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Abstract. In this paper we consider the propagation of waves in an open waveguide in
R2 where the index of refraction is a local perturbation of a function which is periodic
along the axis of the waveguide (which we chose to be the x1−axis) and equal to one for
|x2| > h0 for some h0 > 0. Motivated by the limiting absorption principle (proven in
[13]) for the case of an open waveguide in the half space R× (0,∞)) we formulate a radi-
ation condition which allows the existence of propagating modes and prove uniqueness,
existence, and stability of a solution. In the last part we investigate the decay properties
of the radiating part in the direction of periodicity and orthogonal to it.

1. Introduction

Let k > 0 be the wavenumber which is fixed throughout the paper and n ∈ L∞(R2) the
real valued index of refraction which is assumed to be 2π−periodic with respect to x1 and
equals to 1 for |x2| > h0 for some h0 > 0. Furthermore, let q ∈ L∞(R2) and f ∈ L2(R2)
have compact support Q = (0, 2π) × (−h0, h0). We assume that n(x) + q(x) ≥ n0 in R2

for some n0 > 0. It is the aim to solve

(1) ∆u+ k2n(1 + q)u = −f in R2

subject to a suitable radiating condition stated below.

The solution of (1) is understood in the variational sense; that is,

(2)

∫
R2

[
∇u · ∇ψ − k2n(1 + q)uψ

]
dx =

∫
Q

f ψ dx

for all ψ ∈ H1(R2) with compact support. By standard regularity theorems it is known
that u ∈ H2

loc(R2) and ∆u + k2n(1 + q)u = −f almost everywhere. For |x2| > h0 the
solution u is a classical solution of the Helmholtz equation and thus analytic.

As mentioned above, a further condition is needed to assure uniqueness (see Definition 1.6
below). In contrast to the closed waveguide; that is, where R2 is replaced by R× (a−, a+)
and boundary conditions for x2 = a± are added, not only a radiation condition in the
direction of periodicity; that is, x1, is needed but also one in direction of x2. The radiation
condition should be in accordance with the limiting absorption principle; that is, the
solution u should be the limit (as ε > 0 tends to zero) of the solutions uε ∈ H1(R2)
corresponding to wave numbers k + iε instead of k. Candidates are the Sommerfeld
radiation condition (see, e.g., [8] for bounded media or [1] for periodic open waveguides)
or the “upward propagating radiation condition” which is popular for scattering problems
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by rough surfaces (see, e.g. [4]). While the first excludes the existence of propagating
modes (see Definition 1.2); that is, is two restrictive, the second is not sufficient for
uniqueness; that is, is not restrictive enough. For layered media; that is media where n
is constant with respect to x1; radiation conditions have been developped in, e.g., [16] or
[5, 6].
In this paper we first investigate uniqueness, existence and continuous dependence on
f of equation (1) complemented by the radiation condition which has been introduced
in [13, 14, 11, 12]. For closed waveguides this radiation condition is equivalent to the
condition based on the dispersion curves (see, e.g., [9]). For the proof of uniqueness we
were inspired by [10]. We had, however, to modify his proof considerably because of the
full space waveguide instead of the half-space waveguide considered in [10].
Second, we investigate the asymptotic behaviour of the solution in the direction of the
waveguide and orthogonal to it. While for closed waveguides the solution is (for x1 →
+∞ and x1 → −∞) a finite sum of propagating modes and a function which decays
exponentially (evanescent mode) we will show that the decaying part for open waveguides

behaves only as O(|x−3/2
1 |) in the direction of the waveguide and as O(|x−1/2

1 |) orthogonal
to it.

First, we make the assumption that k2 does not belong to the point spectrum of − 1
n(1+q)

∆;

that is,

Assumption 1.1.
There does not exist a nontrivial u ∈ H1(R2) with ∆u+ k2n(1 + q)u = 0 in R2.

Even for the unperturbed case q it is in general not known whether this assumption is
needed or if it is automatically satisfied.

Definition 1.2. α ∈ (−1/2, 1/2] is called an exceptional value (or Floquet spectral value)
if there exists a non-trivial u ∈ H1

α,loc(R2) =
{
u ∈ H1

loc(R2) : u(·, x2) is α−quasi-periodic
}

such that

(3a) ∆u+ k2nu = 0 in R2 ,

(3b) u(x) =
∑
`∈Z

u±` e
i(`+α)x1 ei

√
k2−(`+α)2(±x2−h0) for ± x2 > h0

for some u±` ∈ C where the convergence is uniformly for |x2| ≥ h0 + ε for every ε > 0.
We recall that a function u(·, x2) is α−quasi-periodic if u(x1 + 2π, x2) = e2παiu(x1, x2) for
all x = (x1, x2) ∈ R2. The functions u are called propagating (or guided) modes.

It is not difficult to see that α is an exceptional value if, and only if, there exists a
nontrivial u ∈ H1

α(Q) = {u ∈ H1(Q) : u(·, x2) is α−quasi-periodic} with

(4)

∫
Q

[∇u · ∇ψ − k2nuψ] dx −
∫
Γ

(Λαu)ψ ds = 0 for all ψ ∈ H1
α(Q)

where Γ = (R×{h0})∪(R×{−h0}) and Λα : H
1/2
α (Γ)→ H

−1/2
α (Γ) is the α−quasi-periodic

Dirichlet-to-Neumann operator given by

(5) (Λαφ)(x1,±h0) =
i√
2π

∑
`∈Z

√
k2 − (`+ α)2 φ`(±h0) ei(`+α)x1 , x1 ∈ R ,
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for φ ∈ H1/2(Γ). Here, φ`(±h0) = 1√
2π

∫ 2π

0
φ(x1,±h0) exp(−i(`+α)x1) dx1 are the Fourier

coefficients of φ(·,±h0). If we set ψ = u in (4) and take the imaginary part we observe
directly that u`(±h0) = 0 for all ` ∈ Z with |`+ α| < k. Therefore, if α is an exceptional
value with corresponding eigenfunction u and α is not a cut-off value; that is, |α+ `| 6= k
for all ` ∈ Z, then u is evanescent; that is, exponentially decaying as |x2| tends to infinity;
that is, satisfies |u(x)| ≤ c e−δ|x2| for |x2| ≥ h0 and some c, δ > 0 which are independent
of x. We formulate the latter condition as an additional assumption

Assumption 1.3. Let |`+ α| 6= k for all exceptional values α and all ` ∈ Z; that is, the
cut-off values are not exceptional values.

Under Assumptions 1.1 and 1.3 it can be shown (see, e.g. [13]) that at most a finite number
of exceptional values exist. Furthermore, if α is an exceptional value with eigenfunction
u then −α is an exceptional value with eigenfunction u. Therefore, we can numerate the
exceptional values such they are given by {αj : j ∈ J} where J ⊂ Z is symmetric with
respect to 0 and α−j = −αj for j ∈ J . Furthermore, it is known that every eigenspace

(6) Xj =
{
u ∈ H1

αj ,loc
(R2) : u satisfies (3a) and (3b)

}
is finite dimensional with some dimension mj > 0. We construct a special orthonormal
basis in Xj by considering the following finite dimensional self-adjoint eigenvalue problem
in Xj.

Let j ∈ J be fixed. Determine λ`,j ∈ R, ` = 1, . . . ,mj, and non-trivial φ̂`,j ∈ Xj such that

(7a) −i
∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j k

∫
Q∞

n φ̂`,j ψ dx for all ψ ∈ Xj ,

where Q∞ = (0, 2π)× R. Let the eigenfunctions be normalized such that

(7b) 2k

∫
Q∞

n φ̂`,j(x) φ̂`′,j(x) dx = δ`,`′ , `, `′ = 1, . . . ,mj .

We note that φ̂`,j ∈ H2(Q∞) and even analytic for |x2| > h0. We make a further assump-
tion.

Assumption 1.4. Let λ`,j 6= 0 for all ` = 1, . . . ,mj and j ∈ J ; that is, there is no

non-trivial φ ∈ Xj with
∫
Q∞

∂φ
∂x1

ψ dx = 0 for all ψ ∈ Xj.

Remark 1.5. This condition is equivalent to the requirement that the group velocity does
not vanish. Indeed, assume that for all α there exists eigenvalues µν(α) ∈ R and cor-
responding eigenfunctions uν(α) ∈ H1

α(Q∞) that satisfy ∆uν(α) + µν(α)nuν(α) = 0 in
Q∞. Then α̂ is exceptional if µν(α̂) = k2 for some ν. We transform uν to its periodic
form by setting ũν(x) = e−iαx1uν(x). Then ũν(α) is 2π−periodic with respect to x1 and
satisfies ∆ũν(α)+2iα ∂ũν(α)/∂x1 +(µν(α)n−α2)ũν(α) = 0 in Q∞. Assuming that ũν(α)
is differentiable with respect to α we differentiate this equation and set α = α̂. This yields

∆ũ′ν(α̂) + 2i α̂
∂ũ′ν(α̂)

∂x1

+ (k2 n− α̂2) ũ′ν(α̂) = −2i
∂ũν(α̂)

∂x1

+ [2α̂− µ′ν(α̂)n] ũν(α̂)
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in Q∞. We multiply this equation by ũν(α̂), integrate over Q∞, and use Green’s second
theorem. This yields

2i

∫
Q∞

ũν(α̂)

[
∂ũν(α̂)

∂x1

+ iα̂|ũν(α̂)|2
]
dx + µ′ν(α̂)

∫
Q∞

n |ũν(α̂)|2 dx = 0 .

Formulated with uν instead of ũν this yields

2i

∫
Q∞

uν(α̂)
∂uν(α̂)

∂x1

dx + µ′ν(α̂)

∫
Q∞

n |uν(α̂)|2 dx = 0 .

Therefore, the condition of Assumption 1.4 (for mj = 1) is equivalent to µ′ν(α̂) 6= 0.

Now we are able to formulate the radiation condition. In all of the paper we make
Assumptions 1.1, 1.3, and 1.4 without mentioning this always.

Definition 1.6. Let ψ+, ψ− ∈ C∞(R) be any functions with ψ±(x1) = 1 for ±x1 ≥ σ0

(for some σ0 > 2π + 1) and ψ±(x1) = 0 for ±x1 ≤ σ0 − 1.

A solution u ∈ H1
loc(R2) of (1); that is,

(8) ∆u+ k2n(1 + q)u = −f in R2 ,

satisfies the open waveguide radiation condition if

(a) u has a decomposition in the form u = u(1) + u(2) where

(9) u(2)(x) =
∑
j∈J

[
ψ+(x1)

∑
λ`,j>0

a`,j φ̂`,j(x) + ψ−(x1)
∑
λ`,j<0

a`,j φ̂`,j(x)

]
for x ∈ R2 and some a`,j ∈ C where u(1) ∈ H1(Wh) for all h > h0 and where
Wh = R× (−h, h) ⊂ R2,

(b) the Fourier transform (Fu(1))(·, x2) of u(1)(·, x2) with respect to x1 satisfies the
generalized Sommerfeld radiation condition

(10)

∞∫
−∞

∣∣∣∣(signx2)
∂(Fu(1))(ω, x2)

∂x2

− i
√
k2 − ω2 (Fu(1))(ω, x2)

∣∣∣∣2 dω −→ 0 , |x2| → ∞ .

Here we define the Fourier transform as

(Fφ)(t) =
1√
2π

∞∫
−∞

φ(s) e−ist ds , t ∈ R .

It has been shown in [13] for the case of a half plane problem that this radiation con-
dition is a consequence of the limiting absorption principle. A second motivation is the
following result on the direction of the energy flow which plays a central role in the proof
of uniqueness.

Lemma 1.7. Let u(2) be given by (9). With Ir = {r} × R for |r| ≥ σ0 we have

4π Im

∫
Ir

u(2)
∂u(2)

∂x1

ds = 2 Im

∫
Q∞

u(2)
∂u(2)

∂x1

dx =


∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 , r > σ0 ,∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2 , r < −σ0 .
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Proof: We only consider r > σ0. Then u(2)(x) =
∑

j∈J
∑

λ`,j>0 a`,j φ̂`,j(x) for x1 > σ0.

First we fix j ∈ J and define u+
j (x) =

∑
λ`,j>0 a`,j φ̂`,j. Since we fix j in the first part we

drop the index j and write u+ for u+
j . Furthermore, we define v(x) = (x1−r)u+(x). Then

∂v
∂x1

= u+ +(x1−r) ∂u+

∂x1
and ∆v+k2nv = 2∂u

+

∂x1
. Therefore, with r+Q∞ = (r, r+2π)×R ⊂

R2,

2

∫
Q∞

u+
∂u+

∂x1

dx = 2

∫
r+Q∞

u+
∂u+

∂x1

dx =

∫
r+Q∞

u+
(
∆v + k2nv

)
dx

=

∫
r+Q∞

v
(
∆u+ + k2nu+

)
dx +

∫
r+∂Q∞

(
u+

∂v

∂ν
− v ∂u

+

∂ν

)
ds

= −
∫
Ir

|u+|2ds+

∫
Ir+2π

[
u+

(
u+ + 2π

∂u+

∂x1

)
− 2πu+ ∂u+

∂x1

]
ds

= 2π

∫
Ir

(
u+

∂u+

∂x1

− u+ ∂u+

∂x1

)
ds = 4π i Im

∫
Ir

u+
∂u+

∂x1

ds

Furthermore, with L+
j = {` : λ`,j > 0},∫

Q∞

u+
∂u+

∂x1

dx =
∑

`,`′∈L+
j

a`,j a`′,j

∫
Q∞

φ̂`,j
∂φ̂`′,j
∂x1

dx

= ik
∑

`,`′∈L+
j

a`,j a`′,j λ`′,j

∫
Q∞

n φ̂`,j φ̂`′,j dx =
i

2

∑
`∈L+

j

λ`,j |a`,j|2

by the orthonormalization of φ̂`,j. Therefore, we have shown

4π Im

∫
Ir

u+
j

∂u+
j

∂x1

ds = 2 Im

∫
Q∞

u+
j

∂u+
j

∂x1

dx =
∑
`∈L+

j

λ`,j |a`,j|2

where we indicated the dependence on j. In the second part we take j, j′ ∈ J , apply
Green’ theorem in r +Q∞, and use the quasi-periodicities of u+

j and u+
j′ .

0 =

∫
r+∂Q∞

(
u+
j

∂u+
j′

∂ν
− u+

j′

∂u+
j

∂ν

)
ds

= −
∫
Ir

(
u+
j

∂u+
j′

∂x1

− u+
j′

∂u+
j

∂x1

)
ds +

∫
Ir+2π

(
u+
j

∂u+
j′

∂x1

− u+
j′

∂u+
j

∂x1

)
ds

=
(
ei(α̂j′−α̂j)2π − 1

) ∫
Ir

(
u+
j

∂u+
j′

∂x1

− u+
j′

∂u+
j

∂x1

)
ds .
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Therefore, the last integral vanishes for j 6= j′. Thus we have

4πi Im

∫
Ir

u(2)
∂u(2)

∂x1

ds

= 2π

∫
Ir

[
u(2)

∂u(2)

∂x1

− u(2) ∂u
(2)

∂x1

]
ds = 2π

∑
j∈J

∫
Ir

[
u+
j

∂u+
j

∂x1

− u+
j

∂u+
j

∂x1

]
ds

= 4πi
∑
j∈J

Im

∫
Ir

u+
j

∂u+
j

∂x1

ds = i
∑
j∈J

∑
`∈L+

j

λ`,j |a`,j|2 .

�

We note that all of the three terms in the representation of (Fu(1))(·, α) appear only in
the cases κ = 0 or κ = 1/2; that is, if k ∈ 1

2
N. If 0 < |κ| < 1/2 then only the first or the

second term appears, depending on the sign of κ.

Because qψ± vanishes identically by our choice of ψ± we observe that the part u(1) satisfies

(11a) ∆u(1) + k2n(1 + q)u(1) = −f −
∑
j∈J

mj∑
`=1

a`,jϕ`,j in R2

where

(11b) ϕ`,j(x) =

{
2ψ′+(x1)

∂φ̂`,j(x)

∂x1
+ ψ′′+(x1) φ̂`,j(x) , λ`,j > 0 ,

2ψ′−(x1)
∂φ̂`,j(x)

∂x1
+ ψ′′−(x1) φ̂`,j(x) , λ`,j < 0 .

We note that f has compact support in Q and ϕ`,j vanish for |x1| ≥ σ0, and are evanescent;
that is, there exist c, δ > 0 with |ϕ`,j(x)| ≤ c exp(−δ|x2|).

Therefore, we decompose u(1) in the upper and lower half planes x2 > h0 and x2 < −h0,
respectively, as a sum of solutions with homogeneous boundary conditions and one with
a homogeneous Helmholtz equation.

Lemma 1.8. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u ∈ Hloc(R2) be a solution
of (8) satisfying the radiation condition of Definition 1.6.

(a) Then the part u(1) has a decomposition in the half planes x2 > h0 and x2 < −h0,
respectively, in the forms

u(1)(x) = u±0 (x) +
∑
`,j

a`,jv
±
`,j(x) for ± x2 > h0 ,

where v±`,j are the unique solutions of ∆v±`,j + k2v±`,j = −ϕ`,j for ±x2 > h0 and

v±`,j = 0 for x2 = ±h0 satisfying the generalized Sommerfeld radiation condition

(10), and u±0 is the unique radiating solution of ∆u±0 + k2u±0 = 0 for ±x2 > h0

and u±0 = u(1) for x2 = ±h0.

(b) There exists c > 0 such that |∇v±`,j(x)| + |v±`,j(x)| ≤ c |x2|
1+|x|3/2 for all x ∈ R2 with

±x2 > h0 where c > 0 is independent of x and `, j.
6



(c) There exists c > 0 with

(12)
∣∣u(1)(x)

∣∣ +
∣∣∇u(1)(x)

∣∣ ≤ c |x2| ρ(x1)

for all x ∈ R2 with |x2| ≥ h0 + 1, where ρ ∈ L2(R) ∩ L∞(R) is given by

(13) ρ(x1) =
∑

σ∈{+1,−1}

∫
R

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy +
1

1 + |x1|3/2
, x1 ∈ R .

Proof: We only consider the upper half plane x2 > h0.
(a) We show that v+

`,j and u+
0 are given by

v+
`,j(x) =

∞∫
h0

σ0∫
−σ0

G+(x, y)ϕ`,j(y) dy1dy2 , x2 > h0 ,(14a)

u+
0 (x) = 2

∞∫
−∞

u(1)(y1, h0)
∂

∂y2

Φ(x1, x2, y1,±h0) dy1 , x2 > h0 ,(14b)

respectively, with the fundamental solution Φ(x, y) = i
4
H

(1)
0 (k|x − y|) of the Helmholtz

equation and the Green’s function G+(x, y) = Φ(x, y) − Φ(x, y∗), x, y ∈ R2, x2, y2 > h0

where y∗ = (y1, 2h0 − y2)> is the reflection of y at the line y2 = h0.
First we show that v+

`,j is a solution of the inhomogeneous differential equation. For any

x ∈ W h0,R := {x ∈ R2
+ : h0 < x2 < R} we decompose v+

`,j(x) as

v+
`,j(x) =

R+1∫
h0

σ0∫
−σ0

G+(x, y)ϕ`,j(y) dy1dy2 +

∞∫
R+1

σ0∫
−σ0

G+(x, y)ϕ`,j(y) dy1dy2 .

The first integral ist just the volume integral over a bounded region. This term satisfies
the inhomogeneous differential equation for x ∈ W h0,R and the homogeneous boundary
condition for x2 = h0. The integrand of the second integral is regular for x ∈ W h0,R and,
therefore, satisfies the homogeneous differential equation and the boundary condition.
Also, u+

0 satisfies the homogeneous Helmholtz equation. It remains to show the generalized
Sommerfeld condition for v+

`,j and u+
0 .
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Taking the Fourier transforms of u+
0 and v`,j with respect to x1 and noting that the integral

with respect to y1 is a convolution yields

(Fu+
0 )(ω, x2) = (Fu(1))(ω, h0) ei

√
k2−ω2(x2−h0) and

(Fv+
`,j)(ω, x2) =

i

2
√
k2 − ω2

∞∫
h0

(Fϕ`,j)(ω, y2)
[
ei
√
k2−ω2|x2−y2| − ei

√
k2−ω2(x2+y2−2h0)

]
dy2

=
i

2
√
k2 − ω2

x2∫
h0

(Fϕ`,j)(ω, y2) ei
√
k2−ω2(x2−y2) dy2

+
i

2
√
k2 − ω2

∞∫
x2

(Fϕ`,j)(ω, y2) ei
√
k2−ω2(y2−x2) dy2

− i

2
√
k2 − ω2

∞∫
h0

(Fϕ`,j)(ω, y2) ei
√
k2−ω2(x2+y2−2h0) dy2 .

The first term (Fu+
0 )(ω, x2) satisfies the radiation condition (10) trivially. For the second

term we have

∂(Fv+
`,j)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fv+

`,j)(ω, x2) =

∞∫
x2

(Fϕ`,j)(ω, y2) ei
√
k2−ω2(y2−x2) dy2 .

For |ω| < k we just estimate∣∣∣∣∣∂(Fv+
`,j)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fv+

`,j)(ω, x2)

∣∣∣∣∣ ≤ c

∞∫
x2

e−δy2 dy2 =
c

δ
e−δx2 .

For |ω| > k we estimate∣∣∣∣∣∂(Fv+
`,j)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fv+

`,j)(ω, x2)

∣∣∣∣∣
≤ c

∞∫
x2

e−δy2−
√
ω2−k2(y2−x2) dy2 ≤

c

δ +
√
ω2 − k2

e−δx2 .

Together we have the existence of c > 0 such that∣∣∣∣∣∂(Fv+
`,j)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fv+

`,j)(ω, x2)

∣∣∣∣∣ ≤ c

δ +
√
|ω2 − k2|

e−δx2

for all ω ∈ R and x2 > h0. Squaring and integrating with respect to ω yields the radiation
condition.

To show uniqueness let v satisfy ∆v + k2v = 0 for x2 > h0, v = 0 for x2 = h0, and also
(10). Taking the Fourier transform and solving the resulting ordinary differential equation

yields (Fv)(ω, x2) = a(ω)ei
√
k2−ω2x2 + b(ω)e−i

√
k2−ω2x2 for x2 > h0, thus

(Fv)′(ω, x2)− i
√
k2 − ω2 (Fv)(ω, x2) = −2i

√
k2 − ω2 b(ω)e−i

√
k2−ω2x2 ,
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and therefore

∣∣(Fv)′(ω, x2)− i
√
k2 − ω2 (Fv)(ω, x2)

∣∣2 =

{
4(k2 − ω2) |b(ω)|2 , |ω| < k ,

4(ω2 − k2) |b(ω)|2e2
√
ω2−k2x2 , |ω| > k .

Integrating with respect to ω und using (10) yields b(ω) = 0 for all ω. The initial condition
yields a(ω) = 0.

(b) We know from [3] that there exists c > 0 with∣∣G+(x, y)
∣∣ +

∣∣∇xG
+(x, y)

∣∣ ≤ c
x2 y2

|x− y|3/2
for all x, y ∈ R2

h0
with |x− y| ≥ 1, and∣∣G+(x, y)

∣∣ ≤ c
∣∣ln |x− y|∣∣ for all x, y ∈ R2

h0
with |x− y| ≤ 1 ,∣∣∇xG

+(x, y)
∣∣ ≤ c

|x− y|
for all x, y ∈ R2

h0
with |x− y| ≤ 1

where we have set R2
h0

= R× (h0,∞). First we consider |x1| ≤ 2σ0. We split the region of
integration with respect to y2 into {y2 : |y2−x2| < 1}∪ {y2 : 1 < |y2−x2| < x2/2}∪ {y2 :
|y2−x2| > x2/2} and use the estimates of G+ is each of the regions. (Note that |y1| ≤ σ0).
Therefore,

|v+
`,j(x)| ≤ c

∫
|x2−y2|<1

σ0∫
−σ0

e−δy2
∣∣ln |x− y|∣∣ dy1 dy2

+ c x2

∫
1<|x2−y2|<x2/2

σ0∫
−σ0

e−δy2
y2

|x2 − y2|3/2
dy1 dy2

+ c x2

∫
|x2−y2|>x2/2

σ0∫
−σ0

e−δy2
y2

|x2 − y2|3/2
dy1 dy2

≤ c e−δ(x2−1)

1∫
−1

3σ0∫
−3σ0

∣∣ln |z|∣∣ dz1 dz2 + c1 x
3
2 e
−δx2/2

+
c2√
x2

∞∫
h0

y2 e
−δy2 dy2 =

c2√
x2

(
h0

δ
+

1

δ2

)
e−δh0(16)

for all x2 ≥ h0 and |x1| ≤ 2σ0 where c2 > 0 is independent of x. We indicated the
dependence on h0 in (16) (and (17), (18)) for later use. This proves the desired estimate
for |x1| ≤ 2σ0. Now we consider |x1| > 2σ0. Then |y1 − x1| ≥ |x1| − σ0 > |x1|/2 and thus

|v+
`,j(x)| ≤ c x2

∞∫
h0

y2 e
−δy2

σ0∫
−σ0

dy1

|x− y|3/2
dy2 .
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We split the integral with respect to y2 into |y2 − x2| > x2/2 and |y2 − x2| < x2/2. Then

x2

∫
|y2−x2|>x2/2

y2 e
−δy2

σ0∫
−σ0

dy1

|x− y|3/2
dy2

≤ x2

∫
|y2−x2|>x2/2

y2 e
−δy2 dy2

2σ0

(|x|/2)3/2
≤ c x2

|x|3/2

∞∫
h0

y2 e
−δy2 dy2 ≤

c′ x2

|x|3/2
e−δh0(17)

because |x−y|2 = (x1−y1)2+(x2−y2)2 ≥ 1
4
(x2

1+x2
2). Finally, since |y2| ≥ |x2|−|y2−x2| ≥

x2/2 for |y2 − x2| < x2/2 we have by splitting e−δy2 = e−δy2/2e−δy2/2

x2

∫
|y2−x2|<x2/2

y2 e
−δy2

σ0∫
−σ0

dy1

|x− y|3/2
dy2 ≤ x2 e

−δx2/4

∞∫
h0

y2 e
−δy2/2 dy2

σ0∫
−σ0

dy1

|x1 − y1|3/2

≤ c x2 e
−δx2/4 1

|x1|3/2

∞∫
h0

y2 e
−δy2/2 dy2 ≤

c x2

|x|3/2
e−δh0(18)

because |x1|eδx2/6 ≥ c|x| for some c > 0 (note that |x1| > 2σ0 and x2 ≥ h0).
The proof for the derivatives follow exactly the same lines. (Only the intgral over ln |x−y|
has to be replaced by the the integral over 1/|x− y|.)
(c) We know from the asymptotic behavior of the Hankel functions that for all a > 0
there exists c = c(a) > 0 with

(19)

∣∣∣∣ ∂∂y2

Φ(x, y)

∣∣∣∣ ≤ c
x2 y2

|x− y|3/2

for all x, y ∈ R2 with |x − y| ≥ a. Therefore, ρ ∈ L2(R) because the first term can
be expressed as the convolution of the L2−function |u(1)(y1, h0)| and the L1−function
y1 7→ (1 + |y1|)−3/2. It is also bounded by the inequality of Cauchy-Schwarz.
Using (19) and the form (14a) we estimate for x2 > h0 + 1

|u+
0 (x)| ≤ c x2 h0

∞∫
−∞

|u(1)(y1, h0)|
[(x1 − y1)2 + 1]3/4

dy1

which proves the desired estimate in combination with part (b). �

During the proof we have shown the following sharper version of the radiation condition.

Corollary 1.9. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u ∈ Hloc(R2) be a solution
of (8) satisfying the radiation condition of Definition 1.6 and let σ ∈ {−1,+1}be fixed.

(a) For σx2 > h0 the Fourier transform (Fu(1))(ω, x2) of u(1)(·, x2) has the form

(Fu(1))(ω, x2) = (Fu(1))(ω, σh0) ei
√
k2−ω2(σx2−h)(20)

+
i

2
√
k2 − ω2

∞∫
h0

(Fg)(ω, σt)
[
ei
√
k2−ω2|x2−σt| − ei

√
k2−ω2(x2+σ(t−2h0))

]
dt

10



for ω ∈ R where (Fg)(ω, x2) is the Fourier transform of g = ∆u(2) + k2u(2) =∑
j∈J
∑mj

`=1 a`,jϕ`,j for |x2| > h0.

(b) We have the following stronger form of the radiation condition (10):

(21)
∣∣σ (Fu(1))′(ω, x2)− i

√
k2 − ω2 (Fu(1))(ω, x2)

∣∣ ≤ c

δ +
√
|ω2 − k2|

e−δ|x2|

for all ω ∈ R and |x2| > h0. Note that the right hand side is the product of a
L2(R)−function and the exponential function exp(−δ|x2|).

2. Uniqueness

In this section we follow the proof of uniqueness giben by T. Furuya in [10] for the
half-plane case. We had to to modify his appoach, however, because the free space
Green’s function; that is, the fundamental solution, does not decay as fast as the Green’s
function for the half-plane as |x1| tends to infinity. Therefore, we can’t use his integral
representations.

We begin with the following technical result.

Lemma 2.1. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u ∈ Hloc(R) be a solution
of (1) satisfying the radiation condition of Definition 1.6. Analogously to ρ(x1) of (13)
(see Lemma 1.8) we define

(22) ρN(x1) =
∑

σ∈{+1,−1}

N∫
−N

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +
1

1 + |x1|3/2
, x1 ∈ R , ∈ N .

Then there exists c > 0 and a sequence (Nm) in N converging to infinity such that∫
|x1|>Nm

ρNm(x1)2 dx1 ≤
c√
Nm

,

∫
|x1|<Nm

|ρ(x1)− ρNm(x1)|2 dx1 ≤
c√
Nm

,

and

∫
Nm<|x1|<Nm+1

ρ(x1)2 dx1 ≤
c√
Nm

for all j ∈ N.

Proof: We define the sets JN = (−N −
√
N,−N +

√
N) ∪ (N −

√
N,N +

√
N). As

in [2] we first note that for every m ∈ N there exists Nm ≥ m with ‖u(1)(·, h0)‖L2(JNm ) +

‖u(1)(·,−h0)‖L2(JNm ) ≤ 1

N
1/4
m

. Indeed, otherwise there existsm ∈ N such that ‖u(1)(·, h0)‖L2(JN )+

‖u(1)(·,−h0)‖L2(JN ) ≥ 1
N1/4 for all N ≥ m. Since JN2 ∩ JM2 for N 6= M we would have∑

σ∈{−1,+1}

∫
|x1|>N2

m−Nm

|u(1)(·, σh0)|2 dx1 ≥
∑

σ∈{−1,+1}

∞∑
N=m

∫
JN2

|u(1)(·, σh0)|2 dx1

≥
∞∑

N=m

1

N
= ∞ ,

a contradiction to u(1)(·,±h0) ∈ L2(R).
11



We set N−m = Nm −
√
Nm for abbreviation and estimate for |x1| > Nm:

∫
|y1|<Nm

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

=

∫
|y1|<N−m

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +

∫
N−m<|y1|<Nm

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

≤ ‖u(1)‖L2(R)

√√√√ ∫
|y1|<N−m

dy1

(1 + |x1| − |y1|)3
+ ‖u(1)‖L2(JNm )

√√√√ ∫
N−m<|y1|<Nm

dy1

(1 + |x1| − |y1|)3

≤ c

1 + |x1| −N−m
+

1

N
1/4
m

c

1 + |x1| −Nm

and thus

∫
|x1|>Nm

ρNm(x1)2 dx1 ≤
8

(1 +Nm)2
+ c

∫
|x1|>Nm

dx1

(1 + |x1| −N−m)2

+
c√
Nm

∫
|x1|>Nm

dx1

(1 + |x1| −Nm)2

≤ 8

(1 +Nm)2
+

c

1 +
√
Nm

+
c√
Nm

.

Analogously, with N+
m = Nm +

√
Nm, we estimate for |x1| < Nm:

ρ(x1)− ρNm(x1) =

∫
|y1|>Nm

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

=

∫
|y1|>N+

m

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +

∫
Nm<|y1|<N+

m

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

≤ ‖u(1)‖L2(R)

√√√√ ∫
|y1|>N+

m

dy1

(1 + |y1| − |x1|)3
+ ‖u(1)‖L2(JNm )

√√√√ ∫
Nm<|y1|<N+

m

dy1

(1 + |y1| − |x1|)3

≤ c

1 +N+
m − |x1|

+
1

N
1/4
m

c

1 +Nm − |x1|
12



and thus
∫
|x1|<Nm |ρ(x1) − ρNm(x1)|2dx1 ≤ c/

√
Nm as before. Finally, for Nm < |x1| <

Nm + 1 we estimate

ρ(x1) =

∫
JNm

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

+

∫
|y1|<N−m

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +

∫
|y1|>N+

m

|u(1)(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

≤ c ‖u(1)‖L2(JNm ) + ‖u(1)‖L2(R)

√√√√ ∫
|y1|<N−m

dy1

(1 + |x1| − |y1|)3

+ ‖u(1)‖L2(R)

√√√√ ∫
|y1|>N+

m

dy1

(1 + |y1| − |x1|)3

≤ c

N
1/4
m

+
c

1 + |x1| −N−m
+

c

1 +N+
m − |x1|

≤ c′

N
1/4
m

.

Integration with respect to x1 yields the last assertion. �

After these preparations we turn to the proof of uniqueness.

Theorem 2.2. Let Assumptions 1.1, 1.3, and 1.4 hold, and let u solve the problem (1)
for f = 0 and the radiation condition of Definition 1.6. Then u vanishes.

Proof: The proof is lengthy, and we try to structure it. In part (A) we show that the
coefficients a`,j vanish, and in part (B) we show that u(1) vanishes under a smoothness
assumption on its Fourier transform. The latter property is shown in Part (C).
Part (A): Choose ψN ∈ C∞(R) with ψN(x1) = 1 for |x1| ≤ N and ψN(x1) = 0 for
|x1| ≥ N + 1. We define the regions DN,H = (−N,N) × (−H,H) and W−

N,H = (−N −
1,−N) × (−H,H) and W+

N,H = (N,N + 1) × (−H,H) and the vertical and horizontal
segments I±N,H = {±N} × (−H,H) and ΓN,±H = (−N,N)× {±H} for any H > h0 + 1
and N > σ0 + 1. We apply Green’s theorem in DN+1,H to v(x) = ψN(x1)u(x):∑

σ∈{+1,−1}

σ

∫
ΓN+1,σH

ψ2
N u

∂u

∂x2

ds(23)

=
∑

σ∈{+1,−1}

σ

∫
ΓN+1,σH

v
∂v

∂x2

ds =

∫
DN+1,H

[∣∣∇v∣∣2 + v∆v
]
dx

=

∫
DN,H

[∣∣∇u∣∣2 + u∆u
]
dx +

∫
W+
N,H

[∣∣∇v∣∣2 + v∆v
]
dx +

∫
W−N,H

[∣∣∇v∣∣2 + v∆v
]
dx .

We note that ∆u = −k2n(1 + q)u and ∆v = −ψNk2n(1 + q)u + 2ψ′N
∂u
∂x1

+ ψ′′N u and

∇v = ψN∇u + uψ′Ne
(1) with e(1) = (1, 0)>. The decomposition u = u(1) + u(2) yields 4

terms on the left hand side of (23) and also the corresponding terms on the right hand
side.
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(A1) First, we look at the terms on the right hand side of (23). Note that the first integral
on the right hand side is real valued. We define v(j) = ψNu

(j) for j = 1, 2 and estimate
the terms

a±N,H(j, `) :=

∫
W±N,H

[
∇v(j) · ∇v(`) + v(j) ∆v(`)

]
dx

for j, ` ∈ {1, 2}. Then, with (12),

|a+
N,H(1, 1)| ≤ c ‖u(1)‖2

H1(W+
N,h0+1)

+ c ‖u(1)‖2
H1(W+

N,H\W
+
N,h0+1)

≤ c‖u(1)‖2
H1(W+

N,h0+1)
+ c

N+1∫
N

∫
h0+1<|x2|<H

x2
2 ρ(x1)2 dx2 dx1

≤ c γN,H with(24)

γN,H = ‖u(1)‖2
H1(QN ) + H3

∫
N<|x1|<N+1

ρ(x1)2 dx1(25)

and QN = W+
N,h0+1∪W

−
N,h0+1 = {x ∈ R2 : N < |x1| < N +1, |x2| < h0 +1}. Analogously,

since ‖u(2)‖H1(W+
N,H) and ‖∇u(2)‖H1(W+

N,H) are bounded with respect to N and H,

|a+
N,H(1, 2)|+|a+

N,H(2, 1)| ≤ c
[
‖u(1)‖2

H1(W+
N,h0+1)

+ ‖u(1)‖2
H1(W+

N,H\W
+
N,h0+1)

]1/2 ≤ c
√
γN,H .

For a+
N,H(2, 2) we apply Green’s theorem:

a+
N,H(2, 2) = −

∫
IN,H

u(2)
∂u(2)

∂x1

ds +
∑

σ∈{+1,−1}

σ

∫
N<x1<N+1
x2=σH

ψ2
N u

(2)
∂u(2)

∂x2

ds

= −
∫
IN

u(2)
∂u(2)

∂x1

ds + β+
N,H

with IN = {N} × R and

|β+
N,H | ≤

∑
σ∈{+1,−1}

∣∣∣∣ ∫
N<x1<N+1
x2=σH

ψ2
N u

(2)
∂u(2)

∂x2

ds

∣∣∣∣ +

∣∣∣∣ ∫
IN\IN,H

u(2)
∂u(2)

∂x1

ds

∣∣∣∣ ≤ c e−2δH .

The same estimates hold for a−N,H(j, `); that is, the integrals over W−
N,H . Therefore, taking

the imaginary part of (23) and using Lemma 1.7 we have shown that∑
σ∈{+1,−1}

σ Im

∫
ΓN+1,σH

ψ2
N u

∂u

∂x2

ds(26)

≤ − Im

∫
IN

u(2)
∂u(2)

∂x1

ds + Im

∫
I−N

u(2)
∂u(2)

∂x1

ds + c e−2δH + c [γN,H +
√
γN,H ]

≤ − 1

4π

∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 +
1

4π

∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2 + c e−2δH + c [γN,H +
√
γN,H ] .
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(A2) Now we look at the left hand side of (23); that is, of (26), and decompose again u
into u = u(1) + u(2). Using Cauchy-Schwarz and (12) we estimate for σ ∈ {−1, 1}

∫
ΓN+1,σH

ψ2
N

∣∣∣∣u(1)
∂u(2)

∂x2

+ u(2)
∂u(1)

∂x2

+ u(2)
∂u(2)

∂x2

∣∣∣∣ ds
≤ c ‖u(1)‖L2(ΓN+1,σH)

∥∥∂u(2)

∂x2

∥∥
L2(ΓN+1,σH)

+ c ‖u(2)‖L2(ΓN+1,σH)

∥∥∂u(1)

∂x2

∥∥
L2(ΓN+1,σH)

+c ‖u(2)‖L2(ΓN+1,σH)

∥∥∂u(2)

∂x2

∥∥
L2(ΓN+1,σH)

≤ c
[
H ‖ρ‖L2(R)

√
N +N

]
e−δH .

Finally, we consider
∫

ΓN+1,±H
ψ2
N u

(1) ∂u
(1)

∂x2
ds. We restrict ourselves to the line integral over

ΓN+1,H and approximate u(1) by functions u
(1)
N,H which satisfy the homogeneous Helmholtz

equation for x2 > H. To do this we set u
(1)
N,H = u+

N + v+
H for x2 > h0. Here, u+

N is the

unique radiating solution of ∆u+
N +k2u+

N = 0 for x2 > h0 and u+
N(x1, h0) = u(1)(x1, h0) for

|x1| < N and u+
N(x1, h0) = 0 for |x1| > N , and the function v+

H is defined as the unique
radiating solution of

∆v+
H + k2v+

H =

{ ∑
j∈J
∑mj

`=1 a`,j ϕ`,j for h0 < x2 < H ,
0 for x2 > H ,

and v+
H = 0 for x2 = h0. Then u+

N and v+
H are given by (compare with (14a), (14b))

u+
N(x) = 2

N∫
−N

u(1)(y1, h0)
∂

∂y2

Φ(x1, x2, y1, h0) dy1 , x2 > h0 ,

v+
H(x) =

∑
j∈J

mj∑
`=1

a`,j

H∫
h0

σ0∫
−σ0

G+(x, y)ϕ`,j(y) dy1dy2 , x2 > h0 ,

and it is easy to show by modifying the proof of Lemma 1.8 that

∣∣u(1)
N,H(x)

∣∣ +
∣∣∇u(1)

N,H(x)
∣∣ ≤ c |x2| ρN(x1) ,∣∣u(1)(x)− u(1)

N,H(x)
∣∣+
∣∣∇(u(1)(x)− u(1)

N,H(x)
)∣∣ ≤ c x2 [ρN(x1)− ρ(x1)] +

c x2

|x|3/2
e−δH ,
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for all x ∈ R2 with x2 ≥ h0 + 1, where ρ, ρN ∈ L2(R)∩L∞(R) are given by (13) and (22),
respectively.1 With Γ∞,±H = R× {±H} we decompose∫

ΓN+1,H

ψ2
N u

(1)
∂u(1)

∂x2

ds

=

∫
Γ∞,H

u
(1)
N,H

∂u
(1)
N,H

∂x2

ds +

∫
ΓN+1,H

ψ2
N

[
u(1)

∂u(1)

∂x2

− u(1)
N,H

∂u
(1)
N,H

∂x2

]
ds

−
∫

Γ∞,H\ΓN+1,H

u
(1)
N,H

∂u
(1)
N,H

∂x2

ds +

∫
ΓN+1,H\ΓN,H

(ψ2
N − 1)u

(1)
N,H

∂u
(1)
N,H

∂x2

ds

=

∫
Γ∞,H

u
(1)
N,H

∂u
(1)
N,H

∂x2

ds + ηN,H

where

|ηN,H | ≤ c ‖u(1) − u(1)
N,H‖L2(ΓN+1,H)

∥∥∥∥∂u(1)

∂x2

∥∥∥∥
L2(ΓN+1,H)

+ c ‖u(1)
N,H‖L2(ΓN+1,H)

∥∥∥∥∥∂u(1)

∂x2

−
∂u

(1)
N,H

∂x2

∥∥∥∥∥
L2(ΓN+1,H)

+ c ‖u(1)
N,H‖L2(Γ∞,H\ΓN,H)

∥∥∥∥∥∂u
(1)
N,H

∂x2

∥∥∥∥∥
L2(Γ∞,H\ΓN,H)

≤ cH2 ‖ρ‖L2(R)

√√√√ ∫
|x1|<N

|ρ(x1)− ρN(x1)|2 dx1 + cH2

∫
|x1|>N

ρN(x1)2 dx1 .(27)

The same estimates hold also for
∫

ΓN+1,−H
ψ2
N u

(1) ∂u
(1)

∂x2
ds. Substituting this into the left

hand side of (26) yields

∑
σ∈{−1,+1}

σ Im

∫
Γ∞,σH

u
(1)
N,H

∂u
(1)
N,H

∂x2

ds ≤ − 1

4π

∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 +
1

4π

∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2

+ c e−2δH + c [γN,H +
√
γN,H ]

+ c
[
H
√
N +N

]
e−δH + |ηN,H | .

At this point we set N = Nm where (Nm) is the sequence from Lemma 2.1. Then
from (25) and (27) in combination with the estimates of Lemma 2.1 we conclude that

γNm,H ≤ c ‖u(1)‖2
H1(QNm ) + c H3

√
Nm

and |ηNm,H | ≤ c H2

N
1/4
m

. We choose Hm such that the

1For the estimate with v+H replace h0 in (16), (17), (18) by H!
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reminders converge to zero, for example, Hm = N
1/10
m . Then∑

σ∈{−1,+1}

σ lim sup
m→∞

Im

∫
Γ∞,σHm

u
(1)
Nm,Hm

∂u
(1)
Nm,Hm

∂x2

ds(28)

≤ − 1

4π

∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 +
1

4π

∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2 ≤ 0 .

Now we show that the left hand side is non-negative. Indeed, we fix m, write N = Nm

and H = Hm for short and take the Fourier transform ûN,H(ω, x2) = (Fu(1)
N,H)(ω, x2) for

x2 > H. Then, for σ ∈ {−1,+1},

(29)

∫
Γ∞,σH

u
(1)
N,H

∂u
(1)
N,H

∂x2

ds =

∞∫
−∞

ûN,H(ω, σH) û′N,H(ω, σH) dω .

Furthermore, û′′N,H(ω, x2)+(k2−ω2) ûN,H = 0 for |x2| > H. Therefore, ûN,H has the form
(compare with (20))

ûN,H(ω, x2) =

{
ûN,H(ω,H) ei

√
k2−ω2(x2−H) for x2 > H ,

ûN,H(ω,−H) ei
√
k2−ω2(−x2−H) for x2 < −H ,

and thus σ ûN,H(ω, σH) û′N,H(ω, σH) = i |ûN,H(ω, σH)|2
√
k2 − ω2 and thus

σ Im
[
ûN,H(ω, σH) û′N,H(ω, σH)

]
≥ 0. Therefore, the left hand side of (28) is non-negative

which implies that all a`,j vanish; that is, u(2) = 0. This ends the proof of Part (A).

Part (B): Now u = u(1) ∈ H1(Wh) for all h > h0 where again Wh = R × (−h, h). From
(23) we conclude for N →∞ and H := h0 + 1 that

∑
σ∈{+1,−1}

σ

∞∫
−∞

u(x1, σH)
∂u(x1, σH)

∂x2

dx1 =

∫
WH

[∣∣∇u∣∣2 − k2n(1 + q) |u|2
]
dx .

The imaginary part of this expression vanishes again. Transforming this equation to
the Fourier space we observe just as in (29) that (Fu)(ω,±H) vanishes for all |ω| < k.
Therefore, from (20) we conclude that

(Fu)(ω, x2) = (Fu)(ω,±H) e−
√
ω2−k2(±x2−H) for ±x2 > H and |ω| > k

and thus for |ω| > k:

∞∫
H

|(Fu)(ω, x2)|2 dx2 = |(Fu)(ω,H)|2
∞∫
H

e−2
√
ω2−k2(x2−H) dx2 =

|(Fu)(ω,H)|2

2
√
ω2 − k2

.

The integal vanishes for |ω| < k. The analogous formula holds for the integral∫ −H
−∞ |(Fu)(ω, x2)|2 dx2. If (Fu)(·,±H) would be continuous in a neighborhood of ω = ±k

then this integral would be integrable with respect to ω ∈ R and, by Parseval’s theorem,
u ∈ L2(R2). This would imply that u vanishes because k2 is not in the point spectrum of
− 1
n(1+q)

∆ by Assumption 1.1.
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Part (C): Therefore, it remains to prove continuity of (Fu)(·,±H) in neighborhoods of
ω = ±k. Let

(30) (Fu)(x1, x2, α) = ũ(x1, x2, α) =
∑
`∈Z

u(x1 + 2π`, x2) e−i2π`α

for x ∈ R2 and α ∈ R denote the Floquet-Bloch transform of u(·, x2) with respect to x1.
Since u satisfies the Helmholtz equation ∆u+ k2nu = −k2nqu in R2 standard regularity
results yield u ∈ H2(Wh) for all h > h0. Then ũ ∈ L2

(
(−1/2, 1/2), H2

qp(Q
h)
)

for all
h > h0 by well known mapping properties of the Floquet-Bloch transform (see [15]).
Here, Qh = (0, 2π)× (−h, h). Therefore, ũ(·, α) satisfies the equation

∆ũ(·, α) + k2 n ũ(·, α) = −k2F (nqu)(·, α) in Q∞

for almost all α ∈ [−1/2, 1/2]. We consider this equation as an equation for ũ(·, α) for
fixed right hand side g̃ := k2F (nqu). As in the case of the modes (see (4)) this equation
is equivalent to∫

Q

[∇ũ(·, α) · ∇ψ − k2n ũ(·, α)ψ] dx −
∫
Γ

(Λαũ(·, α))ψ ds =

∫
Q

g̃(·, α)ψ dx

for all ψ ∈ H1
α(Q) and almost all α ∈ (−1/2, 1/2). Here, Λα is the α−quasi-periodic

Dirichlet-to-Neumann operator given by (5). Transforming the α−dependence from the
solution space to the equation we set v(x, α) = e−iαx1ũ(x, α) and (Λ̃αφ)(x) = e−iαx1(Λαφ)(x)
and arrive at the periodic variational equation∫

Q

[∇v(·, α) · ∇ψ − 2iα
∂v(·, α)

∂x1

ψ − (k2n− α2) v(·, α)ψ] dx −
∫
Γ

(Λ̃αv(·, α))ψ ds

=

∫
Q

e−iαx1 g̃(x, α)ψ(x) dx for all ψ ∈ H1
per(Q) .

We note that the right hand side depends analytically on α (because nqu has compact
support in Q) and the coefficients of the left hand side depends continuously (because of
the square-root term in Λα) on α. Furthermore, since this equation is of Fredholm type
with index zero, α is not exceptional if, and only if, this equation is uniquely solvable for
all right hand sides.

We decompose k again as k = ˆ̀+ κ with ˆ̀∈ N0 and κ ∈ (−1/2, 1/2]. Then ±κ are the
cut-off values. By Assumption 1.3 these are not exceptional values. Therefore, for α in
some neighborhoods of ±κ the variational equation is uniquely solvable, and α 7→ ũ(·, α)
is continuous from [−1/2, 1/2] to H1(QH) in neighborhoods of ±κ. This implies that

also the Fourier coefficients ũ`(α, x2) = 1√
2π

∫ 2π

0
ũ(x1, x2, α) e−i(`+α)x1 dx1 of the α−quasi-

periodic function ũ(·, x2, α) are continuous from [−1/2, 1/2] to C in neighborhoods of ±κ
for every x2 ∈ R.
Finally, we show the following relationship between the Fourier transform and the Fourier
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coefficients of the Floquet-Bloch transform. For α ∈ [−1/2, 1/2] and ` ∈ Z we compute

(Fu(1))(`+ α, x2) =
1√
2π

∞∫
−∞

u(1)(x1, x2) e−i(`+α)x1 dx1

=
1√
2π

∑
m∈Z

2π∫
0

u(1)(x1 + 2πm, x2) e−i(`+α)(x1+2πm) dx1

=
1√
2π

2π∫
0

ũ(x1, x2, α) e−i(`+α)x1 dx1 = ũ`(x, α)(31)

which shows continuity of α 7→ (Fu(1))(`+ α, x2) in neighborhoods of ±κ. In particular,
(Fu(1))(·,±H) is continuous in neighborhoods of ±k. This ends the proof. �

3. Existence

In this section we will prove existence of a solution under the Assumptions 1.1, 1.3, and
1.4. The main part deals with the unperturbed case q = 0. The general case follows by a
compactness argument. Therefore, for given f ∈ L2(Q) we consider first the problem to
determine u ∈ H1

loc(R2) which satisfies

(32) ∆u+ k2nu = −f in R2

and the radiation condition of Definition 1.6. With the exceptional values α̂j for j ∈ J
and their eigenfunctions φ̂`,j, ` = 1, . . . ,mj, j ∈ J , determined in (7a), (7b), we define
the coefficients a`,j ∈ C as

(33) a`,j :=
2π i

|λ`,j|

∫
Q

f(x) φ̂`,j(x) dx , ` = 1, . . . ,mj, j ∈ J .

Therefore, we have to solve the equation (11a) for q = 0; that is,

(34) ∆u(1) + k2nu(1) = −g in R2 with g = f +
∑
j∈J

mj∑
`=1

a`,jϕ`,j ,

where ϕ`,j are given by (11b). Furthermore, u(1) has to satisfy the generalized Sommerfeld
radiation condition (10). The plan is to take the Floquet-Bloch transform of this equation,
show solvability for all α ∈ [−1/2, 1/2] (without exception) and continuity with respect
to α and apply the inverse transform.

We note that the right hand side g of (34) is in L2(R2) (and has even compact support
with respect to x1). Therefore, for every α ∈ [−1/2, 1/2] we try to solve the Floquet-Bloch
transformed (with respect to x1) equation; that is, find wα ∈ H1

α,loc(Q
∞) with

(35a) ∆wα + k2nwα = −(Fg)(·, α) in Q∞ = (0, 2π)× R
satisfying the radiating condition

(35b) (sign x2)w′`(α, x2)− i
√
k2 − (`+ α)2w`(α, x2) −→ 0 , |x2| → ∞ ,

for the Fourier coefficients w`(α, x2) of wα(·, x2). Here, Fg denotes the Flochet-Bloch
transform of g, defined in (30). Fg is analytic with respect to α because the right hand
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side of (34) has compact support with respect to x1.
The decomposition of u(1) in the half spaces x2 > h0 and x2 < −h0 of Lemma 1.8
carries over to the quasi-periodic case; that is wα has a decomposition in the strips Q+

h0
=

(0, 2π)× (h0,∞) and Q−h0 = (0, 2π)× (−∞,−h0), respectively, in the forms

wα = w±α,0 + w±α,g in Q±h0 ,

where w±α,g is the unique α−quasi-periodic solution of ∆w±α,g + k2w±α,g = −Fg in Q±h0
and w±α,g = 0 for x2 = ±h0 satisfying radiation condition (35b), and w±α,0 is the unique

radiating solution of ∆w±α,0 + k2w±α,0 = 0 in Q±h0 and w±α,0 = wα for x2 = ±h0. This can

be seen by taking the Floquet-Bloch transform of u±0 and v±`,j or directly by solving the
upper and lower half plane problems by means of the α−quasi-periodic Green’s functions

G±α (x, y) =
i

4π

∑
`∈Z

1√
k2 − (`+ α)2

[
ei
√
k2−(`+α)2|x2−y2|

− ei
√
k2−(`+α)2(±(x2+y2)−2h0)

]
ei(`+α)(x1−y1)

for x, y ∈ Q±h0 , x 6= y. Then w±α,g is given by

(36) w±α,g(x) =

∫
Q±h0

(Fg)(y, α)G±α (x, y) dy , x ∈ Q±h0 .

The proof of the following result is standard and omitted.

Lemma 3.1. Let α ∈ [−1/2, 1/2] be fixed.

(a) Let wα ∈ H1
α,loc(Q

∞) solve (35a) and (35b). Then wα|Q ∈ H1
α(Q) satisfies∫

Q

[∇wα · ∇ψ − k2nwα ψ] dx −
∫
Γ

(Λαwα)ψ ds(37)

=

∫
Q

(Fg)ψ dx +

∫
Γ

∂wα,g
∂ν

ψ ds for all ψ ∈ H1
α(Q)

where again Γ = (R × {h0}) ∪ (R × {−h0}) and Λα : H
1/2
α (Γ) → H

−1/2
α (Γ) is the

α−quasi-periodic Dirichlet-to-Neumann operator given by (5). Here ∂wα,g/∂ν =
±∂w±α,g/∂x2 for x2 = ±h0.

(b) Let wα ∈ H1
α(Q) satisfy (37). Extend wα by wα = w±α,0 + w±α,g into Q±h0. Then wα

satisfies (35a) and (35b).

By the representation theorem of Riesz we can write the variational equation (37) as

(38) Aαwα = rα in H1
α(Q) ,
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where rα ∈ H1
α(Q) and the linear and bounded operator Aα from H1

α(Q) into itself are
defined as

(
Aαw,ψ

)
H1(Q)

=

∫
Q

[∇w · ∇ψ − k2nw ψ] dx −
∫
Γ

(Λαw)ψ ds

(
rα, ψ

)
H1(Q)

=

∫
Q

(Fg)ψ dx +

∫
Γ

∂wα,g
∂ν

ψ ds

for all w,ψ ∈ H1
α(Q). Then Aα is Fredholm with index zero. The equivalence implies

that α is an exceptional value if, and only if, Aα fails to be invertible. This form (37)
allows the application of Fredholm’s theorem; that is, Aαwα = rα is solvable if, and only
if rα is orthogonal to the null space of the adjoint A∗α of Aα. This is indeed the case for
this particular form of the right hand side. Before we prove this we show the following
properties of the operators Aα and the right hand side rα.

Lemma 3.2. Let Assumptions 1.1, 1.3, and 1.4 hold, and let α = α̂j for some j ∈ J be
an exceptional value.

(a) The null spaces N (Aα̂j) and N (A∗α̂j) of Aα̂j and A∗α̂j , respectively, coincide and
are given by the restrictions of the functions in Xj to Q.

(b) The Riesz number of Aα̂j is one; that is, the geometric and algebraic multiplicities
of the eigenvalue zero coincide.

(c) For all φ̂ ∈ Xj we have

(
rα̂j , φ̂

)
H1(Q)

=

∫
Q∞

(Fg)(x, α̂j) φ̂(x) dx

where (Fg)(·, α̂j) is again the right hand side of (35a).

Proof: (a) A∗αφ = 0 is equivalent to (Aαψ, φ)H1(Q) = 0 for all ψ; that is,∫
Q

[∇ψ · ∇φ− k2nψ φ] dx −
∫
Γ

(Λαψ)φ ds = 0 ; that is,

∫
Q

[∇ψ · ∇φ− k2nψ φ] dx − i
∑

σ∈{−1,+1}

∑
`∈Z

√
k2 − (`+ α)2 ψ`(σh0)φ`(σh0) = 0

for all ψ ∈ H1
α(Q). If α = α̂j this yields, by taking ψ = φ and the imaginary part, that

φ`(±h0) = 0 for |`+ α̂j| < k; that is, φ ∈ Xj.

(b) Let φ with A2
α̂j
φ = 0. Then w = Aα̂jφ ∈ N (Aα̂j) = N (A∗α̂j) and thus ‖w‖2

H1(Q) =(
w,Aα̂jφ

)
H1(Q)

=
(
A∗α̂jw, φ

)
H1(Q)

= 0; that is, w = 0.
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(c) We compute (note that wα,g = wα,g(·, α̂j vanishes on Γ):

(
rα̂j , φ̂

)
H1(Q)

=

∫
Q

(Fg)(·, α̂j) φ̂ dx +

∫
Γ

[
∂wα,g
∂ν

φ̂− ∂φ̂

∂ν
wα,g

]
ds

=

∫
Q

(Fg)(·, α̂j) φ̂ dx −
∫

Q∞\Q

[
φ̂∆wα,g − wα,g ∆φ̂

]
dx

=

∫
Q

(Fg)(·, α̂j) φ̂ dx −
∫

Q∞\Q

φ̂
[
∆wα,g + k2wα,g

]
dx

=

∫
Q∞

(Fg)(·, α̂j) φ̂ dx .

This ends the proof. �

Lemma 3.3. For every exceptional value α = α̂j0 the right hand side (Fg)(·, α̂j0) of
(35a) is orthogonal to the eigenspace Xj0 (see (6)) in L2(Q∞). Therefore, by the previous
lemmata, the variational equation (37) and the equations (35a), (35b) are solvable for all
α ∈ [−1/2, 1/2] without exception.

Proof: Recall the definition of g and thus Fg = Ff +
∑

j∈J
∑mj

`=1 a`,jFϕ`,j where ϕ`j are

defined in (11b).

Since φ̂`,j is α̂j−quasi-periodic it follows easily from the properties of the Floquet-Bloch
transform that

(Fϕ`,j)(x, α) = 2 (Fχ±)(x1, α− α̂j)
∂φ̂`,j(x)

∂x1

+ (Fχ±)′(x1, α− α̂j) φ̂`,j(x)

where χ± = ψ′± for λ`,j ≷ 0. (Note that ψ′± ∈ L2(R) in contrast to ψ± itself.) Since
(Fχ±)(·, β) is β−quasi-periodic its Fourier series is given by

(Fχ±)(x1, β) =
1√
2π

∑
`∈Z

χ±` (β) ei(`+β)x1 =
1√
2π

∑
`∈Z

(Fχ±)(`+ β) ei(`+β)x1

where we used (31) for the relationship between the Fourier transform Fχ± and the
Fourier coefficients χ±` (β) of the Floquet-Bloch transform (Fχ±)(·, β). With (Fχ±)(0) =

1√
2π

∫∞
−∞(ψ±)′(t) dt = ± 1√

2π
we can write

(Fχ±)(x1, β) =


1√
2π

d
dx1

∑̀
∈Z

(Fχ±)(`+β)
i(`+β)

ei(`+β)x1 , β /∈ Z ,

± 1
2π

+ 1√
2π

d
dx1

∑̀
6=0

(Fχ±)(`)
i`

ei`x1 , β ∈ Z ,
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which we abbreviate as (Fχ±)(x1, β) = ± 1
2π
δβ + d

dx1
ρ±(x1, β) where δβ = 0 for β 6∈ Z and

δβ = 1 for β ∈ Z. This allows us to write

(Fϕ`,j)(x, α) = ± 1

π

∂φ̂`,j(x)

∂x1

δα−α̂j

+ 2
d

dx1

ρ±(x1, α− α̂j)
∂φ̂`,j(x)

∂x1

+
d2

dx2
1

ρ±(x1, α− α̂j) φ̂`,j(x)

= ± 1

π

∂φ̂`,j(x)

∂x1

δα−α̂j + ∆ṽ±`,j(x, α) + k2n(x)ṽ±`,j(x, α)

for λ`,j ≷ 0 where ṽ±`,j(x, α) = ρ±(x1, α− α̂j)φ̂`,j(x). Substituting this into (35a) we obtain

∆wα + k2nwα = −(Ff)(·, α)

− 1

π

∑
j∈J

δα−α̂j

mj∑
`=1

(signλ`,j) a`,j
∂φ̂`,j
∂x1

−
[
∆v(·, α) + k2n v(·, α)

]
with an obvious meaning of v.

Now the proof of orthogonality is not difficult anymore. Let α = α̂j0 for some j0 ∈ J

and φ̂`0,j0 ∈ Xj0 . Then
∫
Q∞

[
∆v(·, α̂j0) + k2n v(·, α̂j0)

]
φ̂`0,j0 dx vanishes by Green’s second

theorem. Furthermore,

1

π

mj0∑
`=1

(signλ`,j0) a`,j0

∫
Q∞

∂φ̂`,j0
∂x1

φ̂`0,j0 dx

=
1

π
(signλ`0,j0) a`0,j0

iλ`0,j0
2

= −
∫
Q

f(x) φ̂`0,j0(x) dx

= −
∫
Q∞

(Ff)(x, α̂j0) φ̂`0,j0(x) dx

by the properties of φ̂`,j from (7a), (7b) and the definition (33) of a`,j. The last equation
holds because f has support in Q. This ends the proof. �

Therefore we have shown that the source problem (35a), ((35b) in the Floquet-Bloch
space is solvable for all α ∈ [−1/2, 1/2]. In order to apply the inverse Floquet-Bloch
transform we have to show that the mapping α 7→ wα from [−1/2, 1/2] to H1(QH) is
square integrable. This is not obvious. We show that it is even continuous. As in
Remark 1.5 we transform again the dependence on α from the space to the differential
equation. The operator (Tαu)(x) = e−iαx1u(x) transforms H1

α(Q) into H1
per(Q) (and also

H1
α(Q∞) into H1

per(Q
∞)) and the variational equation (37) into the task to determine
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w̃α ∈ H1
per(Q) with∫

Q

[∇w̃α · ∇ψ − 2i α
∂w̃α
∂x1

ψ − (k2n− α2) w̃α ψ] dx −
∫
Γ

Λ̃α(w̃α)ψ ds(39)

=

∫
Q

(TαFg)ψ dx +

∫
Γ

∂(Tαwα,g)

∂ν
ψ ds for all ψ ∈ H1

per(Q) ,

where Λ̃α = TαΛαT
−1
α is the periodic form of Λα (as in Part (C) of the proof of The-

orem 2.2). We write this as Ãαw̃α = r̃α in H1
per(Q), analogously to above. Let α̂ be

some fixed exceptional value. (We drop the index.) In order to apply Theorem 5.1 of
the Appendix we have to show that r̃α and Ãα are differentiable at α̂ with respect to

α and that P ∂Ãα̂
∂α
|N (Ãα̂) is bijective from the null space N (Ãα̂) of Ãα̂ onto itself. Here,

P : H1
per(Q)→ N (Ãα̂) is the projection along the direct sum H1

per(Q) = N (Ãα̂)⊕R(Ãα̂).

Differentiability is seen directly from the definitions because α̂ is not a cut-off value; that
is, |`+ α̂| 6= k for all ` ∈ Z.
Let w,ψ ∈ N (Ãα̂). Then Tα̂w, Tα̂ψ ∈ N (Aα̂), and w, ψ have therefore expansions in the
forms

w(x) =
1√
2π

∑
|`+α̂|>k

w±` (±h0) e−
√

(`+α̂)2−k2(±x2−h0) ei`x1 ,

ψ(x) =
1√
2π

∑
|`+α̂|>k

ψ±` (±h0) e−
√

(`+α̂)2−k2(±x2−h0) ei`x1

for ±x2 > h0. Therefore,∫
Γ

(Λ̃αw)ψ ds = −
∑

σ∈{+1,−1}

∑
|`+α̂|>k

√
(`+ α̂)2 − k2w±` (σh0)ψ±` (σh0) .

From this form we observe that(
∂Ãα̂
∂α

w , ψ

)
H1
per(Q)

= 2

∫
Q

[
−i ∂w

∂x1

+ α̂ w

]
ψ dx

+
∑

σ∈{+1,−1}

∑
|`+α̂|>k

`+ α̂√
(`+ α̂)2 − k2

wσ` (σh0)ψσ` (σh0)

Using the expansions of w and ψ we compute

2

∫
Q+
h0

[
−i ∂w

∂x1

+ α̂ w

]
ψ dx = 2

∑
|`+α̂|>k

(`+ α̂)w+
` (h0)ψ+

` (h0)

∞∫
h0

e−2
√

(`+α̂)2−k2(x2−h0)dx2

=
∑
|`+α̂|>k

`+ α̂√
(`+ α̂)2 − k2

w+
` (h0)ψ+

` (h0)
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and analogously for the integral over Q−h0 . Therefore,(
∂Ãα̂
∂α

w , ψ

)
H1
per(Q)

= 2

∫
Q∞

[
−i ∂w

∂x1

+ αw

]
ψ dx = −2i

∫
Q∞

∂

∂x1

[eiα̂x1w] [eiα̂x1ψ] dx

and P ∂Ãα̂
∂α
w vanishes if, and only if, the last integral vanishes for all ψ ∈ N (Ãα̂). This

implies that w vanishes by Assumption 1.4.

Therefore, all assumption of Theorem 5.1 of the Appendix are satisfied which yields
that the unique solution w̃α ∈ H1

per(Q) for α 6= α̂ can be continuously extended into α̂.

Therefore, the mapping α 7→ wα is continuous from [−1/2, 1/2] into H1(QH) (for every
H > h0) which implies that the inverse Floquet-Bloch transform u(1) = F−1wα ∈ H1(WH)
for every H > h0. We have therefore shown the following result for the special case q = 0:

Theorem 3.4. Let Assumptions 1.1, 1.3, and 1.4 hold. Then there exists a unique
solution u ∈ H1

loc(R2) of the source problem (8) satisfying the radiation condition of
Definition 1.6. Furthermore, for every H > h0 the mapping f 7→ u is bounded from
L2(Q) into H1(WH).

Proof: It remains to study the case of a general q. Let L : L2(Q) → H1(Q) be the
linear and bounded operator which maps f ∈ L2(Q) into u|Q where where u solves (8)
for q = 0 and the radiation condition. For arbitrary q the solution of (8) is equivalent to
the fixpoint equation u = L(f + k2nqu) for u ∈ L2(Q). Since L is compact from L2(Q)
into itself the uniqueness result of Section 2 yields existence. �

4. The Asymptotic Behaviour of the Solution

It is well known (see, e.g. [9]) that for closed waveguides the solution decays exponentially
as |x1| tends to infinity. This follows also from Theorem 5.1. Indeed, in this case the
variational equation (39) holds in the space {ψ ∈ H1

per(Q) : ψ = 0 on Γ} (assuming
Dirichlet boundary conditions on Γ) without the boundary terms involving the Dirichlet-
to-Neumann map. This shows even analytic dependence of Ãα and r̃α on α. Therefore,
from well known properties of analytic functions, continuity of α 7→ wα at an exceptional
value implies even analyticity which shows that the Floquet-Bloch transform is analytic in
[−1/2, 1/2] which implies that u(1) itself decays exponentially. The situation is different in
the case of an open waveguide because of the existence of cut-off values. They destroy the
analytic dependence on α but, as we show next, allow a special form of Hölder continuity.

Let now α̂ ∈ [−1/2, 1/2] be a cut-off value; that is, the set L = {` ∈ Z : |` − α̂| = k} is

not empty. L can consist of one or two elements. Indeed, if we decompose k as k = ˆ̀+ κ
with ˆ̀ ∈ N0 and κ ∈ (−1/2, 1/2] then L = {(signκ)ˆ̀} if 0 < |κ| < 1

2
and L = {ˆ̀,−ˆ̀}

if α̂ = κ = 0 (then ˆ̀ ≥ 1) and L = {ˆ̀,−ˆ̀− 1} if α̂ = κ = 1
2

and L = {−ˆ̀, ˆ̀+ 1} if

α̂ = −κ = −1
2
.

Lemma 4.1. Let Assumptions 1.1, 1.3, and 1.4 hold. Let k = ˆ̀+κ for some ˆ̀∈ N0 and
κ ∈ (−1/2, 1/2]. Then for every α̂ ∈ [−1/2, 1/2] which is not a cut-off value and every
H > h0 there exists a neighborhood of α̂ in which the mapping α 7→ (Fu(1))(·, α) from R
into H1(QH) is analytic.2

2Here, QH = (0, 2π)× (−H,H).
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Furthermore, in a neighborhood (α̂ − δ, α̂ + δ) of a cut-off value α̂ ∈ [−1/2, 1/2] the
transform Fu(1) has the form

(Fu(1))(·, α) = ũ
(1)
0 (·, α) +

√
α̂− α ũ(1)

+ (·, α) +
√
α− α̂ ũ(1)

− (·, α) + |α− α̂| ũ(1)
1 (·, α)

with smooth (with respect to α) functions ũ
(1)
0 (·, α), ũ

(1)
1 (·, α), and ũ

(1)
± (·, α) in a neighbor-

hood of α̂.

Proof: We look again at the variational form (39) for the periodic transform w̃α(x) =
e−iαx1(Fu(1))(x, α) which we write in the form∫

Q

[∇w̃α · ∇ψ − 2i α
∂w̃α
∂x1

ψ − (k2n− α2) w̃α ψ] dx(40)

−i
∑

σ∈{+1,−1}

∑
`∈Z

√
k2 − (`+ α)2wσ` (σh0)ψσ` (σh0)

=

∫
Q

e−iαx1(Fg)(x, α)ψ(x) dx +

∫
Γ

e−iαx1
∂wα,g(x)

∂ν
ψ(x) ds for all ψ ∈ H1

per(Q) ,

where again ∂wα,g
∂ν

= ±∂w±α,g
∂x2

for x2 = ±h0 and w±α,g is given by (36) and w±` (±h0) and

ψ±` (±h0) are Fourier coefficients of w̃α and ψ, respectively, for x2 = ±h0.

Again, with the representation theorem of Riesz we write this Ãαw̃α = r̃α in H1
per(Q).

Let first α̂ be not a cut-off value. Since the square root function is holomorphic in
C \ iR≤0 we note that the function r̃α and the operator Ãα depend analytically on α in a

neighborhood of α̂. We note that α is exceptional if, and only if, Ãα fails to be invertible.
Therefore, if α̂ is not exceptional then the (unique) solution w̃α depends analytically on
α in a neighborhood of α̂. If α̂ is exceptional then the assumptions of Theorem 5.1 of the
Appendix are satisfied (as we have shown above) and, therefore, w̃α has a continuous –
and thus analytic – extension into α̂.

Now we study the case that α is in a neighborhood of a cut-off value α̂ ∈ [−1/2, 1/2].
We set t+(α) =

√
α̂− α and t−(α) =

√
α− α̂. In order to treat all cases of the sets L

simultaneously we set ˆ̀± = ±ˆ̀ in the case that |κ| < 1/2 and ˆ̀
+ = ˆ̀, ˆ̀− = −ˆ̀− 1 in the

case that κ = 1/2 and α̂ = 1/2 and ˆ̀
+ = ˆ̀+ 1, ˆ̀− = −ˆ̀ in the case that κ = 1/2 and

α̂ = −1/2. In all cases we have that

√
k2 − (ˆ̀± + α)2 = t±(α) ρ±(α) + η±(α) where ρ±

and η± are analytic in a neighborhood of α̂.

First we consider the right hand side r̃α; that is, the right hand side of (40). The first
term is analytic with respect to α. The second term involves w±α,g from (36). We split

the Green’s function G±α (x, y) into the series over ` /∈ {ˆ̀+, ˆ̀−} and the terms ` = ˆ̀
+ and

` = ˆ̀−. We consider G+. The Taylor expansion yields

ei
√
k2−(ˆ̀±+α)2(|x2−y2| − ei

√
k2−(ˆ̀±+α)2(x2+y2−2h0)√

k2 − (ˆ̀± + α)2

= ã±(x2, y2, α) +

√
k2 − (ˆ̀± + α)2 b̃±(x2, y2, α) = a±(x2, y2, α) + t±(α) b±(x2, y2, α)
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with functions a± and b± which depend analytically on α in a neighborhood of α̂. Sub-
stituting this decomposition (also for the lower boundary with G−) into the form of wα,g
yields the right hand side r̃α has the form r̃α = r̃α,0 + t+(α) r̃α,+ + t−(α) r̃α,− where
r̃α,0 and r̃α,± depend analytically on α in a neighborhood of α̂. The same decompo-
sition is done with the (periodic) Dirichlet-to-Neumann map TαΛαT

−1
α . We note that

this operator consists of two components, which acts on H1/2(Γ+) and H1/2(Γ−) where
Γ± = (0, 2π)× {±h0}. We write it as

(TαΛαT
−1
α φ)(x1,±h0) =

i√
2π

∑
`∈Z

√
k2 − (`+ α)2 φ`(±h0) ei`x1

= (Λ̃±αφ)(x1,±h0) + t+(α)
iρ+(α)√

2π
φˆ̀

+
(±h0) ei

ˆ̀
+x1 + t−(α)

iρ−(α)√
2π

φˆ̀−
(±h0) ei

ˆ̀−x1

This decomposition defines two two-dimensional operators E+(α) and E−(α) fromH1
per(Q)

into itself by(
E±(α)φ, ψ

)
H1(Q)

= iρ±(α)
[
φˆ̀±

(h0)ψˆ̀±
(h0) + φˆ̀±

(−h0)ψˆ̀±
(−h0)

]
, φ, ψ ∈ H1

per(Q) .

Then the operator Ãα has a decomposition in the form

Ãα = Bα + t+(α)E+(α) + t−(α)E−(α)

where Bα depends analtically on α. Then (37) is equivalent to

(41) [Bα + t+(α)E+(α) + t−(α)E−(α)] w̃α = r̃α,0 + t+(α) r̃α,+ + t−(α) r̃α,−

Since the cut-off value α̂ is not exceptional by Assumption 1.3 we conclude that Ãα̂ is
invertible and thus also Bα in a neighborhood of α̂. Since the operator on the left hand
side of (41) is a small perturbation of Bα̂ the solution is given by the Neumann series as

w̃α =
∞∑
m=0

(−1)m[t+(α)B−1
α E+(α) + t−(α)B−1

α E−(α)]mB−1
α [r̃α,0 + t+(α) r̃α,+ + t−(α) r̃α,−] .

Therefore, noting that t+(α)2 and t−(α)2 are analytic functions, the assertion follows by
sorting this expression for t+(α), t−(α), and t+(α)t−(α) = i|α− α̂|. �

The following lemma will be needed:

Lemma 4.2. For every a > 0 and σ ∈ {+1,−1}

lim
σT→∞

[√
|T |

a∫
0

1√
α
e−iTα dα

]
= (1− iσ)

√
π

2
,

lim
σT→∞

[√
|T |

a∫
−a

1√
α
e−iTα dα

]
=

{
(1− i)

√
2π , σ = 1 ,

0 , σ = −1 .

Proof: Using the substitution t = |T |α = σTα the first formula follows from

a∫
0

1√
α
e−iTα dα =

1√
|T |

a|T |∫
0

1√
t
e−iσt dt =

1√
|T |

a|T |∫
0

cos t√
t
dt − iσ

1√
|T |

a|T |∫
0

sin t√
t
dt
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and

lim
T→∞

T∫
0

cos t√
t
dt = lim

T→∞

T∫
0

sin t√
t
dt =

√
π

2
.

For the second formula we note that

a∫
−a

1√
α
e−iTα dα =

a∫
0

1√
α
e−iTα dα +

1

i

a∫
0

1√
α
eiTα dα

= (1− i) Re

a∫
0

1√
α
e−iTα dα − (1− i) Im

a∫
0

1√
α
e−iTα dα

which yields the second assertion. �

Theorem 4.3. Let Assumptions 1.1, 1.3, and 1.4 hold. For all H > h0 there exists c > 0
such that ‖u(1)‖H1(QH` ) ≤ c

|`|3/2 for all ` ≥ 1. Here, QH
` = (2π`, 2π(`+ 1))× (−H,H).

Proof: For the different cases of exceptional values we define open sets I1, I2, and/or I3

and corresponding functions ψ1, ψ2, ψ3 ∈ C∞(R) with suppψj ⊂ Ij as follows.
Case I: If |κ| < 1

2
we define I1 = (−1/2 − ε, 1/2 + ε) \ {±κ}, I2 = (κ − ε, κ + ε), and

I3 = (−κ− ε,−κ+ ε). (The latter only if κ 6= 0.) The functions ψj are chosen such that∑
j ψj(α) = 1 for all α ∈ [−1/2, 1/2] (partition of unity).

Case II: If κ = 1/2 we define I1 = (−ε, 1 + ε) \ {1/2} and I2 = (1/2 − ε, 1/2 + ε). The
functions ψ1, ψ2 are chosen such that ψ1(α) + ψ2(α) = 1 for all α ∈ [0, 1].
The inverse Floquet-Bloch transform is given by

u(1)(x1 + 2π`, x2) =

∫
I

(Fu(1))(x, α) ei2π`αdα =
∑
j

∫
I

ψj(α) (Fu(1))(x, α) ei2π`αdα

for x ∈ QH and ` ∈ Z. Because of periodicity we can choose the interval of integration
as I = (−1/2, 1/2) which we do in the first case or I = (0, 1) which we do in the case of
κ = 1/2. In the following, however, we restrict ourselves to the first case. The second
case is treated as the case κ = 0.
The integrand of the term containing ψ1 vanishes in a neighborhood of the cut-off values
±κ and is therefore smooth. Furthermore, since ψ1 = 1 in neighborhoods of ±1/2 and
since (Fu(1))(x, ·) is 1−periodic, partial integration (two times) yields

∥∥∥∥
1/2∫

−1/2

ψ1(α) (Fu(1))(·, α) ei2π`α dα

∥∥∥∥
H1(QH)

≤ c

`2
.
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Next, we consider the case containing ψj for j ∈ {2, 3}; that is by Lemma 4.1,

1/2∫
−1/2

ψj(α) (Fu(1))(x, α) ei2π`αdα

=

1/2∫
−1/2

ψj(α) ũ
(1)
0 (x, α) ei2π`αdα +

1/2∫
−1/2

ψj(α) |α− α̂| ũ(1)
1 (·, α) ei2π`αdα

+

1/2∫
−1/2

ψj(α)
[√
α̂− α ũ(1)

+ (x, α) +
√
α− α̂ ũ(1)

− (x, α)
]
ei2π`αdα

where α̂ = κ or α̂ = −κ if j = 2 or j = 3, respectively. Two times partial integration
of the first term gives O(1/`2) (note that ψj vanishes near ±1/2). Also the second term
can be partially integrated twice and gives O(1/`2). Partial integration of the third term
yields

1/2∫
−1/2

ψj(α)
[√
α̂− α ũ(1)

+ (x, α) +
√
α− α̂ ũ(1)

− (x, α)
]
ei2π`αdα

= − 1

i2π`

1/2∫
−1/2

∂

∂α

[√
α̂− αψj(α) ũ

(1)
+ (x, α) +

√
α− α̂ ψj(α) ũ

(1)
− (x, α)

]
ei2π`αdα

=
1

i4π`

α̂+ε∫
α̂−ε

(
1√
α̂− α

ψj(α) ũ
(1)
+ (x, α)− 1√

α− α̂
ψj(α) ũ

(1)
− (x, α)

)
ei2π`αdα

− 1

i2π`

α̂+ε∫
α̂−ε

(√
α̂− α ∂

∂α

[
ψj(α) ũ

(1)
+ (x, α) +

√
α− α̂ ∂

∂α

[
ψj(α) ũ

(1)
− (x, α)

])
ei2π`αdα .

The second integral on the right hand side is again of order O(1/`2). For the first integral
we write

α̂+ε∫
α̂−ε

(
1√
α̂− α

ψj(α) ũ
(1)
+ (x, α)− 1√

α− α̂
ψj(α) ũ

(1)
− (x, α)

)
ei2π`αdα

= ũ
(1)
+ (x, α̂)

α̂+ε∫
α̂−ε

1√
α̂− α

ei2π`αdα − ũ
(1)
− (x, α̂)

α̂+ε∫
α̂−ε

1√
α− α̂

ei2π`αdα +

α̂+ε∫
α̂−ε

v(x, α) ei2π`αdα

with

v(x, α) =
1√
α̂− α

[
ψj(α) ũ

(1)
+ (x, α)− ũ(1)

+ (x, α̂)
]
− 1√

α− α̂
[
ψj(α) ũ

(1)
− (x, α)− ũ(1)

− (x, α̂)
]
.
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We show that v ∈ W 1,1
(
(−1/2, 1/2), H1(QH)

)
. Indeed, for the first term, which we denote

by v1(x, α) we compute

∂v1(x, α)

∂α
=

1

2(α̂− α)3/2

[
ψj(α) ũ

(1)
+ (x, α)− ũ(1)

+ (x, α̂)
]

+
1√
α̂− α

∂

∂α

[
ψj(α) ũ

(1)
+ (x, α)

]
.

We estimate (note that ψj(α̂) = 1)

1

|α− α̂|
∥∥ψj(α) ũ

(1)
+ (·, α)− ũ(1)

+ (·, α̂)
∥∥
H1(QH)

=
1

|α− α̂|

∥∥∥∥
α∫
α̂

∂

∂β

[
ψj(β) ũ

(1)
+ (·, β)

]
dβ

∥∥∥∥
H1(QH)

≤ max
β

∥∥∥∥ ∂∂β [ψj(β) ũ
(1)
+ (·, β)

]∥∥∥∥
H1(QH)

.

This shows that ∂v1/∂α satisfies an estimate of the form ‖∂v1(·, α)/∂α‖H1(QH) ≤ c/
√
|α− α̂|.

The second integral is estimated in the same way. Therefore, also the integral
∫ 1/2

−1/2
v(x, α) ei2π`αdα

is of order O(1/|`|) by partial integration. Finally, we compute

e−i2π`α̂
√

2π|`|
α̂+ε∫
α̂−ε

1√
α̂− α

ei2π`αdα

=
√

2π|`|
ε∫

−ε

1√
α
e−i2π`αdα −→

{
(1− i)

√
2π , `→∞ ,

0 , `→ −∞ ,

and analogously

e−i2π`α̂
√

2π|`|
α̂+ε∫
α̂−ε

1√
α− α̂

ei2π`αdα −→
{

0 , `→∞ ,

(1− i)
√

2π , `→ −∞ .

Therefore, we conclude that

lim
`→±∞

[
|`|3/2e−i2π`α̂

1/2∫
−1/2

ψj(α) (Fu(1))(·, α) ei2π`αdα

]
= −1 + i

4π
ei2πα̂ ũ

(1)
± (·, α̂)

in H1(QH). �

Theorem 4.4. Let Assumptions 1.1, 1.3, and 1.4 hold. For every R > 0 we have that

u(1)(x) = O(1/
√
|x2|) as |x2| → ∞

uniformly with respect to |x1| ≤ R.

Proof: Let again k = ˆ̀ + κ with ˆ̀ ∈ N0 and κ ∈ (−1/2, 1/2]. As in Lemma 1.8 we
decompose u(1) in the half planes x2 > h0 and x2 < −h0, respectively, in the forms
u(1) = u±0 +

∑
`,j a`,jv

±
`,j where u±0 solves ∆u±0 + k2u±0 = 0 for ±x2 > h0 and u±0 = u(1) for

x2 = ±h0 and v+
`,j is given by (14a) (v−`,j is defined analogously). The functions v±`,j decay
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as O(1/
√
|x2|) by Lemma 1.8. It remains to consider the part u±0 . We restrict ourselves

to the upper half plane and write u+
0 as

u+
0 (x1 + 2πm, x2) =

1/2∫
−1/2

(Fu
(1)
0 )(x, α) ei2πmαdα , m ∈ Z , x2 > h0 ,

where Fu
(1)
0 denotes again the Floquet-Bloch transform of u+

0 . Lemma 4.1 implies that the
trace Fu(1)|Γ ∈ C1

(
[−1/2, 1/2] \ {κ,−κ}, H1/2(Γ)

)
∩W 1,1

(
(−1/2, 1/2), H1/2(Γ)

)
. There-

fore, also ũ+
0 ∈ C1

(
[−1/2, 1/2] \ {κ,−κ}, H1(QH \Q)

)
∩W 1,1

(
(−1/2, 1/2), H1(QH \Q)

)
for every H > h0. Therefore, partial integration with respect to α is possible. For x2 > h0

the solution Fu
(1)
0 is given by the Rayleigh expansion as

(Fu
(1)
0 )(x, α) =

1√
2π

∑
`∈Z

ũ`(α) ei
√
k2−(`+α)2(x2−h0)+i(`+α)x1

where ũ`(α) = 1√
2π

∫ 2π

0
(Fu

(1)
0 )(x1, h0, α) exp(−i(` + α)x1) dx1 are the Fourier coefficients

of (Fu
(1)
0 )(·, h0, α). Therefore,

u+
0 (x1 + 2πm, x2) =

∑
`∈Z

1/2∫
−1/2

ũ`(α) ei
√
k2−(`+α)2(x2−h0)+i(`+α)x1 ei2πmα dα .

Let m, ` ∈ Z and x ∈ QH \ Q. We set φ(α, x1) = ũ`(α) ei(`+α)x1ei2πmα for abbreviation,
and consider several cases.
Case I: 0 < |`| ≤ ˆ̀+ 2 and ` 6= ˆ̀. Then either |` + α| < k for all |α| ≤ 1

2
or |` + α| > k

for all |α| ≤ 1
2
. Both cases are treated in the same way. Let |` + α| < k for all |α| ≤ 1

2
.

Then we make the transform t = t(α) =
√
k2 − (`+ α)2. It is smooth and t′(α) =

− `+α√
k2−(`+α)2

which does not vanish because ` 6= 0. Therefore, the transform is regular

and α =
√
k2 − t2 − ` and dα = − t√

k2−t2 dt. We get

1/2∫
−1/2

φ(α, ·) ei
√
k2−(`+α)2(x2−h0) dα =

√
k2−(`−1/2)2∫

√
k2−(`+1/2)2

φ(
√
k2 − t2 − `, ·) t√
k2 − t2

eit(x2−h0) dt .

As mentioned above we can apply partial integration and get an estimate of the form
O(1/x2) uniformly with respect to x1 ∈ [0, 2π] and m from bounded sets and |`| ≤ ˆ̀+ 2.
This finishes the part |`+α| < k of Case I. If |`+α| > k for all |α| ≤ 1

2
then one uses the

transform t =
√

(`+ α)2 − k2 and procceeds as before.
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Case II: ` = 0. Then, with the same substitution and α0 = min{k, 1/2},

α0∫
α0

φ(α, ·) ei
√
k2−α2(x2−h0) dα

=

α0∫
0

[φ(α, ·) + φ(−α, ·)] ei
√
k2−α2(x2−h0) dα =

k∫
√
k2−α2

0

φ̃(
√
k2 − t2, ·) t√
k2 − t2

eit(x2−h0) dt

=
φ̃(0, ·) k√

2k

k∫
√
k2−α2

0

1√
k − t

eit(x2−h0) dt

+

k∫
√
k2−α2

0

1√
k − t

[
φ̃(
√
k2 − t2, ·) t√
k + t

− φ̃(0, ·) k√
2k

]
eit(x2−h0) dt

where we have set φ̃(α, ·) = φ(α, ·)+φ(−α, ·). Since φ̃ is smooth at α = 0 we observe that
the term in the brackets [· · · ] is smooth as well and vanishes at t = k. Therefore, partial
integration implies that the second term behaves as O(1/x2) as x2 → ∞ uniformly with
respect to x1 and m from bounded sets. By Lemma 4.2 the first integral behaves as

√
x2 e

−ik(x2−h0)

k∫
√
k2−α2

0

1√
k − t

eit(x2−h0) dt =
√
x2

k−
√
k2−α2

0∫
0

1√
s
e−is(x2−h0) dt → (1−i)

√
π

2

as x2 →∞. Together one gets an estimate of O(1/
√
x2). Analogously, if α0 = k < 1/2,∫

|α|>k

φ(α, ·) ei
√
k2−α2(x2−h0) dα

=

1/2∫
k

[φ(α, ·) + φ(−α, ·)] e−
√
α2−k2(x2−h0) dα =

√
1/4−k2∫
0

φ̃(
√
k2 + t2, ·) t√
k2 + t2

e−t(x2−h0) dt

which behaves as O(1/x2).

Case III: ` = ˆ̀ ≥ 1. Then we have to distinguish between α ≤ κ and α > κ (since

|`+ α| = ˆ̀+ α). With t =

√
k2 − (ˆ̀+ α)2 the first case is transfomed to

κ∫
−1/2

φ(α, ·) ei
√
k2−(ˆ̀+α)2(x2−h0) dα =

√
k2−(ˆ̀−1/2)2∫

0

φ(
√
k2 − t2 − ˆ̀, ·) t√
k2 − t2

eit(x2−h0) dt
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while with t =

√
(ˆ̀+ α)2 − k2 the second case is transfomed to

−1/2∫
κ

φ(α, ·) e−
√

(ˆ̀+α)2−k2(x2−h0) dα =

√
(ˆ̀−1/2)2−k2∫

0

φ(
√
k2 + t2 − ˆ̀, ·) t√
k2 + t2

e−t(x2−h0) dt .

Both terms decay as O(1/x2).

Case IV: |`| ≥ ˆ̀+ 2. Then |`+α|2− k2 = (|`+α| − k)(|`+α|+ k) ≥ [|`| − (k+ 1/2)]2 ≥
[|`| − (ˆ̀+ 1)]2 and thus

∑
|`|≥ˆ̀+2

∥∥∥∥
1/2∫

−1/2

φ(α, ·) e−
√

(ˆ̀+α)2−k2(x2−h0) dα

∥∥∥∥
∞

≤ 2
∞∑

`=ˆ̀+2

1/2∫
−1/2

‖φ(α, ·)‖∞ e−[`−(ˆ̀+1)](x2−h0) dt ≤ c max
|α|≤1/2

‖φ(α, ·)‖∞ e−(x2−h0) .

This ends the proof because the cases I–III appear only finitely often. �

5. Appendix

The following result is a special case of a slightly more general result of Colton and Kress
(see Section 1.4 in [7]).

Theorem 5.1. Let X be a Banach space, I ⊂ R an open interval and r(α, ·) ∈ X and

K(α, ·) ∈ K(X) for α ∈ I a family of linear and compact operators3 such that r ∈ C1(Î , X)

and K ∈ C1
(
Î ,K(X)

)
, respectively, where Î = (α̂ − ε, α̂ + ε) ⊂ I for some α̂ ∈ I and

ε > 0.
Let I −K(α, ·) be bijective for α 6= α̂ but N

(
I −K(α̂, ·)

)
6= {0}. Let the Riesz number

of I −K(α̂, ·) be one; that is, N
(
(I −K(α̂, ·))2

)
= N

(
I −K(α̂, ·)

)
and P : X → N :=

N
(
I − K(α̂, ·)

)
be the projection operator onto the null space with respect to the direct

sum X = N ⊕ R
(
I − K(α̂, ·)

)
. Assume, furthermore, that P ∂

∂α
K(α̂, ·)

∣∣
N : N → N is

one-to-one and r(α̂, ·) ∈ R
(
I −K(α̂, ·)

)
.

Then the unique solution u(α, ·) ∈ X of
(
I−K(α, ·)

)
u(α, ·) = r(α, ·) for α 6= α̂ converges

to a solution u(α̂, ·) of
(
I −K(α̂, ·)

)
u(α̂, ·) = r(α̂, ·). In other words, u ∈ C(Î , X) where

ε > 0 in the definition of Î is possibly smaller than the original one. Furthermore, the
mapping r 7→ u is bounded from C1(Î , X) into C(Î , X).
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