  has  also  been  observed  in  the  river  due  to  the

decomposition of organic matter in the absence of oxygen. 
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The sampling location is selected after considering the distance from the Wazirabad

barrage, upstream of which water quality is much clear, time taken by the flow to provide

sufficient mixing of wastewater with the river water to collect the homogeneous sample. The

river receives the effluent load from the right bank only and has heavy habitation close to the

right bank, as shown in Figure 3. On the left bank, the river has a flood plain to cater to the

excess  water  during  the  flood;  however,  the  encroachment  of  the  flood  plain  is  another

problem of Yamuna River that causes the frequent release of flow during the monsoon period

and the rest of the time river flow with low discharge.

[Insert Figure 3]

The water  samples  were  collected  for  five  years  every  month,  and physiochemical

analyses have been carried out as per the standard procedure (APHA, 2005) after preserving

the  samples  with  the  recommended  reagent.  During  summers,  the  average  temperature

remains around 320C, affecting the saturation rate of dissolved oxygen in the river. Delhi

receives the precipitation in the form of rainfall from July to September, and sufficient water

flows in the river during this period, BOD level falls below 50 mg/l, and DO rises to 2 mg/l.

However, these conditions still indicate the riverine ecosystem's terrible health, but somewhat

better than the river's non-monsoon state. 

4 RESULTS AND DISCUSSION

An appropriate combination of parameters is selected for the development of ANFIS

models  after  several  trial  and  error.  Takagi-Sugeno  (TS)  algorithm  is  used  for  the

development of the model. Three MFs are selected for each input parameter with Gaussian

function  type  membership  function,  and  constant  type  MF  is  selected  for  the  output

generation. To generate the FIS, both the methods, grid portioning and subtractive clustering,

are used and compared. The structures of the models are shown in Table 2. In all the models

developed  using  grid  partitioning,  three  membership  functions  are  used  for  each  input,

whereas the number of membership functions varies with the number of input parameters in

each model in the case of subtractive clustering. In M1, there are three input parameters, and

five membership functions are used; however, in M2 and M3, have four input parameters in

each model.  Therefore six membership functions  are used in  both models.  However,  M4

contains five input parameters, and nine membership functions are used to design the model.
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Along with the increase in input parameters, the rule base also elevates exponentially in

Grid  partitioning  whereas,  and  this  does  not  hold  the  truth  in  the  case  of  subtractive

clustering.  The optimization  is  carried  out  for  both  the  partitioning method using hybrid

learning for all the models. The varying numbers of epochs for each model are used until the

observed error gets constant or reduced to the minimum. 

[Insert Table 2]

The performance of the models is identified using RMSE and R2. Results of ANFIS-

GP and ANFIS-SC indicate that both the models produce suitable solutions for the prediction.

The  M1  of  both  the  ANFIS-GP  and  ANFIS-SC  produces  considerable  but  high  RMSE

compared  to  other  models.  It  indicates  that  the  input  parameters  used  for  modeling  are

insufficient to explain the phenomenon of dissolved oxygen variation in the river. However,

R2 of more than 0.75 indicates that input parameters are substantial factors that affect the

variability in dissolved oxygen concentration. The performance of M2 increases considerably

over  M1,  where M2 includes  conductivity  as  an extra  parameter  other  than  temperature,

BOD,  and  COD  as  considered  in  M1.  The  M3  model  contains  ammonia  as  an  extra

parameter,  including parameters  considered  in  M1;  however,  the RMSE in M3 increases

compared to M2 for the grid partitioning method.  Comparing M2 and M3 of ANFIS-GP

indicates that conductivity is more significant than ammonia to predict  dissolved oxygen.

Simultaneously, the combination of both the conductivity and ammonia and other parameters

is considered in M4 and produces magnificent results over other methods. The RMSE of M4

is found only 0.049, and R2 is 0.953 for ANFIS-GP. The  correlation between the observed

and  predicted  dissolved  oxygen  from  all  the  ANFIS  models  obtained  using  both  the

partitioning methods are shown in Figure 4.

[Insert Figure 4]

The performance of ANFIS-SC shows similar results for models. The highest RMSE

is  found  in  M1  and  lowest  in  M4  as  similar  to  ANFIS-GP.  The  M2  and  M3  deliver

approximately  similar  results  as  both  the  models  contain  a  similar  number  of  input

parameters  and  membership  functions,  which  indicates  that  the  output  of  ANFIS-SC

essentially depends upon the number of membership functions rather than the characteristics

of input parameters. The M4 produces the RMSE of 0.150, which is the lowest among all the
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ANFIS-SC models, however higher than the M4 of ANFIS-GP. The ANFIS-GP classifies the

model based on the rule base developed for each model, and that is the necessary condition

that results in better performance. Therefore, from the results, it is evident that the ANFIS-GP

outperforms the ANFIS-SC and could act as an effective tool for defining,  planning, and

managing water quality parameters.

[Insert Table 3]

5 Conclusion

The study was carried out for the simulation of dissolved oxygen using ANFIS. The

models  are  developed using two proportioning methods,  grid partitioning and subtractive

clustering, and obtained results were compared to simulate the dissolved oxygen in a river.

Various combinations of input parameters are used to develop the models using both the

ANFIS method (ANFIS-GP and ANFIS-SC),  and the  applicability  of ANFIS models  are

tested using water quality parameters of the Yamuna River. The M4 model of ANFIS-GP is

found with the lowest RMSE and the maximum R2 of 0.953. However, all the models of the

ANFIS-GP worked well over the ANFIS-SC and have shown a good correlation with the

observed values of the dissolved oxygen. The extensive formulation of the rule base helps

identify vital parameters and improves the accuracy of the model. However, it is expected

that the accuracy of the model can be further improved with the large data set. 

References

1. Abba SI,  Hadi SJ,  Abdullahi  J,  (2017) River  water modelling  prediction using multi-

linear  regression,  artificial  neural  network,  and adaptive  neuro-fuzzy inference system

techniques. Procedia Computer Science 120:75–82   

2. Altunkaynak A, Ozger M, Cakmakcı M, (2005) Fuzzy logic modeling of the dissolved

oxygen

fluctuations in Golden Horn. Ecological Modelling 189: 436–446

3. APHA (2005) Standard method to the examination of water  and wastewater.  21st ed.

Washington,  DC:  American  Public  Health  Association,  American  Water-Works

Association, Water Environment Federation.

4. Arora  S,  Keshari  AK  (2018)  Estimation  of  re-aeration  coefficient  using  MLR  for

modelling  water  quality  of  rivers  in  urban environment.  Groundwater  for  sustainable

development 7: 430-435

11

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355



5. Arora S, Keshari AK (2020) Monte Carlo simulation and fuzzy modelling of river water

quality  for  multiple  reaches  using  QUAL2Kw.  Environmental  Processes  and

Management (Water Science and Technology Library), Springer 91:3-24

6. Ay M, Kisi  O,  (2012) Modeling  of  Dissolved Oxygen Concentration  Using Different

Neural Network Techniques in Foundation Creek, El Paso County, Colorado. Journal of

Environmental Engineering, 138(6): 654–662.

7. Ay M, Kişi Ö, (2016) Estimation of dissolved oxygen by using neural networks and neuro

fuzzy computing techniques. KSCE Journal of Civil Engineering, 21(5): 1631–1639.

8. Babuška  R,  Verbruggen  H,  (2003). Neuro-fuzzy  methods  for  nonlinear  system

identification. Annual Reviews in Control, 27(1): 73–85.

9. Benmouiza  K,  Cheknane  A,  (2018) Clustered  ANFIS  network  using  fuzzy  c-means,

subtractive  clustering,  and  grid  partitioning  for  hourly  solar  radiation  forecasting.

Theoretical and Applied Climatology. 

10. Chang F-J, Chang Y-T, (2006) Adaptive neuro-fuzzy inference system for prediction of

water level in reservoir. Advances in Water Resources, 29(1): 1–10.

11. Chang FJ, Tsai YH, Chen PA, Coynel A, Vachaud G, (2015) Modeling water quality in

an  urban  river  using  hydrological  factors-Data  driven  approaches.  Journal  of

Environmental Management, 151: 87-96

12. Chen W-B, Liu W-C, (2013) Artificial neural network modeling of dissolved oxygen in

reservoir. Environmental Monitoring and Assessment 186(2):1203–1217. 

13. Cordón O, (2011) A historical review of evolutionary learning methods for Mamdani-

type  fuzzy  rule-based  systems:  designing  interpretable  genetic  fuzzy  systems

International Journal of Approximate Reasoning, 52: 894–913

14. Cox BA, (2003) A review of dissolved oxygen modelling techniques for lowland rivers.

Science of total Environment 314 –316: 303-334

15. CPCB (2006) Water  Quality  Status  of  Yamuna River  (1999–2005):  Central  Pollution

Control  Board,  Ministry  of  Environment  & Forests,  Assessment  and Development  of

River Basin Series: ADSORBS/41/2006-07.

16. El-Shafie A, Taha MR, Noureldin A, (2006) A neuro-fuzzy model for inflow forecasting

of the Nile river at Aswan high dam. Water resource Management, 21:533-556

17. Guldal V, Tongal H, (2010) Comparison of Recurrent Neural Network, Adaptive Neuro-

Fuzzy Inference System and Stochastic Models in Egirdir Lake Level Forecasting. Water

resource Management, 24:105-128

12

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388



18. Guyonnet  D,  Bourgine  B,  Dubois  D,  Fargier  H,  Come B,  Chilès  J-P,  (2003). Hybrid

Approach for Addressing Uncertainty  in  Risk Assessments.  Journal  of  Environmental

Engineering, 129(1): 68–78.

19. Huang Y, Chen X, Li YP, Huang, GH, Liu T, (2010). A fuzzy-based simulation method

for modelling hydrological processes under uncertainty. Hydrological Processes, 24(25):

3718–3732. 

20. Kannel PR, Kanel SR, Lee S, Lee Y-S, Gan TY, (2011). A Review of Public Domain

Water  Quality  Models  for  Simulating  Dissolved  Oxygen  in  Rivers  and  Streams.

Environmental Modeling and Assessment 16:183-204

21. Keshtegar B, Heddam S, (2018) Modeling daily dissolved oxygen concentration using

modified  response surface method and artificial  neural  network:  a  comparative  study.

Neural Computing Application 30(10): 2995-3006.

22. Keskin ME, Taylan D, Terzi O, (2006) Adaptive neural-based fuzzy inference system

(ANFIS) approach for modelling hydrological time series. Hydrological Sciences Journal,

51(4): 588-598

23. Khan UT, Valeo C, (2015) A new fuzzy linear regression approach for dissolved oxygen

prediction. Hydrological Sciences Journal, 60(6): 1096-1119

24. Li  YP,  Huang  GH,  Huang  YF,  Zhou  HD,  (2009)  A  multistage  fuzzy-stochastic

programming  model  for  supporting  sustainable  water-resources  allocation  and

management. Environmental Modelling and Software, 24:786-797

25. Moosavi  V,  Vafakhah  M,  Shirmohammadi  B,  Behnia  N,  (2013)  A  Wavelet-ANFIS

Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water

resource Management, 27:1301-1321

26. Parmar D, Keshari AK, (2012) Sensitivity analysis of water quality for Delhi stretch of

river Yamuna, India. Environmental monitoring and assessment 184: 1487–1508 

27. Parmar  KS,  Bhardwaj  R,  (2015)  River  Water  Prediction  Modeling  Using  Neural

Networks, Fuzzy and Wavelet Coupled Model. Water resource Management, 29:17-33

28. Singh KP, Basant A, Malik A, Jain G, (2009) Artificial neural network modeling of the

river water quality—A case study. Ecological modelling 220: 888-895.

29. Sonmez  AY,  Kale  S,  Ozdemir  RC,  Kadak  AE,  (2018)  An  Adaptive  Neuro-Fuzzy

Inference  System (ANFIS)  to  Predict  of  Cadmium (Cd) Concentrations  in  the  Filyos

River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 18:1333-1343

13

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420



30. Wijayasekara D, Manic M, (2014) Data driven fuzzy membership function generation for

increased  understandability.  2014  IEEE  International  Conference  on  Fuzzy  Systems

(FUZZ-IEEE). doi:10.1109/fuzz-ieee.2014.6891547

31. Zahraeifard  V,  Deng  Z-Q,  (2012)  VART  Model-Based  Method  for  Estimation  of

Instream Dissolved Oxygen and Reaeration Coefficient. ASCE Journal of Environmental

Engineering 138: 518-24. 

14

421

422

423

424

425

426

427



Table 1: Development of ANFIS models

Model Parameters Output

M1 Temp., BOD, COD DO

M2 Temp., BOD, COD, Cond. DO

M3 Temp., BOD, COD, Ammonia DO

M4 Temp., BOD, COD, Cond., Ammonia DO
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Table2: ANFIS model structure

Grid Partitioning Subtractive Clustering

No. of MF 3 for each input in 

each model

5 for M1

6 for M2 and M3

9 for M4

Type of MF Gaussian Gaussian

Optimization 

model

Hybrid learning Hybrid learning

Fuzzy rules

M1 – 27 M1 – 5

M2 – 81 M2 – 6

M3 – 81 M3 – 6

M4 – 243 M4 – 9
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Table 3: Performance of developed models

Grid Partitioning Subtractive Clustering

RMSE R2 RMSE R2

M1 0.642 0.758 0.458 0.824

M2 0.181 0.908 0.287 0.872

M3 0.308 0.861 0.284 0.871

M4 0.049 0.953 0.150 0.911
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