A SCATTERING PROBLEM FOR A LOCAL PERTURBATION OF AN
OPEN PERIODIC WAVEGUIDE

ANDREAS KIRSCH

ABSTRACT. In this paper we consider the propagation of waves in an open waveguide in
R? where the index of refraction is a local perturbation of a function which is periodic
along the axis of the waveguide (which we chose to be the x;—axis) and equal to one for
|x2| > hg for some hg > 0. Motivated by the limiting absorption principle (proven in
[13]) for the case of an open waveguide in the half space R x (0, 00)) we formulate a radi-
ation condition which allows the existence of propagating modes and prove uniqueness,
existence, and stability of a solution. In the last part we investigate the decay properties
of the radiating part in the direction of periodicity and orthogonal to it.

1. INTRODUCTION

Let k£ > 0 be the wavenumber which is fixed throughout the paper and n € L*(R?) the
real valued index of refraction which is assumed to be 2r—periodic with respect to x1 and
equals to 1 for |xy| > hg for some hy > 0. Furthermore, let ¢ € L*°(R?) and f € L?*(R?)
have compact support @ = (0,27) x (—hg, hg). We assume that n(z) + q(z) > ny in R?
for some ng > 0. It is the aim to solve

(1) Au+k*n(l+qu = —f inR?
subject to a suitable radiating condition stated below.

The solution of (1) is understood in the variational sense; that is,

(2) /[Vu-vw—k%(l—l—q)wﬂdx = /fz/zd:v
R? Q
for all ¢ € H'(R?) with compact support. By standard regularity theorems it is known

that u € H?.(R?) and Au + k*n(1 + ¢)u = —f almost everywhere. For |zo| > hy the
solution w is a classical solution of the Helmholtz equation and thus analytic.

As mentioned above, a further condition is needed to assure uniqueness (see Definition 1.6
below). In contrast to the closed waveguide; that is, where R? is replaced by R x (a_,a,)
and boundary conditions for x5 = a4 are added, not only a radiation condition in the
direction of periodicity; that is, z1, is needed but also one in direction of 5. The radiation
condition should be in accordance with the limiting absorption principle; that is, the
solution u should be the limit (as ¢ > 0 tends to zero) of the solutions u. € H'(R?)
corresponding to wave numbers k + ic instead of k. Candidates are the Sommerfeld
radiation condition (see, e.g., [8] for bounded media or [1] for periodic open waveguides)
or the “upward propagating radiation condition” which is popular for scattering problems
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by rough surfaces (see, e.g. [4]). While the first excludes the existence of propagating
modes (see Definition 1.2); that is, is two restrictive, the second is not sufficient for
uniqueness; that is, is not restrictive enough. For layered media; that is media where n
is constant with respect to z;; radiation conditions have been developped in, e.g., [16] or
5, 6].

In this paper we first investigate uniqueness, existence and continuous dependence on
f of equation (1) complemented by the radiation condition which has been introduced
in [13, 14, 11, 12]. For closed waveguides this radiation condition is equivalent to the
condition based on the dispersion curves (see, e.g., [9]). For the proof of uniqueness we
were inspired by [10]. We had, however, to modify his proof considerably because of the
full space waveguide instead of the half-space waveguide considered in [10].

Second, we investigate the asymptotic behaviour of the solution in the direction of the
waveguide and orthogonal to it. While for closed waveguides the solution is (for x; —
+o0o and x; — —o0) a finite sum of propagating modes and a function which decays
exponentially (evanescent mode) we will show that the decaying part for open waveguides

behaves only as (’)(|xf?’/ ?|) in the direction of the waveguide and as (9(|x;1/ ?|) orthogonal
to it.
First, we make the assumption that &2 does not belong to the point spectrum of —m A,

that is,

Assumption 1.1.
There does not exist a nontrivial u € H'(R?) with Au + k*n(1 + q¢)u = 0 in R?.

Even for the unperturbed case ¢ it is in general not known whether this assumption is
needed or if it is automatically satisfied.

Definition 1.2. a € (—1/2,1/2] is called an exceptional value (or Floquet spectral value)
if there exists a non-trivial u € H. . (R?) = {u € H} (R?) : u(-, x2) is a—quasi-periodic}

a,loc
such that
(3a) Au+k*nu = 0 inR?,
(3b) u(xr) = Zuf itz gin/k2=(t+a)? (Fr2—ho) for £ x5 > hy

el

for some u}t € C where the convergence is uniformly for |xs| > ho + € for every e > 0.
We recall that a function u(-, x3) is a—quasi-periodic if u(xy + 27, x5) = e*™¥u(xy, x3) for
all x = (x1,22) € R%. The functions u are called propagating (or guided) modes.

It is not difficult to see that a is an exceptional value if, and only if, there exists a
nontrivial u € HL(Q) = {u € HY(Q) : u(-, 13) is a—quasi-periodic} with
(4) /[vu-va— Enuy)dr — /(Aauwds = 0 forally € HY(Q)
Q r
where T' = (Rx {ho})U(Rx {—ho}) and A, : HY*(T') — Ha /*(T) is the a—quasi-periodic

Dirichlet-to-Neumann operator given by

(5)  (Aad)(@r,Eho) = V;_WZ\/W—<€+a>2¢z<iho>eﬂ+&>xl, 11 €R,
LET
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for ¢ € HY2(T'). Here, ¢y(dho) = f (w1, £ho) exp(—i(¢+a)xy) dx; are the Fourier
coefficients of ¢(-,+hg). If we set 2/1 = w in (4) and take the imaginary part we observe
directly that we(£hg) = 0 for all £ € Z with |¢ + | < k. Therefore, if a is an exceptional
value with corresponding eigenfunction v and « is not a cut-off value; that is, o+ £| # k
for all ¢ € Z, then u is evanescent; that is, exponentially decaying as |xs| tends to infinity;
that is, satisfies |u(z)| < ce~%®2l for |25| > hy and some ¢,§ > 0 which are independent
of x. We formulate the latter condition as an additional assumption

Assumption 1.3. Let |{ + «| # k for all exceptional values o and all ¢ € Z; that is, the
cut-off values are not exceptional values.

Under Assumptions 1.1 and 1.3 it can be shown (see, e.g. [13]) that at most a finite number
of exceptional values exist. Furthermore, if o is an exceptional value with eigenfunction
u then —a is an exceptional value with eigenfunction w. Therefore, we can numerate the
exceptional values such they are given by {«; : j € J} where J C Z is symmetric with
respect to 0 and ov_; = —q; for j € J. Furthermore, it is known that every eigenspace

(6) X; = {ueH loc(]R2) . u satisfies (3a) and (3b)}

is finite dimensional with some dimension m; > 0. We construct a special orthonormal

basis in X; by considering the following finite dimensional self-adjoint eigenvalue problem
in X]

Let j € J be fixed. Determine \;; € R, £ =1,...,m;, and non-trivial ég,j € Xj such that

(7a) - 8;;] vdr = Nk / TLQASEJ' Pdr forally € X

Q> Qo

where Q> = (0,27) x R. Let the eigenfunctions be normalized such that

(7b) 2k/n¢3£,j(:c) bpj(x)dr = Spp, 00 =1,...,m;.
Qoo

We note that ¢y; € H2(Q™) and even analytic for |z,| > hg. We make a further assump-
tion.

Assumption 1.4. Let A\j; # 0 for all ¢ = 1,...,m; and j € J; that is, there is no
non-trivial ¢ € X; with fQoo %’1 dx =0 for all Y € X;.

Remark 1.5. This condition is equivalent to the requirement that the group velocity does
not vanish. Indeed, assume that for all o there exists eigenvalues p, () € R and cor-
responding eigenfunctions u,(a) € HL(Q™) that satisfy Au,(a) + p, (@) nu,(a) = 0 in
Q>. Then & is exceptional if p, (&) = k* for some v. We transform u, to its periodic
form by setting 1, (z) = e 1, (x). Then u,(a) is 2m—periodic with respect to x1 and
satisfies At (o) +2ic 0, () /Ox1 + (py () n—a?)i, () = 0 in Q. Assuming that i, ()
1s differentiable with respect to o we differentiate this equation and set o = &. This yields

A (a) + 206228 g _anaa) = —20 299 L os @)y nla@)
(9.%1 a371
3



in Q. We multiply this equation by u,(&), integrate over Q*°, and use Green’s second
theorem. This yields

2@/@(@) {ag”—l@+ié¢\ﬁy(d)]2} dr + (&) /n|1l,,(d)|2dx = 0.
1
Qe Qe

Formulated with w, instead of U, this yields

Qi/uy(d) ag’;(lo‘) dv + u;(&)/n|uy(&)|2dx = 0.

Q> Q>
Therefore, the condition of Assumption 1.4 (for m; = 1) is equivalent to p,(&) # 0.

Now we are able to formulate the radiation condition. In all of the paper we make
Assumptions 1.1, 1.3, and 1.4 without mentioning this always.

Definition 1.6. Let ¢, € C®(R) be any functions with Y4 (z1) = 1 for £x1 > o9
(for some o9 > 27w + 1) and ¥y (x1) =0 for a1 < o9 — 1.

A solution u € H. (R?) of (1); that is,

loc
(8) Au+En(l+qu = —f inR?,
satisfies the open wavequide radiation condition if

(a) u has a decomposition in the form u = u" + u® where

(9) u®(z) = Z[TM(%) Z ar; ej(z) + V(1) Z Qg ¢e,j($)1
jeJ Ar,;>0 A, <0
for x € R? and some ag; € C where uY € HY(W)},) for all h > hy and where
Wy, =R x (—h,h) C R,
(b) the Fourier transform (FuM)(-,xz5) of uM(-,x5) with respect to x, satisfies the
generalized Sommerfeld radiation condition

o0 2

uV)(w,z9) 1
(10) / (sign z2) ANFu)(w,x2) iVE? — w? (Fu)(w, z9)

(9302
—00

dw — 0, |z3] = .

Here we define the Fourier transform as
1 A
Fo)t) = — s)e "ds, teR.
Foo = o= [ ol

It has been shown in [13] for the case of a half plane problem that this radiation con-
dition is a consequence of the limiting absorption principle. A second motivation is the
following result on the direction of the energy flow which plays a central role in the proof
of uniqueness.

Lemma 1.7. Let u® be given by (9). With I, = {r} x R for |r| > oo we have

Z Z Aejlags)?, > o0,

- ou? - ou®@ .
47T1m/u(2) au ds = 21m/u(2) au dr = JES Ae,j>0 )
i on G O E D MglagglP < —o0.
jed )\g’j<0
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Proof: We only consider © > oy. Then u®(z) = Zjej Z)\éj>0 ag; @J(:E) for 1 > oy.
First we fix j € J and define u+( ) = 100, @] Since we fix j in the first part we
drop the index j and erte ut for uy Furthermore we define v(x) = (zy —r)ut(z). Then

T =yt (z1—7) 2 and Aot k2o = 290" Therefore, with r+Q% = (r,r+2m) xR C

R?
ou™ ou™ —
2 + 2 — ut —— — + 2
/u o dx 2 / U o, dx / U (Av +k m;) dx
Qoo ’I‘+Q°° T+Qoo
_ —_ — v out
_ T 2 + + _— -
/U(Au +knu)da:+ / (u £y Ual/)ds
r4Q> r+0Q>®

_ . e
—/|u+|2ds+ / [U+ (u + 2 8L) — 21ut %} ds
8x1 81'1
Iy

'r+27r

ou™ dut
= 2 + —ut
7T/ <u e U 8x1> ds

I

471 Im/u+—ds

Furthermore, with L = {£: \s; > 0},

— Out Do,
/u+8_x1dx = Z ag]agd/@,] azjd

Qoo £€/€L+
-~ A 7 9
= ik Y aran, /\z' n%j Pogdr = 5 > e lac;
LeeL;f teLy

by the orthonormalization of (Zgg’j. Therefore, we have shown
J _ ] _ 2
47TIII1/ u] . ds = QIm/ u; . dr = Z)\g’j|ag7j|
teLy

where we indicated the dependence on j. In the second part we take j,j" € J, apply
Green’ theorem in r + *°, and use the quasi-periodicities of uj and uj,

— 8u " 8u_+
_ + o+
0 = / (uj 81/ u,ay>ds
r+0Q>®

— Oul, out — Oul, out
- _ -|— J —l; J d + J —l; J d
/ (uj 81'1 uj 81‘1 > st / <U] 81'1 u] 81‘1 > s

I'r IT+27|'

o —_ Ou, 87[-r
(G —ay)2m

I
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Therefore, the last integral vanishes for j # j/. Thus we have

—— ou®
47rz'Im/u(2) U ds
8$1

—y Ou®? ou L ouf
= 2 u® =2 /
W/[ dry (91:1] ° WZ [’ 8x1 U 8:51]

I, JeJ .
= 47rz§ Im j ds = ZE E A lae | .
j axl ) )
JjeJ Jjed eeLj

O

We note that all of the three terms in the representation of (FuY)(-,«) appear only in
the cases k = 0 or k = 1/2; that is, if k € 3N. If 0 < |x| < 1/2 then only the first or the
second term appears, depending on the sign of .

Because g4 vanishes identically by our choice of ¢4 we observe that the part u!) satisfies

(11&) Aut + k*n (1+Q) = —-f - Zzam%pm in R?
jeJ L=1
where
/ A i (x) n
2 T 2J 4+ (x), by S O,
(11b) o0s(z) = { o) S+ L) 9 (0), N
29 (1) 2265 4 g (21) Gy (x), Aey < 0.

We note that f has compact support in @) and ¢y ; vanish for |z,]| > 0y, and are evanescent;
that is, there exist ¢, > 0 with |, ;(z)| < cexp(—d|xa]).

Therefore, we decompose u!) in the upper and lower half planes xy > hg and o < —ho,
respectively, as a sum of solutions with homogeneous boundary conditions and one with
a homogeneous Helmholtz equation.

Lemma 1.8. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u € Hy,.(R?) be a solution
of (8) satisfying the radiation condition of Definition 1.6.

(a) Then the part u™) has a decomposition in the half planes x5 > ho and x5 < —hy,
respectively, in the forms

uV(z) = ut(z) + Za&jvfj(:v) for £ x9 > hy,

where vzj are the unique solutions of Av“ k%fy = —y¢j for £xo > hy and

Ugi,j = 0 for zo = thqy satisfying the generalized Sommerfeld radiation condition
(10), and ui is the unique radiating solution of AuF + k*uT = 0 for +xy > hyg
and ui = uV) for zy = +hy.

(b) There exists ¢ > 0 such that \Vvei,j(x)\ + \vztj(:c)] <c 1+||x2||3/2 for all x € R? with
+x5 > hy where ¢ > 0 is independent of x and ¢, j.
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(¢) There ezists ¢ > 0 with
(12) WV (@)] + [Vull(2)] < claa| plan)

for all x € R* with |x3| > ho + 1, where p € L*(R) N L>(R) is given by

(13) pla) = Y / ool dy + ——— a €R.

oe{+1,~1} L+ |2y — )32 1+ [z P2

Proof: We only consider the upper half plane x5 > hy.
(a) We show that UZj and ug are given by

(a) @) = [ [ G e dude, w2 .
ho —oo
r 9
(14b) UBL(x) = 2/U(1)(yl7h0) @@(%,I%yhiho)d(yh 2 > hy,
p)

respectively, with the fundamental solution ®(x,y) = iHél)(kw — y|) of the Helmholtz
equation and the Green’s function G*(z,y) = ®(z,y) — ®(z,y*), z,y € R?, 29,90 > hy
where y* = (y1,2ho — y2) " is the reflection of y at the line yo = hy.

First we show that ij is a solution of the inhomogeneous differential equation. For any

e Wholt .= {z e Ry : hy < x5 < R} we decompose v/ (z) as

R+1 o9 oo 0o
v(z) = / /G+(9U>?J) ©0(y) dyidys + / /G+(x,y) ©e,i(y) dyrdys .
ho —oo R+1 —og

The first integral ist just the volume integral over a bounded region. This term satisfies
the inhomogeneous differential equation for x € W"o-# and the homogeneous boundary
condition for x5 = hg. The integrand of the second integral is regular for € W"of and,
therefore, satisfies the homogeneous differential equation and the boundary COHdlthn.
Also, ug satisfies the homogeneous Helmholtz equation. It remains to show the generalized

Sommerfeld condition for v, and ug .
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Taking the Fourier transforms of uj and vy ; with respect to 1 and noting that the integral
with respect to y; is a convolution yields

(Fud)(w,m2) = (FuV)(w, hy) eVE = @) qnq

) [ei\/mhczfyz\ _ eim(eryQ*?ho)} dys

Z' oo
(sz:j)(wax2> 2m/(F90€,j)(way2
ho

) eZ v ]‘32_"-’2(392—312) dy2

i 7
Nﬁ/(}—w,j)(wayz
ho

) eV k2 —w?(y2—x2) dys

/l: o0
+ m/(ﬂ@e,j)(w,w

>€i\/k2_w2(m2+y2—2h0) dy2 .

/l: [ee]
- m/(FWZ,j)(W7y2
ho

The first term (Fug )(w, z2) satisfies the radiation condition (10) trivially. For the second
term we have

8(.7:112].)(@(}, )
aZEQ

— iVE? —w? (Fu;)(w,22) = /(f¢é,j)(wyy2)€i et gy, |

€2

For |w| < k we just estimate

I(Fvg;)(w, 22)
81‘2

[e.e]

—iVE? — w? (Fu;)(w, m2)| < 0/6—5312 dy, = ge_‘s‘”.

For |w| > k we estimate
I(Fvg ;) (w, 2)
5’x2

—iVE? —w? (Fu;) (w, 72)

[e.9]

< c/€6y2m(ygxg) dy2 ¢ 675:1:2.

IA

x2

Together we have the existence of ¢ > 0 such that

O(Fvg;)(w, x2) c
; —iVk2 — W (Ful)(w, z0)| < e
Oz (P, 2) 5+ /|w? — k2|

for all w € R and x5 > hg. Squaring and integrating with respect to w yields the radiation
condition.

—0xo

To show uniqueness let v satisfy Av + k?v = 0 for 9 > hg, v = 0 for x5 = hg, and also
(10). Taking the Fourier transform and solving the resulting ordinary differential equation

yields (Fv)(w, x2) = a(w)e?VF =< 22 4 p(w)e VF =<2 for 15 > hy, thus

(f’u)’(w, xg) —iVk?—w? (FU)(w, 332) = —2iVk2 — 2 b<w)67im@ ’

8



and therefore

. 2 4(k* — w?) [b(w)]?, w <k,
|(FU)I(W,$2)_Z\/m(FU)(w’xQ)l = {4(w2—(k2)]b(w))‘|2(£2‘;°|‘)2wmﬁ ;w;ik

Integrating with respect to w und using (10) yields b(w) = 0 for all w. The initial condition
yields a(w) = 0.

(b) We know from [3] that there exists ¢ > 0 with

|G+(x,y)‘ + }VxG+(:E,y)| < c% for all z,y € Rio with |z —y| > 1, and
|Gt (z,y)| < c|lnjz—y|| forallz,y € R} with |z —y| <1,
}VIG+(:E,y)| < ¢ for all x,y € Rio with |z —y| <1

|z — 9|

where we have set R} = R x (hg, 00). First we consider |z] < 20¢. We split the region of
integration with respect to g into {ys : [y2 — 22| < 1} U{yo 1 1 < |yo — 22| < 22/2} U {ya :
|yo — 2| > x2/2} and use the estimates of GV is each of the regions. (Note that |y1| < 09).
Therefore,

(o)1)
@) < o / / e |In |z — yl| dys dys
‘$2—y2‘<1 ]
o0

- Yo
+ cxo / / e 02 |x2—— y2!3/2 dyy dys

1<|ze—y2|<®2/2 —00

o0
—0y2 Y2
e / / RN R Yoy

|xo—y2|>x2/2 —00
1 3oo

ce_‘s(“_l)/ / |ln]z\|dzl dzy + ¢ a)e072/?

—1 =300

IN

Co _5 Co ho 1 _5h
16 - Y2 = — [ — — 0
(16) + le2/yze Y2 T:2<5+52)6
ho

for all x5 > hg and |z1] < 200 where ¢; > 0 is independent of z. We indicated the
dependence on hy in (16) (and (17), (18)) for later use. This proves the desired estimate
for |z1] < 209. Now we consider |z;| > 20¢. Then |y; — x1| > |z1| — 09 > |71|/2 and thus

fe’e) o)
- dy:
v (2)] < CI2/?/2€ 6y2/ mdyz-
ho —o00
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We split the integral with respect to ys into |yo — xa| > x2/2 and |ys — z3| < x9/2. Then

o0
- din
T / Yy2€ 6y2/ Wdyz
o

ly2—z2|>x2/2
20 cx T dx
5 0 2 -5 2 -5k
(17) < / Y2 €7 dys (212" < |x\3/2/y26 2dyy < |I|3/2€ 0
ly2—z2|>x2/2 ho

because |z —y|? = (x1—y1)*+ (xa—1y2)* > 4(x1+:c2) Finally, since |ya| > |z2|— |y — 22| >
T9/2 for |yy — 25| < w2/2 we have by splitting e %2 = e~9%2/2¢=0v2/2

x e —d < x9€ 6””2/4/ e 212 g / —1
? / v / o — g2 ’ . 2 e =
ly2—x2|<x2/2 ho
1 cx
< —dx2/4 —dy2/2 < 2 —dhg
(18) < cxye PRED /yge dys < REE e
ho

because |;|€*2/6 > c|z| for some ¢ > 0 (note that |z;| > 209 and x5 > hy).
The proof for the derivatives follow exactly the same lines. (Only the intgral over In |x —y|
has to be replaced by the the integral over 1/|z — y|.)

(c) We know from the asymptotic behavior of the Hankel functions that for all a > 0
there exists ¢ = c¢(a) > 0 with

19 —d(z
(19 -0(e)
for all z,y € R? with |z — y| > a. Therefore, p € L*(R) because the first term can
be expressed as the convolution of the L?—function |u!)(yy,hg)| and the L!'—function
y1 +— (14 |y1])~%2. It is also bounded by the inequality of Cauchy-Schwarz.

Using (19) and the form (14a) we estimate for xo > ho + 1

[ D, o)l
ug ()] < cwgho / [(z1 — y1)2 + 13/ dyr

—00

c T2 Y2
T ey

which proves the desired estimate in combination with part (b). O

During the proof we have shown the following sharper version of the radiation condition.

Corollary 1.9. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u € Hyo.(R?) be a solution
of (8) satisfying the radiation condition of Definition 1.6 and let o € {—1,41}be fized.

(a) For ows > ho the Fourier transform (FulV)(w, ) of ul) (-, 2) has the form
(20) (FuM)(w, 25) = (FuV)(w, che) V= (c23—h)

i Vk2—w?|z2—ot] iVk2—w?2(z2+0(t—2ho))
4+ —= [ (Fg)(w,at) |e 2 —e dt
2Vk? — w? /( ol )l )
ho
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for w € R where (Fg)(w,xs) is the Fourier transform of g = Au® + k*u® =

> e >y agjpe for |wa| > ho.
(b) We have the following stronger form of the radiation condition (10):

21 Ful Y (w, z5) — ivVk? — w? (FulM) (w, z5)| < ¢ e~ dlez2]
(21) o (FulV) (w,22) —iv Fudw )| < ==

for all w € R and |xs| > hg. Note that the right hand side is the product of a
L*(R)—function and the exponential function exp(—d|zs|).

2. UNIQUENESS

In this section we follow the proof of uniqueness giben by T. Furuya in [10] for the
half-plane case. We had to to modify his appoach, however, because the free space
Green’s function; that is, the fundamental solution, does not decay as fast as the Green’s
function for the half-plane as |z1| tends to infinity. Therefore, we can’t use his integral
representations.

We begin with the following technical result.

Lemma 2.1. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u € H;,.(R) be a solution
of (1) satisfying the radiation condition of Definition 1.6. Analogously to p(x1) of (13)
(see Lemma 1.8) we define

u() 1, ohg
(22)  pn(z) = ) / [ty h|))3’)/2 dy1 +

oe{+1,-1} "y 1+ ’xl

W’ [L’1€R, € N.

Then there ezists ¢ > 0 and a sequence (N,,) in N converging to infinity such that

c
/ o (1) dy < / — o ()Pl € =,
V' Ny,
|z1|>Nm |z1|<Nm
and p(zy)?dr, < \/LN_W
Ny <|z1|<Nm+1
for all 3 € N.

Proof: We define the sets Jy = (=N — N, —N 4+ +v/N) U (N — \/_ N,N ++/N). A
in [2] we first note that for every m € N there exists Ny, > m with [[u™ (-, ho)l| 201y ) —|—

[uM (-, =ho)l 2@y, ) < <17 N . Indeed, otherwise there exists m € Nsuch that [|uV) (-, ho) || z2(s)+
[u® (-, —ho) | £2(7y) > 7 for all N > m. Since Jy2 N Jy2 for N # M we would have

> / W (- oh)Pdey > > Z /!u - oho)|? da

U€{71’+1}|m1|>N72n7Nm ce{-1,+41} N= mJ

1
EZ_:N:

a contradiction to uV(-, +ho) € L*(R).
11



We set N~ = N,, — /N, for abbreviation and estimate for |z;| > N,,:

(1) h
/ <|u ko)l

L+ |z — g )%/2

|y1|<Nm
_ / ut (y1, oho)| dy + / [uM (y1, oho)| iy
(1+ |21 — y1] )2 (1+ |21 — y])?2
ly1|<Nm Np<|y1|<Nm
dy; dy,
< )| / e /
® 1+ |z1] — [yi])? (a0 (L+ |21] — [ ])?
|y1|<Npm N <|y1|<Nm
c 1 c

1+ |z = N, + ]\[7}1/4 L+ |z1] — Ny,

and thus

IN

8 dx
2d / 1
/ o) dn S TS T | T m =N

‘x1‘>Nm |21|>Nm

1

. c / dx
v/ N,, (14 |z1| — Nn)?

|$1|>Nm

8 c c
< + -+ .
— (14 Nn)? 1+VN, o VN

Analogously, with N} = N,, + v/N,,,, we estimate for |z1| < Ny,

[ (yy, ohy)|
(1+ |z —1u])3/?

) = o) = [ dy,

|y1|>Nm

_ / |[u™ (y1, oho)| dy + / [uM (y1, oho)| dy,
(14 [zy — )32 (L4 |z — g ])3/2
ly1]|> N4, N <[|y1|<N.5,

IN

dyl 1 dyl
Wz | [ + s
® (1 + [ya| — [ ])? (Iaim) 1+ [y1| — |=1])?

ly1|>Ny, Nm<|y1|<N:,
c 1 c

<
S Ty N: Ja] NI N o]
12




and thus [\ |p(z1) = p,, (21)[Pdzy < ¢/V/N,, as before. Finally, for Ny, < |ay| <

N,, + 1 we estimate

|u(1) (ylv O'h())l
= d
p($1) / (1+|$1—y1|)3/2 Y1
Nm
(1) h (1) h
S QR TR g LR TR

L+ |2y — )32 L+ |2y — )32

[y1|<Nm ly1]>No,

dy1
< clu®leuy,) + Iu®lew / (1+ [21] — [l)?

[y1|<Nm
1 dy
e | [
ly1|>NoA,
c c c c
- N4 i 1+ |z = N, * 14+ N — || = N
Integration with respect to x; yields the last assertion. ([l

After these preparations we turn to the proof of uniqueness.

Theorem 2.2. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u solve the problem (1)
for f =0 and the radiation condition of Definition 1.6. Then u vanishes.

Proof: The proof is lengthy, and we try to structure it. In part (A) we show that the
coefficients a,; vanish, and in part (B) we show that u(!) vanishes under a smoothness
assumption on its Fourier transform. The latter property is shown in Part (C).

Part (A): Choose ¢y € C®(R) with ¢n(x1) = 1 for |z1] < N and ¢n(x;) = 0 for
|z1] > N + 1. We define the regions Dy g = (=N, N) x (=H,H) and Wy, = (=N —
1,=N) x (=H,H) and Wy ;; = (N, N + 1) x (=H, H) and the vertical and horizontal
segments Iy g ={xN} x (—H,H) and 'y g = (—N,N) x {£H} for any H > hy + 1
and N > o0+ 1. We apply Green’s theorem in Dy g to v(z) = ¢y (z1) u(z):

(23) / wNu—ds

GG{JFI -1} I'N+1,0H

= Z / va—des: /HVU‘Q-FUAU]C[I

oe{+1,~1} I'ni1,0H Dy,

= /HVu‘ —|—ﬂAu] dr + /HV?}|2+UAU}CZCC + /HVU|2+EAv]d:c.
DN, W]J\?,H Wy om

We note that Au = —k’n(1 + q)u and Av = —pyk*n(l + q)u + 2y % 8” + % u and
Vv = YnVu + uipye® with e = (1,0)T. The decomposition u = u(l) + u? yields 4
terms on the left hand side of (23) and also the corresponding terms on the right hand

side.
13



(A1) First, we look at the terms on the right hand side of (23). Note that the first integral
on the right hand side is real valued. We define v0) = yul) for j = 1,2 and estimate
the terms

ayy(5,0) = / (Vo) - Vo 400 Av®] da
W b

for j,¢ € {1,2}. Then, with (12),

laf p(1,1)] < C”“(l)HZl(W;,hOH) + C\|U(1)I|§11(W§,H\Wﬁ,ho+1>

N+1
< g,y te [ [ shele)ddn
N ho+l<|za|<H
(24) < CYNH with
) i = Ny + B[ s da
N<]zi|<N+1

and Qn = Wy, UWy o = {z €R*: N <|zy| < N+1, |22 < ho+1}. Analogously,
since Hu(Q)HHl(W;H) and HVU(Q)HHl(W;VLH) are bounded with respect to N and H,

1/2
(L D+ w D] < e leOag, o+ 10 g g, 0] < eV

For a};, 1(2,2) we apply Green’s theorem:

— 0u® — u®
T(2,2) = — (2) d E / 2 u® d
aN7H(, ) /u o s + o Yy u 0% s
Ing oe{+1,-1} N<z1<11\§+1
To=0

— ou®
=~ [ s+ Bl

X1
In

with Iy = {N} x R and
- ou®
V3 u® 88u ds

Brul < D2 | +

oe{H L1t Ny <N+l IN\IN.1
xro=0cH

< ¢ 6_26H .

_ H,2
/ u2) aau ds

x1

The same estimates hold for ay ;(j,€); that is, the integrals over Wy ;. Therefore, taking
the imaginary part of (23) and using Lemma 1.7 we have shown that

(26) ) olm / wNag—;‘st

o€{+1,~1} Nt1,0H
- ou® — ou® -
< —Im/u(z) ds + Im/u(2) ds + ce” + c¢yvm + v INH]
(’%1 0331 ’ ’
In I_N

IN

1 1 -
—EZ Z )\g,j|azyj’2 + EZ Z )\g}j|ag7j|2 + ce 201 + C[”)/N,H+\/’YN7H].

JEJ X ;>0 JET A5 <0
14



(A2) Now we look at the left hand side of (23); that is, of (26), and decompose again u
into u = u™ + u®. Using Cauchy-Schwarz and (12) we estimate for o € {—1,1}

T

I'Nt1,0H

@ o —— Hu@
au o | 5 ou D ou
) T T2

ds

0
< ¢ IIU(”IIL%FNH,gH)Ha—SCQHLz(rNH,L,H) e ||“(2)||L2<FN+LUH>||a—x2||L2(rN+1,aH)

ou® )
+C||u(2)||L2(FN+1,oH)Ha—%HLQ(FN_,_LUH) < c[H|pl 2w VN + Nle of

V3 u ‘9“( L ds. We restrict ourselves to the line integral over

I'n1.z and approximate u(!) by funct1ons ug\,)H which satisfy the homogeneous Helmholtz

equation for z5 > H. To do this we set ug\l,)H = u}; + v}, for 9 > hy. Here, u}; is the

Finally, we consider fFN+1 iH

unique radiating solution of Au}, +k?ul; = 0 for x5 > hg and u}, (21, ho) = uM) (21, he) for
|z1] < N and u}(z1,ho) = 0 for || > N, and the function v}, is defined as the unique
radiating solution of

+ o+ _ [ Xjesiiangpey forhg <mp < H,
Avg + Ky { 0 for zo > H

and v}; = 0 for x5 = hg. Then u}; and v}, are given by (compare with (14a), (14b))

N
0
u}(z) = 2/u(1)<y17h0)a_ghq)(xl;x%yl)hO)dyl, T2 > hy,
-N

H o9
vh(z) = ZZCL@J//G*xy oY) dyndys, T2 > ho,
jeJ (=1 ho —o0

and it is easy to show by modifying the proof of Lemma 1.8 that

}u%x} + [ Vuly (@) < claslpala),

CIT _
) = ()] + 9 ) )] < o) = i) + S e

15
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for all z € R? with xg > hg+ 1, where p, py € L*(R) N L>®(R) are given by (13) and (22),
respectively.! With I'oo 157 = R x {H} we decompose

— ou®
2w
/ Yy u 0t ds

Pn41,H
au(l) —_oum au(l)
1 N,H 1 N,H
= /USV)H - ds + / V3 [u® e —ugv?H s ds
Too,H I'ny1,H
au(l) au(l)
1 N.H 1 N.H
Too,H\I'N+1,H I'n41,H\I'N,H
- (1)
= / ugv)H a dS + NNH
l_‘oo,H
where
Hu
1
vl < ellut = uy e m || 50
L2 1L2(Cyia.m)
(1) ou) aUE\II)H
+CHUN,HHL2(FN+1,H) 05 - 05
LT N+1,H)
(1) 8“5\17)1{
+c HuN,HHLQ(FOO,H\FN,H) Ta..
8:1,’2
L2(Too,u\I'n,H)
@) < Bl | [ lele) ()R dn + B [ (o).
‘Z‘l‘<N |.721|>N

The same estimates hold also for [. W2 u® ag;: ds. Substituting this into the left

hand side of (26) yields

OB UNH 1 1
olm / UNH G ds < _EZ > Aé,j\ae,y’\2+ﬂz > Aujlas)®
oocrH

jeJ )\47j>0 jedJ >‘Lj<0

+1,—H

UE{ 1,+1}

+ce® + clynu + ANa]
+ c[HVN+N] e + |nyul.

At this point we set N = N,, where (N,,) is the sequence from Lemma 2.1. Then
from (25) and (27) in combination with the estimates of Lemma 2.1 we conclude that

H3 H?
YN H < C”u(l)Hl%Il(QNm) + o= and |0,z < C NI We choose H,, such that the

For the estimate with v}, replace hq in (16), (17), (18) by H!
16



. 1/10
reminders converge to zero, for example, H,, = Nm/ . Then

ou'y
(28) Z olimsup Im ug\lf) by Al
m—00 e 65132
O'E{—]. +1} Foo ,oHm
__Z Z At |a€J| + _WZ Z /\€J|WJ| < 0.
JjeJ )\g]>0 JeJ Ap ]<0

Now we show that the left hand side is non-negative. Indeed, we fix m, write N = N,,
and H = H,, for short and take the Fourier transform ty g (w, z2) = (fug\lf?H)(w,xg) for
29 > H. Then, for o € {—1,+1},

o0

(29) EVH 3962 ds = /ﬂN,H(W,OH)fb’N,H(w,aH)dw

Fc>o,0'H —00

Furthermore, 4 ;;(w, z2) + (k* —w?) dy,g = 0 for |zo| > H. Therefore, Gy, g has the form
(compare with (20))

Un.pg(w, ) = an,p(w, H) eV = @) for gy > H |
A ? g (w, —H) eV = (coa=i) - for py < —H |

and thus o Uy g (w,0H) Uy y(w,0H) = i |y g (w, 0 H)|*Vk? — w? and thus
o Im iy g(w,0H) iy ;(w,0H)] > 0. Therefore, the left hand side of (28) is non-negative
which implies that all a,; vanish; that is, u® = 0. This ends the proof of Part (A).

Part (B): Now u = uY) € HY(W,,) for all h > hg where again W, = R x (—h,h). From
(23) we conclude for N — oo and H := hg + 1 that

Z / (v1,0H) (EI’UH) dr, = / HVu‘Q — En(1 + q) [u]?] d

oe{+1,-1} Wy

The imaginary part of this expression vanishes again. Transforming this equation to
the Fourier space we observe just as in (29) that (Fu)(w, £H) vanishes for all |w| < k.
Therefore, from (20) we conclude that

(Fu)(w,x3) = (Fu)(w,£H)e Ve FEe2=) for +20 > H and |w| > k

and thus for |w| > k:

oo

[1Fu e de = (Fu)w mP [ et ar, - %

The integal vanishes for |w| < k. The analogous formula holds for the integral

f:olj |(Fu)(w, z9)|? dug. If (Fu)(-, =H) would be continuous in a neighborhood of w = +k
then this integral would be integrable with respect to w € R and, by Parseval’s theorem,
u € L2 (R?). This would imply that u vanishes because k? is not in the point spectrum of
) ——/A by Assumption 1.1.

H

1+
17



Part (C): Therefore, it remains to prove continuity of (Fu)(-,+£H) in neighborhoods of
w = *k. Let

(30> (FU) (xla T2, Oé) = fb(ﬂj‘l, X9, Oé) = Z U(.Tl + 27-‘-67 $2) e*i27rfa

LEL

for z € R? and o € R denote the Floquet-Bloch transform of u(-, zo) with respect to z;.
Since u satisfies the Helmholtz equation Au + k*nu = —k?*nqu in R? standard regularity
results yield u € H?(W,) for all h > hy. Then @ € L*((—1/2,1/2), H2(Q")) for all
h > hy by well known mapping properties of the Floquet-Bloch transform (see [15]).
Here, Q" = (0,27) x (—h, h). Therefore, (-, ) satisfies the equation

At(,a) + Kna(-,a) = —k*F(nqu)(-,a) in Q™

for almost all a € [—1/2,1/2]. We consider this equation as an equation for u(-, «) for
fixed right hand side § := k*F(nqu). As in the case of the modes (see (4)) this equation
is equivalent to

[1¥ita)- V5 - Enat)@lde — [ (Qait,a)Bds = [gt0)ida

Q r Q

for all v € H)(Q) and almost all a € (—1/2,1/2). Here, A, is the a—quasi-periodic
Dirichlet-to-Neumann operator given by (5). Transforming the a—dependence from the
solution space to the equation we set v(x, @) = e *14i(z, a) and (Ay@)(z) = e~ (Ay) ()
and arrive at the periodic variational equation

ov(-, o)
8271

/[VU(-,Q) Vi) — 2ia W — (K*n — o) v(-,a) ] dr — /(]\av(-,a))ﬂds

r

e MG (x,a)d(z)dr forall ¢ € Hy,,(Q).

Il
O — O

We note that the right hand side depends analytically on « (because nqu has compact
support in Q) and the coefficients of the left hand side depends continuously (because of
the square-root term in A,) on «. Furthermore, since this equation is of Fredholm type
with index zero, « is not exceptional if, and only if, this equation is uniquely solvable for
all right hand sides.

We decompose k again as k = { + r with £ € Ny and x € (—1/2,1/2]. Then 4 are the
cut-off values. By Assumption 1.3 these are not exceptional values. Therefore, for a0 in
some neighborhoods of £k the variational equation is uniquely solvable, and a — (-, @)
is continuous from [—1/2,1/2] to H'(Q) in neighborhoods of +x. This implies that
also the Fourier coefficients ,(ca, o) = \/%7 f027r i(z1, 2o, o) e ) of the a—quasi-
periodic function (-, x, o) are continuous from [—1/2,1/2] to C in neighborhoods of £x
for every x, € R.

Finally, we show the following relationship between the Fourier transform and the Fourier
18



coefficients of the Floquet-Bloch transform. For o € [—-1/2,1/2] and ¢ € Z we compute

51717 xz z(€+a)x1 diCl

(FuY (0 + a,z5) = v@;/

= \/% Z/ W (21 + 2mm, x5) e~ EH@+2mm) o)

mGZ

(31> = U\xy, T2, i(ﬁ—i—a)aq d.Il = ﬁg(l’,a)

[

which shows continuity of a + (FuV)(¢ + a, x5) in neighborhoods of +«. In particular,
(FuM)(-,£H) is continuous in neighborhoods of k. This ends the proof. O

3. EXISTENCE

In this section we will prove existence of a solution under the Assumptions 1.1, 1.3, and
1.4. The main part deals with the unperturbed case ¢ = 0. The general case follows by a
compactness argument. Therefore, for given f € L?(Q) we consider first the problem to
determine u € H. (R?) which satisfies

loc
(32) Au+k*nu = —f in R?
and the radiation condition of Definition 1.6. With the exceptional values &; for j € J

and their eigenfunctions gzgg,j, ¢=1,...,mj, j € J, determined in (7a), (7b), we define
the coefficients ay; € C as

2
(33) ag; = ”Z/f 0=1,...,mj, j€J.
7 |/\€J|

Therefore, we have to solve the equation (11a) for ¢ = 0; that is,

J

(34) AuY 4+ Enu = —¢g inR? with ¢=f+ ZZCL@JWJ,

jed =1
where ¢y ; are given by (11b). Furthermore, uM has to satisfy the generalized Sommerfeld
radiation condition (10). The plan is to take the Floquet-Bloch transform of this equation,
show solvability for all o € [—1/2,1/2] (without exception) and continuity with respect
to a and apply the inverse transform.
We note that the right hand side g of (34) is in L?(R?) (and has even compact support
with respect to x;). Therefore, for every a € [—1/2,1/2] we try to solve the Floquet-Bloch
transformed (with respect to z1) equation; that is, find w, € H}, ;,.(Q>) with

(35a) Awg + k*nw, = —(Fg)(-,a) in Q™ = (0,27) x R
satisfying the radiating condition
(35Db) (sign zo) wy(ov, xe) — i/ k? — (£ + )2 we(a, m3) —> 0,  |xa| — 00,

for the Fourier coefficients wy(c, z3) of w,(-,x2). Here, Fg denotes the Flochet-Bloch

transform of g, defined in (30). Fg is analytic with respect to o because the right hand
19



side of (34) has compact support with respect to z;.

The decomposition of ™™ in the half spaces x5 > hy and x5 < —hy of Lemma 1.8
carries over to the quasi-periodic case; that is w, has a decomposition in the strips Q;O =
(0,27) x (hg,00) and Q; = (0,27) x (=00, —hy), respectively, in the forms

_ + + : +

Wo = Weo + Wa, InGQ ,
h * is the uni —quasi-periodic solution of Aw + k2w = —Fg in QF
where w, , 1s the unique a—quasi-periodic solution o We g T K7W, 4 = g n Qho

and wig = 0 for x5 = £hy satisfying radiation condition (35b), and wio is the unique
radiating solution of Awio + k2w ;fo =0 in Qi) and wio = w, for w9 = £hy. This can
be seen by taking the Floquet-Bloch transform of uZ and vg'fj or directly by solving the
upper and lower half plane problems by means of the a—quasi-periodic Green’s functions

|: i/ k2 —(l4a)2|za—y2|

Gi(z,y) = Z
T VE — (0 + a)?
eV kz—(ﬁ+a)2(i(fﬂ2+yz)—2ho)} eiltta)(z1—y1)

for z,y € Qy.,  # y. Then w¥, is given by

(36) wk (z) = / (Fg)(y, ) GE(z,y) dy, =€ Q.
Q.

0

The proof of the following result is standard and omitted.

Lemma 3.1. Let a € [—1/2,1/2] be fized.
(a) Let wo € HY ,,(Q%) solve (35a) and (35b). Then walq € Hy(Q) satisfies

(37) [Vwe - Vi — E*nwaplde — | (Aqwa) 1 ds
z /
— / (Fg)vdx + / ag”;“g wds  for ally € HL(Q)
Q T

where again T = (R x {ho}) U (R x {—ho}) and A, : HY*(T') — H§1/2(F) is the
a—quasi-periodic Dirichlet-to-Neumann operator given by (5). Here Owg, ,/0v =
:i:@w;t’g/(‘?mg for xo = thyg.

(b) Let w, € HL(Q) satisfy (37). Extend wy by we = wy o+ w, into Qfo Then w,
satisfies (35a) and (35b).

By the representation theorem of Riesz we can write the variational equation (37) as

(38) Aawa = Ta in H(i(Q)?
20



where r, € HL(Q) and the linear and bounded operator A, from H!(Q) into itself are
defined as

(Aqw, w)Hl(Q) = [Vw -V — kE*nwi]dr — /(Aaw)ads
T

OWe, g —
ov Y ds

(Fo)Gds + [

r

(rou Q/J)Hl(Q) =

Qo O

for all w,¢» € HL(Q). Then A, is Fredholm with index zero. The equivalence implies
that « is an exceptional value if, and only if, A, fails to be invertible. This form (37)
allows the application of Fredholm’s theorem; that is, A,w, = r, is solvable if, and only
if 7, is orthogonal to the null space of the adjoint A} of A,. This is indeed the case for
this particular form of the right hand side. Before we prove this we show the following
properties of the operators A, and the right hand side r,,.

Lemma 3.2. Let Assumptions 1.1, 1.3, and 1.4 hold, and let o = &; for some j € J be
an exceptional value.
(a) The null spaces N'(As,) and /\/'(Agj) of Aa; and Aj . respectively, coincide and
are given by the restrictions of the functions in X; to Q.
(b) The Riesz number of A, is one; that is, the geometric and algebraic multiplicities
of the eitgenvalue zero coincide.

(c) For all ¢ € X; we have

(ray: D) iy = / (Fg)(x, &) d(x) da
i

where (Fg)(-, &;) is again the right hand side of (35a).

Proof: (a) A}¢ = 0 is equivalent to (A1, @) 1) = 0 for all ¢; that is,

/[w.va—k?nwadx — /(Aaw)ads = 0; that is,
Q r

/[w-va—k?nw] de — i Y Y VE = ((+ ) Y(oho) de(chg) = 0

Q oe{—1,+1} ¢€Z

for all Y € HY(Q). If @ = @&; this yields, by taking ¢ = ¢ and the imaginary part, that
¢o(£ho) = 0 for |[€ + &;| < k; that is, ¢ € Xj.

: 2 _ _ _ * 2 —
(b) Let ¢ with A2 ¢ = 0. Then w = As;¢ € N(Aqs;) = N(43)) and thus |[w]|F o) =

(w,Adjqb)Hl(Q) = (Agjw, QS)HI(Q) = 0; that is, w = 0.
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(c) We compute (note that w, ; = wa4(+, &; vanishes on I'):

~ — o o aA
(ra; @) g = /(Fg)(-,dj)qﬁd:v + /[ T g fwag ds
r

Q

— [Fotaydae - [ [b8wa,— wa,ad] ds
Q Q>°\Q

= /(Fg)(-,ézj)gdx — / g[Awa,g + k:2wayg} dx
Q Q>*°\Q

— [ (Fo)tapodr.
Qoo

This ends the proof. 0

Lemma 3.3. For every exceptional value o = &, the right hand side (Fg)(-,&;,) of

(35a) is orthogonal to the eigenspace X, (see (6)) in L*(Q>). Therefore, by the previous

lemmata, the variational equation (37) and the equations (35a), (35b) are solvable for all
€ [—1/2,1/2] without exception.

Proof: Recall the definition of g and thus Flg = F f + Zjej oo agjFopp j where g, are
defined in (11b).

Since Qgg’j is &;—quasi-periodic it follows easily from the properties of the Floquet-Bloch
transform that

Oy - .
Gg;ffﬂ) + (FX) (1,00 — &) do ()

(Feei)(@,0) = 2(Fx*)(z1, 0 — d;)

where x* = ¢ for A\;; = 0. (Note that ¢/, € L*(R) in contrast to vy itself.) Since
(Fx*)(+, 8) is B—quasi-periodic its Fourier series is given by

(Fx)(@1. ) ng e = \/—fo (0 + ) e

ZGZ el

where we used (31) for the relationship between the Fourier transform Fy* and the
Fourier coefficients x5 (3) of the Floquet-Bloch transform (Fy4)(-, 3). With (Fx*)(0) =

\/LzTr 2 () (t) dt = :I:\/Lz—7r we can write

1 d (FXE)E+B) i(t+B)x

P Vamder 2o T e, e,

FX xlaﬁ) = 1 1 ]—' zfa:
iﬁ—i—\/ﬂdaﬁl Z X 17 /BEZ7
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which we abbreviate as (Fx*)(z1, ) = £5- 05+ %pi(:pl, B) where dg = 0 for 5 ¢ Z and
dg = 1 for 8 € Z. This allows us to write

1 99u(x)

(Foej)(z,a) = + B,

5&*03]'

d Oz d> s
b2 gbptona—a) 90 o 0 - 4) dule)

1 9¢y(x)

T 01y

+

5(17&]' + A@Zj(ﬂﬁ, Oé) + an(x>,ﬁZj(x7 Oé)

for Ay ; 2 0 where ﬁgi’j(x, ) = p*(x1, 00— G;) ¢y (). Substituting this into (35a) we obtain

Aw, + k*nw, = —(Ff)(-,a)
1 o . a(ifj 2
_ 2 o Va, . 2265 T A .
- jEEJ da—a, ng (sign A ;) ag e [Av(-, @) + Kno(-, )]

with an obvious meaning of v.

Now the proof of orthogonality is not difficult anymore. Let a@ = &;, for some j, € J

and ngSgO,jO € Xj,. Then fQoo [Av(-, &) + E*no(-, ;)] @Odo dx vanishes by Green’s second
theorem. Furthermore,

1 Mjq ' aéé =
- Z(Slgn )\Zvj()) g, jo P = gbfou’o dx
s — X1
QOO
1 . Ty g =
= ; (51gn )‘fo,jo) Ao, 50 TOJO = - / f(.%') ¢€0,j0 (.1') dx

Q

= —/(Ff)($,d’jo)§gfo7jo(x)dx

Qoo

by the properties of ¢, from (7a), (7b) and the definition (33) of as;. The last equation
holds because f has support in ). This ends the proof. O

Therefore we have shown that the source problem (35a), ((35b) in the Floquet-Bloch
space is solvable for all & € [-1/2,1/2]. In order to apply the inverse Floquet-Bloch
transform we have to show that the mapping a — w, from [-1/2,1/2] to H'(Q¥) is
square integrable. This is not obvious. We show that it is even continuous. As in
Remark 1.5 we transform again the dependence on « from the space to the differential
equation. The operator (T,u)(x) = e *®1y(x) transforms H!(Q) into H! (Q) (and also

per

H(Q>) into H,.(Q>)) and the variational equation (37) into the task to determine
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., € H,,,.(Q) with

(39) /[Vwa w—zm%w (k?n — o2) i, 6] dw — /Aa(wawds

Q r

= [rrgvae + [P Gas forav e L@,
Q I

where Ay = ToA T is the periodic form of A, (as in Part (C) of the proof of The-
orem 2.2). We write this as Agh, = 7o in H;ET(Q), analogously to above. Let & be
some fixed exceptional value. (We drop the index.) In order to apply Theorem 5.1 of
the Appendix we have to show that 7, and A, are differentiable at & with respect to

a and that P8 < | N(A ) is bijective from the null space N( As) of A onto itself. Here,
P:H! (Q)— N( ) is the projection along the direct sum H}, (Q) = N'(As) @ R(Aqs).

per per
Differentiability is seen directly from the definitions because & is not a cut-off value; that
is, [{ + &| # k for all £ € Z.

Let w, 1 € N(As). Then Thw, Tsth € N'(Aqs), and w, ¥ have therefore expansions in the
forms

w(m) — 1 Z (j:h) \/ f+a)2 kQ(il‘Q ho) ile,
2m [¢+6|>k
w(l') _ Z we :I:h w/Ha2 k? (k2 —ho) il

ﬁ\

|Z+a|>k

[Gaias = = Y S AT B (oh) GE(oho).

T oce{+1,—1} [t+&|>k

From this form we observe that

(aA@w, w) = 2/{—za—w+aw} Yde
oo HL (@) 2 o0x

e+a S
+ > Z 7 (oho) g (oho)
oce{+1,—-1} |t+&|>k \/ +a

Using the expansions of w and ¢ we compute

2/[—i§—w+dw}ﬁd9@ = 2 Z (£ + &) w] (ho) ¥ (ho / 2V (a2 = @2 =ho) g,

X1
Q.

0

g"‘O[ T
pr— h
|H%:M\/Hoz 2 o) i (o)



and analogously for the integral over @, . Therefore,

812103 8w — . 5’ iG TiAmT
(a&w,w)Hl o = 2/{—28—%—1—0410}1&611’ = —27,/8—1_1[6 w] [eid* 1] dx

per Qoo (o8]

and P%w vanishes if, and only if, the last integral vanishes for all ¢y € N (fla) This
implies that w vanishes by Assumption 1.4.

Therefore, all assumption of Theorem 5.1 of the Appendix are satisfied which yields
that the unique solution @, € H), (Q) for a # & can be continuously extended into a.
Therefore, the mapping o — w, is continuous from [—1/2,1/2] into H(Q) (for every
H > hg) which implies that the inverse Floquet-Bloch transform (Y = F~'w, € H' (W)

for every H > hy. We have therefore shown the following result for the special case ¢ = 0:

Theorem 3.4. Let Assumptions 1.1, 1.3, and 1.4 hold. Then there exists a unique
solution v € H. (R?) of the source problem (8) satisfying the radiation condition of

loc

Definition 1.6. Furthermore, for every H > hgy the mapping f — u is bounded from
L2(Q) into HY(Wy).

Proof: It remains to study the case of a general q. Let L : L*(Q) — H'(Q) be the
linear and bounded operator which maps f € L*(Q) into u|g where where u solves (8)
for ¢ = 0 and the radiation condition. For arbitrary ¢ the solution of (8) is equivalent to
the fixpoint equation u = L(f + k*nqu) for u € L*(Q). Since L is compact from L*(Q)
into itself the uniqueness result of Section 2 yields existence. O

4. THE ASYMPTOTIC BEHAVIOUR OF THE SOLUTION

It is well known (see, e.g. [9]) that for closed waveguides the solution decays exponentially
as |r1| tends to infinity. This follows also from Theorem 5.1. Indeed, in this case the
variational equation (39) holds in the space {¢p € H),.(Q) : ¥ = OonI'} (assuming
Dirichlet boundary conditions on I') without the boundary terms involving the Dirichlet-
to-Neumann map. This shows even analytic dependence of A, and 7, on a. Therefore,
from well known properties of analytic functions, continuity of a — w, at an exceptional
value implies even analyticity which shows that the Floquet-Bloch transform is analytic in
[—1/2,1/2] which implies that u'!) itself decays exponentially. The situation is different in
the case of an open waveguide because of the existence of cut-off values. They destroy the
analytic dependence on « but, as we show next, allow a special form of Holder continuity.

Let now & € [—1/2,1/2] be a cut-off value; that is, the set L ={{ € Z : |{ — &| = k} is
not empty. L can consist of one or two elements. Indeed, if we decompose k as k =0+ Kk

with ¢ € Ny and # € (—1/2,1/2] then L = {(signx)¢} if 0 < || < 3 and L = {/, ¢}

if & =k=0(then { >1)and L ={{,—0—1}if&d=r=13and L = {0, +1}if

0= —K=—3.

N[

Lemma 4.1. Let Assumptions 1.1, 1.3, and 1.4 hold. Let k = (+k for some ¢ € Ny and
k€ (=1/2,1/2]. Then for every & € [—1/2,1/2] which is not a cut-off value and every
H > hq there exists a neighborhood of & in which the mapping o — (FuM)(-, &) from R
into HY(QM) is analytic.?

2Here, Q" = (0,27) x (—H, H).
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Furthermore, in a neighborhood (& — §,& + 0) of a cut-off value & € [—1/2,1/2] the
transform Fu" has the form

(Fu) () = g (0) +Va—ail(a) +Va—aa () +|a -l @ (,a)
with smooth (with respect to o) functions 11(()1)(-, a), a§1)(-, a), and ﬂ(il)(-, a) in a neighbor-

hood of &.

Proof: We look again at the variational form (39) for the periodic transform w,(x) =
e~ (FyM)(z, a) which we write in the form

0w,
ox 1

S N VR =t a) wi(ohe) Vi (ohy)

oe{+1,—1} L€Z

P — (K*n — o), ) da

(40) Vi, - Vib — 2i
/

- [emEae e + [ Ratame ey e i)
Q

r

+
where again alg‘;" = jzaw‘*g for 2, = £he and w}, is given by (36) and wi (£he) and
Q/J[ (+hg) are Fourier CO€fﬁClentS of w, and 1, respectlvely, for x9 = *£hy.

Again, with the representation theorem of Riesz we write this Ayt = 7 in H,..(Q).
Let first @ be not a cut-off value. Since the square root function is holomorphic in
C\ iR<o we note that the function 7, and the operator Aa depend analytically on « in a
neighborhood of & We note that « is exceptional if, and only if, A, fails to be invertible.
Therefore, if & is not exceptional then the (unique) solution w, depends analytically on
« in a neighborhood of &. If & is exceptional then the assumptions of Theorem 5.1 of the
Appendix are satisfied (as we have shown above) and, therefore, w, has a continuous —
and thus analytic — extension into &.

Now we study the case that « is in a neighborhood of a cut-off value & € [—1/2,1/2].
We set ty(a) = vVa—a and t_(a) = va — &. In order to treat all cases of the sets L
simultaneously we set {1 = £/ in the case that k| < 1/2 and (. =10,0_=—0—1in the
case that x = 1/2 and @ = 1/2 and ¢, = { + 1, {_ = —( in the case that x = 1/2 and

& = —1/2. In all cases we have that \/k — (ls + a)? = ti(a) p(a) + ne(e) where py
and 74 are analytic in a neighborhood of a.

First we consider the right hand side 7,; that is, the right hand side of (40). The first
term is analytic with respect to a. The second term involves wjE from (36). We split

the Green’s function GZ(z, y) into the series over ¢ ¢ {(, {_} and the terms ¢ = /, and
¢ = (_. We consider G*. The Taylor expansion yields

k2—(l140a)2(|za—ya| _ et k2—(I++a)2(za+y2—2ho)
VR = (i +ay

= ax(T2, Y0, ) + \/k2 — (0 + )2 by (72,40, @) = ax(ra, 4o, @) + te(@) b (22,12, )
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with functions a1 and by which depend analytically on « in a neighborhood of &. Sub-
stituting this decomposition (also for the lower boundary with G™) into the form of w,
yields the right hand side 7, has the form 7, = 740 + t4(®) ot + t_() 7o, where
Ta,o and 741 depend analytically on « in a neighborhood of &. The same decompo-
sition is done with the (periodic) Dirichlet-to-Neumann map T,A,7,*. We note that
this operator consists of two components, which acts on H'/?(I'y) and H'/?(I'_) where
'y = (0,27) x {£ho}. We write it as

(TaAaTa_lﬁb) (.771, :tho = :|:h z[ml

k2 — (04 «)?

ZeZ

= (AL9)(@1, £ho) + tila )Zp\;;_) 67, (£ho) € + t_(av) ‘Z/i/z(_:‘) ¢; (ho) ="

This decomposition defines two two-dimensional operators E, (a) and E_(«a) from H,,(Q)
into itself by

(Be(@)d,¥) g1 g = ip+(a) [07, (ho) ¥y, (ho) + 67, (—ho) ¥y (—ho)] , é,4 € Hpp(Q).
Then the operator A, has a decomposition in the form
Ay = Ba + t:(a) Eo() + t_() B_(a)
where B, depends analtically on . Then (37) is equivalent to
(41)  [Bat+is(@) Ey(@) +i(a) E()]Wa = Tap+ b4 (@) Tay +1()7a

Since the cut-off value & is not exceptional by Assumption 1.3 we conclude that As is
invertible and thus also B, in a neighborhood of &. Since the operator on the left hand
side of (41) is a small perturbation of By the solution is given by the Neumann series as

o0

Do = > _(=1)"[t1(a) By By (@) +t-(a) By E_ ()] By M Fao + (@) oy + 1 (@) Fa ).

m=0

Therefore, noting that ¢, («)> and ¢_(«)? are analytic functions, the assertion follows by
sorting this expression for ¢, (a), t_(«), and t,(a)t_(a) = ila — @|. O

The following lemma will be needed:

Lemma 4.2. For every a >0 and o € {+1,—1}

: [ f 1 —iTa ] : m
o%}inoo _\/ 1T / NG e dOz— = (1—io) \/;,
0

| [ e s | [ =D)V2r, o=1,
lim \/]T|/ﬁe doz_ = { 0, 1

ocT—o0 o = —

Proof: Using the substitution ¢t = |T'|a = 0T« the first formula follows from

a|T| alT| a|T|
e~iot g Cost smt

/f"%“:¢ﬁ/f f_ i f_ N
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and

For the second formula we note that

a ] ‘ a ] ‘ ] a ] ‘
—iTa d —iTa d [ Ko d
/—\/—e a = /—\/—e a + —Z,/—\/—e 0!

0
1 / 1 —zToz d (1 )I /a 1 —iT« d
= — Z o — — 1) 1lm —€ (0%
a Va
0

which yields the second assertion. 0

Theorem 4.3. Let Assumptions 1.1, 1.3, and 1.4 hold. For all H > hq there exists ¢ > 0
such that ||u(1)||H1(Q£1) < gz for all £ > 1. Here, QF = ©2nt,2r((+1)) x (—H, H).

Proof: For the different cases of exceptional values we define open sets Iy, I, and/or I3
and corresponding functions 1y, 19, 3 € C*°(R) with suppy; C I; as follows.

Case I: If |s| < 1 we define I, = (=1/2 —¢,1/2 + &) \ {£x}, L = (k — &,k + ¢), and
I3 = (—k —e,—k +¢). (The latter only if x # 0.) The functions 1; are chosen such that
> ¥ila) =1 for all a € [-1/2,1/2] (partition of unity).

Case II: If k = 1/2 we define I, = (—¢,1 +¢)\ {1/2} and I, = (1/2 —¢,1/2+¢). The
functions 1, 1, are chosen such that 1 (a) + ¥2(a) = 1 for all « € [0, 1].

The inverse Floquet-Bloch transform is given by

U(l)($1+2ﬂ'£7$2) = /(Fu(l )(iL' CY ZQW@OtdOé _ Z/w Fu(l) (.’L' Oé) i2”mda

for x € Q¥ and ¢ € Z. Because of periodicity we can choose the interval of integration
as I = (—1/2,1/2) which we do in the first case or I = (0, 1) which we do in the case of
k = 1/2. In the following, however, we restrict ourselves to the first case. The second
case is treated as the case k = 0.

The integrand of the term containing v); vanishes in a neighborhood of the cut-off values
+x and is therefore smooth. Furthermore, since ¢¥; = 1 in neighborhoods of +1/2 and
since (FuM)(x,-) is 1—periodic, partial integration (two times) yields

1/2
H [ int@) (Pu) 0y e da <2
o 11(QH)
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Next, we consider the case containing 1; for j € {2,3}; that is by Lemma 4.1,

1/2
~1/2
1/2 12
= / Vi) 7161)(96, o) e do 4 / () |a — al ﬂgl)(_7 a) €270 gy
—1/2 —-1/2
1/2
+ / i) [Va—ail (@) + Va—ail (z,a)] €>da
~1/2
where & = Kk or @ = —k if j = 2 or 7 = 3, respectively. Two times partial integration

of the first term gives O(1/£?) (note that ¢; vanishes near £1/2). Also the second term

can be partially integrated twice and gives O(1/¢?). Partial integration of the third term
yields

1/2

Ui« \/(34—0471(1) T, —|—\/a—dﬂ(_1) T, e 2l oy
j +
~1/2
1/2
! 8 A Y A ~ 2l
=~ / g[\/a—a@/)j(a)u(j)(x,a)+\/a—a¢j(a)u9)(x,a)}62 L da
—1/2
a+e
— L/ ;@b(&)ﬂ(l)(l’ Oé)— 1 w(OZ)INL(l)(ZL‘ Oé) €i27r€ocda
Z47T€A \/d—a J + ) Oé—OAé J — )
1 a+e 9 5
[ oy — o — . ~(1) N v — A — . ~(1) i2mla
i27r€A ( a-a O [1/13(04) iy (z,0) +Va—a v [@Z}J(O‘) u_ ($,a)]) e do.

The second integral on the right hand side is again of order O(1/¢?). For the first integral
we write

a+e
1 (1) 1 (1) ) 20
———Yi(a)u ) (x,) — —— Vi (a) ' (x, ) | da
A/(\/mqu)]() -‘r( ) @—@¢]() ( )
a—e
G+e 1 Gte 1 G+te
- N(j)(x,éz) ey — ﬂ(l)(x,@)/ _ o + /v(w,oz) e o
a—a« a—a )




We show that v € W ((=1/2,1/2), H(Q™)). Indeed, for the first term, which we denote
by v (x, ) we compute

0
% - W Wﬂ(o‘)ﬂgrl)(%a) — ﬁsrl)(:v,d)}
0
! dl— = 5 [¥3(@) 8 (z,0)]

We estimate (note that ¢;(&) = 1)

1 (1) (1) &
o —al [0() @y (- o) — @ (-, @)

9
op
This shows that dv; /Ja satisfies an estimate of the form ||0vy (-, a)/0al| g1 (gry < ¢//|a — @.

The second integral is estimated in the same way. Therefore, also the integral f_IﬁQ v(z, ) e?™do

< max

HY(QH) h

[v;(8) @ (-, B)]

1
o — @

o
(8 al (-, 8)] dB .
L/aﬁ[ " | HY(QH)

is of order O(1/|¢|) by partial integration. Finally, we compute

e i2mla \/W

«

€ ) | i
= \/M/Te_ﬂ”mda — {(1 ZO)”QW’ £ o0,
(0% )

G+e

=

6227r€a do

{— —00,

and analogously

G4

o 1 , 0 { — o0
—i2ml& 2mla ) ’
e \/27r|€|/ —¢ dov — { (1= i) var, [ —cc.
Therefore, we conclude that
1/2 _
: 3/2—i2nla 1 2t L+ a1y, 4
lim | J¢f*/2e ¥5(0) (Pu)(-,a) e2da| = —12 gzmag)(. )
f—7oo A
—1/2
in H1(QHY). O

Theorem 4.4. Let Assumptions 1.1, 1.3, and 1.4 hold. For every R > 0 we have that
u(l)(x) = O1/+/|z2]) as |xs] = o0

uniformly with respect to |x1| < R.

Proof: Let again k = ( + x with / € Ny and x € (—1/2,1/2]. As in Lemma 1.8 we

decompose u) in the half planes x5 > ho and z, < —hg, respectively, in the forms

u™ = ug 4+ 3, 5 arjv,; where ug solves Aug + k*ug = 0 for £ay > ho and ug = v for

T9 = +hy and ij is given by (14a) (v, ; is defined analogously). The functions UZEJ' decay
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as O(1/+/|zs]) by Lemma 1.8. It remains to consider the part uZ. We restrict ourselves

to the upper half plane and write ug as

1/2
ug (z1 + 27m, x9) = / (Fu))(z,a) e*™da, m €L, x5 > hy,
~1/2
where F’ uél) denotes again the Floquet-Bloch transform of uj. Lemma 4.1 implies that the
trace Full|r € CY([-1/2,1/2]\ {k, —r}, HY*()) N W1 ((=1/2,1/2), H/*(T')). There-
fore, also ag € C*([=1/2,1/2]\ {x, —r}, HY(Q" \ Q) N W'((-1/2,1/2), H'(Q" \ Q))

for every H > hg. Therefore, partial integration with respect to « is possible. For x5 > hg

the solution F uél) is given by the Rayleigh expansion as

(Fu(l))( _ ZW otV k2= (+a)2 (22 —ho)+i(l+a)a

0

eez
where (v \/g f (F Uo (21, ho, ) exp(—i(f + «)x1) dxy are the Fourier coefficients
of (Fuo )(- ,ho, ). Therefore,
1/2
U(T(l'l + 27Tm,£lj'2) = Z / ﬂe(a) ei k2—(+a)?(z2—ho)+i(l+a)z1 ei27rma dov .
ez

Let m,/ € Z and = € Q" \ Q. We set ¢(a,x1) = iy(a) '+ for abbreviation,
and consider several cases. X

Case I: 0 < |{| < £+ 2 and ¢ # (. Then either [ + a| < k for all |a| <  or |[{ + af > k
for all |a| < 1. Both cases are treated in the same way. Let |( 4+ a| < k: for all |a| < 1.

Then we make the transform t = t(a) = /k? — ({+ «)?. It is smooth and t'(a) =
Yo
k2—(l+a)?

and a = Vk%? —t? — ( and da:—mdt We get

which does not vanish because ¢ # 0. Therefore, the transform is regular

1/2 VE2E—(6—1/2)2
V= (tra)(za—ho) 7, _ PR =2 = L)t s
(o da T e dt .

—1/2 k2—(0+1/2)2

As mentioned above we can apply partial integration and get an estimate of the form
O(1/x2) uniformly with respect to x; € [0, 27] and m from bounded sets and [¢| < ¢+ 2.
This finishes the part [( +a| < k of Case I If [( 4+ «| > k for all || < % then one uses the

transform t = /(¢ + «)? — k% and procceeds as before.
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Case II: £ = 0. Then, with the same substitution and ay = min{k, 1/2},

ag

[ ot e g
ag

ag

- [t

+ ¢
k

_ <O7 ) k / 1 eit(ﬂﬁz—ho) dt
B2—

gg( \Z k:2 - t27 ) 3 eit((EQ—ho)

. iVk2—a?(z2—ho) d o
a,-)]e a =
(—a, )] e i

k
/ a

2

V2k kE—t
Vi —a?

1 [g)( /2 —2,)t gE(o,.)k] it(a—ho) gy

= VE+E ek

_|_

~
~

/k

where we have set gzg(oz, ) =oé(a, ) +¢(—a,-). Since  is smooth at a = 0 we observe that
the term in the brackets |- - -] is smooth as well and vanishes at ¢t = k. Therefore, partial
integration implies that the second term behaves as O(1/x2) as x9 — 0o uniformly with
respect to x; and m from bounded sets. By Lemma 4.2 the first integral behaves as

k k—/k2—a3
1 )
) - elt(ngh()) dt — T /
/ VE—t Vo2
V=g 0

as o — oo. Together one gets an estimate of O(1/,/x3). Analogously, if ag = k < 1/2,

1
N

emis@ho) gy (1—4) |2

\/1:_2677,]{:(127h0 2

[ oty g

|o| >k

1/2 V1/4—k2
= [lota) +ot-a e R o = [ B et gy
7 ’ N
/ K2+t

k

which behaves as O(1/z3).

Case III: ¢ = { > 1. Then we have to distinguish between o < k and o > K (since
10+ a| =0+ a). With t = \/k2 — (£ + )2 the first case is transfomed to

K \VE2—(1—1/2)2 ~ .
/gb(a’.)ei\/k?(l7+a)2(352h0) do — / gb( k2 —t _éa')teit(asrho) &t
0

1/]’{;2_t2

~1/2
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while with ¢ = /(¢ + «)2 — k2 the second case is transfomed to

—1/2 (6—1/2)2—k2

/ ¢ ‘/(Z+a2 k2(1‘2 hO _ / ¢(\/k2 +t2 —67-)t6_t($2_h0) dt
Vk? + 2

Both terms decay as O(1/xs).

Case IV: [0| > 04 2. Then [/ + o> —k* = ([(+a| —k)(|0+ a| + k) > [|(| — (k+1/2)]?
[[6] — (¢ +1)]* and thus

1/2
2

o, ) e” (I+0)2—k2(z2—ho) do

l0>0+2"_7 2 >
1/2
< 2 o= D)) (x2—ho) g4 < e~ (@2—ho)
> [l < ¢ max [o(a, )l ¢
= Z+271/2
This ends the proof because the cases I-1I1 appear only finitely often. 0

5. APPENDIX

The following result is a special case of a slightly more general result of Colton and Kress
(see Section 1.4 in [7]).

Theorem 5.1. Let X be a Banach space, I C R an open interval and r(«,-) € X and
K(o,-) € K(X) fora € I a family of linear and compact operators® such that r € C'(I, X)
and K € C! (f,IC(X)), respectively, where I = (& —e,&+e¢) C I for some & € I and
e>0.

Let I — K(a,-) be bijective for a # & but N'(I — K(d,-)) # {0}. Let the Riesz number
of I — K(&,-) be one; that is, N((I — K(&,"))*) = NI — K(&,")) and P: X - N :=
N(I - K(4, )) be the projection operator onto the null space with respect to the direct
sum X = NEBR(] — K(d,-)). Assume, furthermore, that P K (& ‘/\/ N = N s
one-to-one and r(é,-) € R(I — K(&,-)).

Then the unique solution u(a, ) € X of (I — K(a,-))u(a, ) = r(a,-) for a # & converges
to a solution u(é,-) of (I — K(&,-))u(é,-) =r(a,-). In other words, u € C(I,X) where

e > 0 in the definition off is possibly smaller than the original one. Furthermore, the
mapping v +— u is bounded from C'(I, X) into C(I,X).
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