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Abstract. The components of complex differentiable functions define solutions for the Laplace’s

equation, and in a simply connected domain each solution of this equation is the first component

of a complex analytic function. In this paper we generalize this result; for each PDE of the form

Auxx+Buxy+Cuyy = 0 and for each affine planar vector field ϕ, we give an associative and commutative

2D algebra with unit A, with respect to which the components of all functions of the form L◦ϕ define

solutions for this PDE, where L is differentiable in the sense of Lorch with respect to A. By using the

generalized Cauchy-Riemann equations associated with ϕA-differentiability we show that each solution

of these PDEs is a component of a ϕA-differentiable function. In the same way, for each PDE of the

form Auxx + Buxy + Cuyy + Dux + Euy + Fu = 0, the components of the exponential function eϕ

defined with respect to A, define solutions for this PDE. Also, solutions for two independent variables

3th order PDEs and 4th order PDE are constructed; among these are the bi-harmonic, bi-wave, and

bi-telegraph equations.
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Differentiation theory.
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Introduction

In this paper we consider the class of PDEs of the form

Auxx +Buxy + Cuyy +Dux + Euy + Fu = 0. (1)

An important subclass is the PDEs having the form

Auxx +Buxy + Cuyy = 0. (2)

This includes Laplace’s, wave, and heat equations between others.
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When proposing a solution of the form w = eax+by of (1) it is concluded that a and b must
satisfy

Aa2 +Bab+ Cb2 +Da+ Eb+ F = 0.

So, generically this set of solutions is parameterized by a conic. In this paper, given a PDE like
(1) and a vector field

ϕ(x, y) = (ax+ by + k, cx+ dy + l) (3)

with Ac2 +Bcd+Cd2 6= 0, we found an algebra A with respect to which the components of the
exponential function

E(x, y) = eϕ(x,y) (4)

define solutions of (1). If D = E = 0 in (1), similar results are obtained by using sine, cosine,
hyperbolic sine, and hyperbolic cosine functions instead of the exponential function.

The components of complex analytic functions are harmonic functions, and in a simply
connected domain each harmonic function is the first component of a complex analytic function.
This result has been generalized in Theorems 2.2 and 2.3; for each PDE (2) and for each affine
planar vector field ϕ with Ac2+Bcd+Cd2 6= 0, an associative and commutative 2D algebra with
unit A (see Section (1.1)) is given, with respect to which the components of all ϕA-differentiable
functions (see Section (1.2)) are solutions for this PDE, and we show in each simply connected
region that each solution of (2) is a component of a ϕA-differentiable function.

In Section 1 we introduce the definitions of algebra A, of the pre-twisted differentiability,
and the Cauchy-Rieman equations for the pre-twisted differentiability. In Section 2, given a 2nd

order PDE and an affine planar vector field, we give an algebra with respect to which the com-
ponents of the exponential function eϕ define solutions of the PDE, and we give these solutions
explicitly. Also used the sine, cosine, hyperbolic sine, and hyperbolic cosine functions instead the
exponential function, for constructing solutions of 2nd order PDEs. Moreover, for PDEs of the
form (2) we construct families of pre-twisted differentiable functions whose components define
solutions, and we show that each solution of these PDEs is a component of a ϕA-differentiable
function. In the same sense in Section 3 3th order PDEs and a 4th order PDE are considered. In
Section 2.5, given a PDEs of the form (2) and an affine planar vector fields ϕ, we give algebras
A for which we show that components of the ϕA-differentiable functions are solutions of the
given PDE.

1 Pre-twisted differentiability

1.1 Algebras A1(p1, p2)

We call to a R-linear space L an algebra if it is endowed with a bilinear product L × L → L
denoted by (u, v) 7→ uv, which is associative and commutative u(vw) = (uv)w and uv = vu for
all u, v, w ∈ L; furthermore, there exists a unit e ∈ L, which satisfies eu = u for all u ∈ L. An
element u ∈ L is called regular if there exists u−1 ∈ L called the inverse of u such that u−1u = e.
We also use the notation e/u for u−1. If u ∈ L is not regular, then u is called singular. L∗
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denotes the set of all the regular elements of L. If u, v ∈ L and v is regular, the quotient u/v
means uv−1.

An algebra A will be an algebra where L = R2 and an algebra M will be an algebra where L
is a two dimensional matrix algebra in the space of matrices M(2,R), where the algebra product
corresponds to the matrix product. We say that two matrix algebras M1 and M2 are conjugated
if there exists an invertible matrix T such that M1 = TM2T

−1.

The A-product between the elements of the canonical basis {e1, e2} of R2 is given by eiej =∑2
k=1 cijkek where cijk ∈ R for i, j, k ∈ {1, 2} are called structure constants of A. The first

fundamental representation of A is the injective linear homomorphism R : A→M(2,R) defined
by R : ei 7→ Ri, where Ri is the matrix with [Ri]jk = cikj, for i = 1, 2.

The linear space R2 endowed with the product

· e1 e2
e1 e1 e2
e2 e2 p1e1 + p2e2

(5)

is an algebra A which we denote by A1(p1, p2), see [2]. These algebras are associative, commu-
tative, and have unit e = e1, see also [7]. The first fundamental representation of A1(p1, p2) is
defined by

R(e1) =

(
1 0
0 1

)
, R(e2) =

(
0 p1
1 p2

)
. (6)

This representation allows us to use the corresponding matrix algebra in order to get expressions
of ϕA-functions, like the defined in the following section.

1.2 ϕA-differentiability

The pre-twisted differentiability is defined in [5], this definition is closely related with the differ-
entiability in the sense of Lorch, see [6]. Let A be an algebra and ϕ a differentiable planar vector
field in the usual sense. We say that a planar vector field F is ϕA-differentiable (pre-twisted
differentiable) if F is differentiable in the usual sense and if there exists a planar vector field F ′ϕ
which we call A-derivative of F , such that

dFp = F ′ϕ(p)dϕp, p = (x, y) (7)

where F ′ϕ(p)dϕp(v) denotes the A-product of F ′ϕ(p) and ϕp(v) for every vector v in R2. In the
same way, we say that F has a second order ϕA-derivative F ′′ϕ if F is ϕA-differentiable, F ′ϕ is
differentiable in the usual sense, and F ′′ϕ is a planar vector field, such that

d(F ′ϕ)p = F ′′ϕ(p)dϕp, p = (x, y). (8)

Therefore, in this way we define the n-order ϕA-derivative F (n)
ϕ for n ∈ N.

A ϕA-polynomial function P : A→ A is defined by

P(ξ) = c0 + c1ϕ(ξ) + c2(ϕ(ξ))2 + · · ·+ cm(ϕ(ξ))m (9)
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where c0, c1, · · · , cm ∈ A are constants, ξ = (x, y) is A-variable, and the products involved in
ck(ϕ(ξ))k for k ∈ {1, 2, · · · ,m} are defined with respect to A. In the same way exponential,
trigonometric, and hyperbolic ϕA-functions are defined. If P and Q are ϕA-polynomial func-
tions, the ϕA-rational function P/Q is defined on the set Q−1(A∗). All these functions have
n-order ϕA-derivatives for n ∈ N and the usual rules of differentiation are satisfied for this
differentiability.

1.3 Partial derivatives of F

We suppose that F has A-derivatives of first and second orders F ′ϕ and F ′′ϕ , respectively, like
the cases of functions defined in last section. The first partial derivatives Fx and Fy of every
ϕA-differentiable function F are expressed by

Fx = F ′ϕϕx, Fy = F ′ϕϕy, (10)

the second ones Fxx, Fxy, and Fyy by

Fxx = F ′′ϕϕ2
x + F ′ϕϕxx, Fxy = F ′′ϕϕxϕy + F ′ϕϕxy, Fyy = F ′′ϕϕ2

y + F ′ϕϕyy. (11)

Since ϕ is affine its second partial derivatives are zero, then the second partial derivatives given
in (11) become

Fxx = F ′′ϕϕ2
x, Fxy = F ′′ϕϕxϕy, Fyy = F ′′ϕϕ2

y. (12)

By the product of A = A1(p1, p2) and the form of ϕ in (3) we have

ϕ2
x = (a2 + p1c

2, 2ac+ p2c
2),

ϕxϕy = (ab+ p1cd, ad+ bc+ p2cd),
ϕ2
y = (b2 + p1d

2, 2bd+ p2d
2),

(13)

which can be calculated easily by using the first fundamental representation of A.

1.4 ϕA Cauchy-Riemann equations

By using Fx and Fy given in (10) we obtain

ϕyFx = ϕxFy,

which for A = A1(p1, p2) and ϕ given by (3) define the ϕA Cauchy-Riemann equations

bfx + p1dgx = afy + p1cgy,
dfx + (b+ p2d)gx = cfy + (a+ p2c)gy.

(14)

So, if F = (f, g) is ϕA-differentiable, then their component functions f and g satisfy the set of
PDEs (14). The converse affirmation is: if functions f and g satisfy (14), then F = (f, g) is
ϕA-differentiable, see [5].
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2 Solutions defined by E = eϕ

2.1 Looking for the algebra

In the following theorem we found the algebra A with respect to which the components of the
exponential function E = eϕ define solutions of the PDE (1).

Theorem 2.1 Consider the PDE (1) and the vector field ϕ given in (3). Suppose that Ac2 +
Bcd+ Cd2 6= 0. Thus, for the algebra A = A1(p1, p2) with parameters p1 and p2 given by

p1 = −Aa
2 +Bab+ Cb2 +Da+ Eb+ F

Ac2 +Bcd+ Cd2
, (15)

and

p2 = −2Aac+B(ad+ bc) + 2Cbd+Dc+ Ed

Ac2 +Bcd+ Cd2
, (16)

we have that the components f and g of the exponential function (4) defined with respect to A,
are solutions of the PDE (1).

Proof. Let A = A1(p1, p2). The equalities (15) and (16) are equivalent to

A(a2 + p1c
2) +B(ab+ p1cd) + C(b2 + p1d

2) +Da+ Eb+ F = 0,
A(2ac+ p2c

2) +B(ad+ bc+ p2cd) + C(2bd+ p2d
2) +Dc+ Ed = 0,

(17)

respectively. From (13) and (17) it can be obtained

Aϕ2
x +Bϕxϕy + Cϕ2

y +Dϕx + Eϕy + F (1, 0) = 0. (18)

As E = eϕ with respect to the product of A, we have E = F ′ϕ = F ′′ϕ . From this and the equalities
(12), by multiplying E with respect to A we get

AExx +BExy + CEyy +DEx + EEy + FE = 0. (19)

Since E = (f, g) we have that f and g are solutions for (1). �

By using the first fundamental representation R defined in Section 1.1, expressions for f and
g can be obtained, as we see in the following example.

Example 2.1 Consider the PDE (1) with A = 1, B = 2, C = 3, D = 4, E = 5, and F = 6.
We can define ϕ with c = d = 1, and a = b = 0, that is, ϕ(x, y) = (0, x + y). So p1 = −1,
p2 = −3/2, and by using the first fundamental representation R we can found that f and g are
given by

f(x, y) =
7 cos(

√
7(x+y)
4

) + 3
√

7 sin(
√
7(x+y)
4

)

7e
3(x+y)

4

, (20)

and

g(x, y) =
4
√

7 sin(
√
7(x+y)
4

)

7e
3(x+y)

4

, (21)
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and they are solutions for (1).

If we consider the same PDE and ϕ(x, y) = (0, x), so p1 = −6, p2 = −4,

f(x, y) = e−2x
(

cos(
√

2x) +
√

2 sin(
√

2x)
)
, (22)

and

g(x, y) =

√
2

2
e−2x sin(

√
2x). (23)

2.2 Expression for E = eϕ

In this Section we will use Theorem 2.1 to give explicit solutions for PDEs of the type (1).
By means of the first fundamental representation R defined in Section 1.1 we will work on the
corresponding matrix algebra. Although calculating the exponentials of matrices is well known
and commonly used in differential equations, this section will introduced so that the work is
more complete and that solutions for (1) can be directly obtained.

To each matrix in its normal form a matrix algebra can be associated, see [1]; in the case
of 2-by-2 real matrices, we have three types of algebras that correspond to the three types of
normal canonical forms of matrices.

2.2.1 Case p2
2 + 4p1 < 0

When the algebra A = A1(p1, p2) is isomorphic to the algebra of the complexes C, we have the
following proposition.

Proposition 2.1 If p2
2 +4p1 < 0, then the solutions f and g of the PDE (1) given in Theorem

2.1 for ϕ(x, y) = (ax+ by, cx+ dy) are the following

f(x, y) = eax+by+
p2
2
(cx+dy)

(
cos
(γ

2
(cx+ dy)

)
− p2
γ

sin
(γ

2
(cx+ dy)

))
(24)

and

g(x, y) = eax+by+
p2
2
(cx+dy)

(
(−p22 − γ2) sin

(γ
2 (cx+ dy)

)
2p1γ

)
, (25)

where γ =
√
−p22 − 4p1.

Proof. If p2
2 + 4p1 < 0, then p1 < 0 and(

0 p1
1 p2

)
=

(
0 2p1
γ p2

)(
p2
2
−γ

2
γ
2

p2
2

)( −p2
2p1γ

1
γ

1
2p1

0

)
.

We have
eR(ϕ(x,y)) = eax+bye

p2
2
(cx+dy)MeB(cx+dy)M−1,
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where R is the first fundamental representation of A1(p1, p2),

eB(cx+dy) =

(
cos
(
γ
2
(cx+ dy)

)
− sin

(
γ
2
(cx+ dy)

)
sin
(
γ
2
(cx+ dy)

)
cos
(
γ
2
(cx+ dy)

) )
,

and

M =

(
0 2p1
γ p2

)
.

Thus, the expressions for f and g are given by (49) and (46), respectively. �

2.2.2 Case p2
2 + 4p1 = 0

When the algebra A = A1(p1, p2) is isomorphic to the algebra spanned by the Jordan canonical
form, we have the following proposition.

Proposition 2.2 If p2
2 +4p1 = 0, then the solutions f and g of the PDE (1) given in Theorem

2.1 for ϕ(x, y) = (ax+ by, cx+ dy) are the following

f(x, y) = eax+by+
p2
2
(cx+dy)

(
−p2(cx+ dy) + 2

2

)
(26)

and
g(x, y) = eax+by+

p2
2
(cx+dy)(cx+ dy). (27)

Proof. If p2
2 + 4p1 = 0, then p1 = −p22/4, and(

0 p1
1 p2

)
=

(
−p2

2
1

1 0

)(
p2
2

1
0 p2

2

)(
0 1
1 p2

2

)
.

We have

eR(ϕ(x,y)) = eax+by+
p2
2
(cx+dy)

(
−p2

2
1

1 0

)
e
(cx+dy)

 0 1
0 0

(
0 1
1 p2

2

)
,

then

eR(ϕ(x,y)) = eax+by+
p2
2
(cx+dy)

(
−p2(cx+dy)+2

2
−p22(cx+dy)

4

cx+ dy p2(cx+dy)+2
2

)
.

Thus, in this case the expressions for f and g are given by (26) and (27), respectively. �

2.2.3 Case p2
2 + 4p1 > 0

When the algebra A = A1(p1, p2) is the direct sum of R and R, we have the following proposition.

Proposition 2.3 Let p2
2 + 4p1 > 0 and γ =

√
p22 + 4p1. Then the solutions f and g of the

PDE (1) given in Theorem 2.1 for ϕ(x, y) = (ax+ by, cx+ dy) are the following
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1. If p1 6= 0,

f(x, y) = eax+by+
p2
2
(cx+dy) (γ − p2)e

γ
2
(cx+dy) + (γ + p2)e

− γ
2
(cx+dy)

2γ
(28)

and

g(x, y) = eax+by+
p2
2
(cx+dy) (γ

2 − p22)e
γ
2
(cx+dy) − (γ2 − p22)e−

γ
2
(cx+dy)

4p1γ
. (29)

2. If p1 = 0,
f(x, y) = eax+by (30)

and

g(x, y) =
1

p2
eax+by

(
−1 + ep2(cx+dy)

)
. (31)

Proof. If p2
2 + 4p1 > 0, we have that the matrix(

0 p1
1 p2

)
is diagonalizable. If p1 6= 0, then(

0 p1
1 p2

)
=

(
2p1 2p1

p2 + γ p2 − γ

)(
p2+γ
2

0
0 p2−γ

2

)( −p2+γ
4p1γ

p1
2p1γ

p2+γ
4p1γ

−p1
2p1γ

)
,

where γ =
√
p22 + 4p1. Thus, in this case the expressions for f and g are given by (28) and

(29), respectively.

If p1 = 0, then (
0 0
1 p2

)
=

(
p2 0
−1 1

)(
0 0
0 p2

)( 1
p2

0
1
p2

1

)
.

Thus, in this case the expressions for f and g are given by (30) and (31), respectively. �

2.3 The 1D heat equation

Now we will consider the 1D heat equation.

Example 2.2 The 1D heat equation is given by

αuxx − ut = 0. (32)

In this case we change the variable y by t, A = α, E = −1, B, C, D, and F are zero. So,

p1 = −αa
2 − b
αc2

, p2 = −2αac− d
αc2

.
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Suppose that α = 1/7, a = c =
√

7, b = 1, and d = 2, then

p1 = −αa
2 − b
αc2

, p2 = −2αac− d
αc2

.

Thus, p1 = 0 and p2 = 0. By Proposition 2.2

f(x, t) = e
√
7x+t, g(x, t) = e

√
7x+t(
√

7x+ 2t)

are solutions. For the same value of α we may choose values for the constants a, b, c and d with
the only condition that c 6= 0.

2.4 Solutions by trigonometric and hyperbolic functions of ϕ

In the following proposition we now consider the trigonometric sine and cosine functions instead
of the exponential function.

Proposition 2.4 Suppose that in the PDE (1) D = 0, E = 0 and Ac2 + Bcd + Cd2 6= 0.
Denote by T the trigonometric functions

S(x, y) = sin(ϕ(x, y)), C(x, y) = cos(ϕ(x, y))

defined with respect to the A = A1(p1, p2) product. Let p1 and p2 be defined by

p1 = −Aa
2 +Bab+ Cb2 − F
Ac2 +Bcd+ Cd2

, (33)

and

p2 = −2Aac+B(ad+ bc) + 2Cbd

Ac2 +Bcd+ Cd2
, (34)

then the functions f and g given by

(f, g) = T (ax+ by, cx+ dy) (35)

are solutions of the PDE (1) with D = 0 and E = 0.

Proof. Proof is similar to that of Theorem 2.1 but in this case it is used that T = −T ′ϕ. �

In the following proposition are considered now the functions hyperbolic sine and hyperbolic
cosine instead of the exponential function.

Proposition 2.5 Suppose that in the PDE (1) D = 0, E = 0 and Ac2 + Bcd + Cd2 6= 0.
Denote by T the hyperbolic functions

S(x, y) = sinh(ϕ(x, y)), C(x, y) = cosh(ϕ(x, y))
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defined with respect to the A = A1(p1, p2) product. Let p1 and p2 be defined by

p1 = −Aa
2 +Bab+ Cb2 + F

Ac2 +Bcd+ Cd2
, (36)

and

p2 = −2Aac+B(ad+ bc) + 2Cbd

Ac2 +Bcd+ Cd2
, (37)

then the functions f and g defined by

(f, g) = T (ax+ by, cx+ dy) (38)

are solutions of the PDE (1) with D = 0 and E = 0.

Proof. Proof is similar to that of Theorem 2.1, but in this case it is used that T = T ′ϕ. �

2.5 PDEs Auxx +Buxy + Cuyy = 0

We will construct algebras A with respect to which the class of all the second order ϕA-
differentiable functions have component functions f and g which are solutions of the PDE
(2). Thus, the pre-twisted differentiability can be used for constructing solutions of PDEs.

Theorem 2.2 Consider the PDE (2) and the affine planar vector field ϕ given in (3). Suppose
that Ac2 +Bcd+Cd2 6= 0. Thus, for the algebra A = A1(p1, p2) with parameters p1 and p2 given
by

p1 = −Aa
2 +Bab+ Cb2

Ac2 +Bcd+ Cd2
, (39)

and

p2 = −2Aac+B(ad+ bc) + 2Cbd

Ac2 +Bcd+ Cd2
, (40)

we have that the components f and g of each ϕ(A)-differentiable function F = (f, g) are solutions
of the PDE (2).

Proof. Let A = A1(p1, p2). The equalities (39) and (40) are equivalent to

A(a2 + p1c
2) +B(ab+ p1cd) + C(b2 + p1d

2) = 0,
A(2ac+ p2c

2) +B(ad+ bc+ p2cd) + C(2bd+ p2d
2) = 0,

(41)

respectively. From (13) and (41) it can be obtained

Aϕ2
x +Bϕxϕy + Cϕ2

y = 0. (42)

From this and the equalities (12), by multiplying F ′ϕ with respect to A we get

AFxx +BFxy + CFyy = 0. (43)

Since F = (f, g) we have that f and g are solutions for (1). �

Theorem 2.2 is a generalization of a well known and important result, as we see in the
following corollary.
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Corollary 2.1 Suppose that A = 1, B = 0, C = 1, and ϕ(x, y) = (x, y). Then, PDE (2)
is the Laplace’s equation uxx + uyy = 0, and p1 = −1 and p2 = 0. Thus, A = A1(−1, 0) is
the algebra of the complex numbers A = C, the ϕA-differentiability corresponds to the usual
complex differentiability, and the components of the ϕA-differentiable functions are solutions of
the Laplace’s equation.

We consider again the case of the Laplace’s equation in the following example.

Example 2.3 Suppose that A = 1, B = 0, C = 1, and ϕ(x, y) = (x+2y, 3x+4y). Then, PDE
(2) is the Laplace’s equation uxx + uyy = 0. By Theorem 2.2

p1 = −1

5
, p2 =

−22

25
.

Then, for A = A1(−1/5,−22/25) the class of all the second order ϕA-differentiable functions
are solutions for (2). Thus, the components of ϕ2 = (f, g) are solutions for (2) for the given
values of A, B, and C. Since

(ϕ(x, y))2 =
(
(x+ 2y)2 − 1

5
(3x+ 4y)2, 2(x+ 2y)(3x+ 4y)− 22

25
(3x+ 4y)2

)
= 1

25
(−20x2 + 20y2 − 20xy,−48x2 + 48y2 − 28xy) ,

we have

f(x, y) =
1

5
(−4x2 + 4y2 − 4xy), g(x, y) =

1

25
(−48x2 + 48y2 − 28xy).

We consider the wave equation in the following example.

Example 2.4 Suppose that A = 1, B = 0, C = −1, and ϕ(x, y) = (x + 2y, 3x + 4y). Then,
PDE (2) is the classical wave equation uxx − uyy = 0. By Theorem 2.2

p1 = −3

7
, p2 =

−10

7
.

Then, for A = A1(−3/7,−10/7) the class of all the second order ϕA-differentiable functions are
solutions for (2). Thus, the components of ϕ2 = (f, g) are solutions for (2) for the given values
of A, B, and C. Since

(ϕ(x, y))2 =
(
(x+ 2y)2 − 3

7
(3x+ 4y)2, 2(x+ 2y)(3x+ 4y)− 10

7
(3x+ 4y)2

)
= −1

7
(20x2 + 20y2 + 4xy, 48x2 + 48y2 + 100xy),

we have

f(x, y) = −20x2 + 20y2 + 4xy

7
, g(x, y) = −48x2 + 48y2 + 100xy

7
.

Suppose that (k, l) 6= (0, 0), that is, ϕ(x, y) = (x+ 2y + k, 3x+ 4y + l). Since

(ϕ(x, y))2 =
(
(x+ 2y + k)2 − 3

7
(3x+ 4y + l)2, 2(x+ 2y + k)(3x+ 4y + l)− 10

7
(3x+ 4y + l)2

)
= 1

7
(7k2 − 3l2 − 20x2 + 14kx− 18lx− 20y2 + 28ky − 24ly − 44xy)e1

+1
7
(−10l2 + 14kl − 48x2 + 42kx− 46lx− 48y2 + 56ky − 52ly − 100xy)e2,
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we have

f(x, y) =
7k2 − 3l2 − 20x2 + 14kx− 18lx− 20y2 + 28ky − 24ly − 44xy

7
,

and

g(x, y) =
−10l2 + 14kl − 48x2 + 42kx− 46lx− 48y2 + 56ky − 52ly − 100xy

7
.

Example 2.5 Consider the 1D wave equation (the PDE (2)). Then, A = 1, B = 0, and
C = −1. Let ϕ be defined by ϕ(x, y) = (y, x). By Theorem 2.2

p1 = 1, p2 = 0.

Then, for A = A1(1, 0) the class of all the second order ϕA-differentiable functions are solutions
for (2). Thus, the components of ϕ2 = (f, g) are solutions for (2) for the given values of A, B,
and C. Since

(ϕ(x, y))2 =
(
x2 + y2, 2xy

)
,

we have
f(x, y) = x2 + y2, g(x, y) = 2xy.

2.6 Solutions of PDEs and ϕA-differentiable functions

Each solutions of a PDEs of the form (2) is a component of a ϕA-differentiable function, as we
see in the following theorem.

Theorem 2.3 Consider the PDE (2) and the affine planar vector field ϕ given in (3). Suppose
that Ac2 +Bcd+ Cd2 6= 0, and that equalities (39) and (40) are satisfied.

1) If p1(ad− bc) 6= 0, then the ϕA Cauchy-Riemann equations (14) can be expressed by

gx = −ab+cdp1−bcp2
(ad−bc)p1 fx + a2−c2p1+acp2

(ad−bc)p1 fy,

gy = −b2+d2p1−bdp2
(ad−bc)p1 fx + ab−cdp1+adp2

(ad−bc)p1 fy,
(44)

from which we obtain

(gx)y − (gy)x =
(ad− bc)

p1
(Afxx +Bfxy + Cfyy). (45)

Therefore, if f is a solution of PDE (2) and

g =

∫
gxdx+

∫ [
gy −

∂

∂y

∫
gxdx

]
dy, (46)

then, F = (f, g) is ϕA-differentiable.
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2) If (ad− bc) 6= 0, then the ϕA Cauchy-Riemann equations (14) can be expressed by

fx = −ab+cdp1−adp2
ad−bc gx + a2−c2p1+acp2

ad−bc gy,

fy = −b2+d2p1−bdp2
ad−bc gx + ab−cdp1+bcp2

ad−bc gy,
(47)

from which we obtain

(fx)y − (fy)x = (ad− bc)(Agxx +Bgxy + Cgyy). (48)

Therefore, if g is a solution of PDE (2), and

f =

∫
fydy +

∫ [
fx −

∂

∂x

∫
fydy

]
dx, (49)

then, F = (f, g) is ϕA-differentiable.

Proof. The systems (44) and (47) can be obtained from system (14); in the system of 1) we
use (fy, gy) = (a, c)−1(b, d)(fx, gx) and in 2) we use (fx, gx) = (b, d)−1(a, c)(fx, gx). In the first
case we have

p1(ad− bc)((gx)y − (gy)x) = (ad− bc)2(Afxx +Bfxy + Cfyy),

thus we obtain (45). In the first case we have

(ad− bc)((fx)y − (fy)x) = (ad− bc)2(Agxx +Bgxy + Cgyy),

thus we obtain (48). Since gyx = gxy if f is a solution of (2), we have that there exists a function
g(x, y) (uniquely defined under a constant additive) which satisfies (44). In the same way, since
fyx = fxy if g is a solution of (2), we have that there exists a function f(x, y) (uniquely defined
under a constant additive) which satisfies (47). The function F = (f, g) so constructed satisfy
the corresponding ϕA Cauchy-Riemann equations. Since ϕ is a linear isomorphism hypotheses
of Theorem 1.2 of [5] are satisfied, so we obtain that F is ϕA-differentiable. �

This example show the relation between the solutions of the 1D wave equation and the ϕA-
differentiable functions for the algebra A = A1(1, 0) and for ϕ(x, y) = (y, x); this is similar to
the relation between 2D harmonic functions and complex analytic functions.

Example 2.6 The ϕA Cauchy-Riemann equations (14) for ϕ and A given in Example 2.5, are
defined by

fx = gy, fy = gx. (50)

The function f(x, y) = x3 + 3xy2 is a solution of the 1D wave equation. Then, by 1) of
Theorem 2.3 we have

g(x, y) = 3x2y + y3 + k,

where k is a constant.

In this case F = (f, g) is given by F(x, y) = (ϕ(x, y))3 + (0, k).
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3 3th order PDE

Now consider the 3th order PDE

Guxxx +Huxxy +Kuxyy + Luyyy + Auxx +Buxy + Cuyy +Dux + Euy + Fu = 0. (51)

In this case we also are looking for solutions which are defined by the columns the exponential
functions E = eϕ. The third partial derivatives of F = (f, g) for affine planar vector filed ϕ are
given by

Fxxx = F ′′′ϕ ϕ3
x, Fxxy = F ′′′ϕ ϕ2

xϕy, Fxyy = F ′′′ϕ ϕxϕ2
y, Fyyy = F ′′′ϕ ϕ3

y. (52)

From the A = A1(p1, p2) product and the proposed form of ϕ in (3) we have

ϕ3
x = (a3, 3a2c+ c3p1) + (3ac2 + c3p2)(p1, p2),

ϕ2
xϕy = (a2b, 2abc+ a2d+ c2dp1) + (bc2 + 2acd+ c2dp2)(p1, p2),

ϕxϕ
2
y = (ab2, 2abd+ b2c+ cd2p1) + (ad2 + 2bcd+ c2dp2)(p1, p2),

ϕ3
y = (b3, 3b2d+ d3p1) + (3bd2 + d3p2)(p1, p2).

(53)

Theorem 3.1 Consider the PDE (51), the affine planar vector field ϕ given in (3), and the
quadratic system of equations

(Gc3 +Hc2d+Kcd2 + Ld3)xy
+ (3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2 +Ac2 +Bcd+ Cd2)x
+ Ga3 +Ha2b+Kab2 + Lb3 +Aa2 +Bab+ Cb2 +Da+ Eb+ F = 0,

(Gc3 +Hc2d+Kcd2 + Ld3)y2 + (Gc3 +H(c2d+ bc2) +Kcd2 + Ld3)x
+ (3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2 +Ac2 +Bcd+ Cd2)y + 3Ga2c
+ 2H(abc+ a2d) +K(b2c+ 2abd) + 3Lb2d+ 2Aac+B(ad+ bc) + 2Cbd+Dc+ Ed = 0.

(54)

If (p1, p2) is a solution of the quadratic system (54), for the algebra A = A1(p1, p2) the compo-
nents functions f and g of the exponential function (4) defined with respect to A, are solutions
of the PDE (51).

Proof. Let A = A1(p1, p2), where p1 and p2 is a solution of the quadratic system (54). Using
the equalities (12), (13), (52), (53), and the obtained by substituting p1, p2 in (54), we obtain
that columns of E are solutions for (51). �

The following corollary could help us to construct solutions for (51).

Corollary 3.1 If ϕ is satisfies

c2(Gc+Hd) + d2(Kc+ Ld) = 0 (55)

and
3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2 + Ac2 +Bcd+ Cd2 6= 0, (56)

14



then the quadratic system (54) given in Theorem 3.1 reduces to a the linear system with solutions

p1 = − Ga3 +Ha2b+Kab2 + Lb3 + Aa2 +Bab+ Cb2 +Da+ Eb+ F

3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2 + Ac2 +Bcd+ Cd2
, (57)

and

p2 = −3Ga2c+ 2H(abc+ a2d) +K(b2c+ 2abd) + 3Lb2d+ 2Aac+B(ad+ bc) + 2Cbd+Dc+ Ed

3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2 +Ac2 +Bcd+ Cd2
−Hbc2p1.

(58)

Proof. It follows from the Theorem 3.1 since

c2(Gc+Hd) + d2(Kc+ Ld) = Gc3 +Hc2d+Kcd2 + Ld3.

�

We have the following example.

Example 3.1 Consider the PDE

uxxx + 2uxxy + 2uxyy + 4uyyy + 5uxx + 6uxy + 7uyy + 8ux + 9uy + 10u = 0. (59)

For c = 2 and d = −1 we have c+ 2d = 0, 2c+ 4d = 0, then from Corollary 3 is satisfied. Thus,

p1 = −a
3 + 2a2b+ 2ab2 + 4b3 + 5a2 + 6ab+ 7b2 + 8a+ 9b+ 10

12a+ 2(4b− 4a) + 2(a− 4b) + 12b+ 20− 12 + 7
,

and

p2 = −6a2 + 4(2ab− a2) + 2(2b2 − 2ab)− 12b2 + 20a+ 6(−a+ 2b)− 14b+ 16− 9

12a+ 2(4b− 4a) + 2(a− 4b) + 12b+ 20− 12 + 7
+ 8p1.

If we take a = b = 0, then α = −2/3 and β = −87/5. In this case p22 + 4p1 > 0, so functions f
and g given in Proposition 2.3 are solutions for the PDE (59).

Consider the 3th order PDE

Guxxx +Huxxy +Kuxyy + Luyyy = 0. (60)

Theorem 3.2 Consider the PDE (60), the affine planar vector field ϕ given in (3), and the
quadratic system of equations

(Gc3 +Hc2d+Kcd2 + Ld3)xy
+ (3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2)x
+ Ga3 +Ha2b+Kab2 + Lb3 = 0,

(Gc3 +Hc2d+Kcd2 + Ld3)y2 + (Gc3 +H(c2d+ bc2) +Kcd2 + Ld3)x
+ (3Gac2 +H(bc2 + 2acd) +K(ad2 + 2bcd) + 3Lbd2)y + 3Ga2c
+ 2H(abc+ a2d) +K(b2c+ 2abd) + 3Lb2d = 0.

(61)

If (p1, p2) is a solution of the quadratic system (61), for the algebra A = A1(p1, p2) the compo-
nents of all the third order ϕA-differentiable function, are solutions of the PDE (51).

Proof. Let A = A1(p1, p2), where p1 and p2 is a solution of the quadratic system (61). Using
the equalities (12), (13), (52), (53), and the obtained by substituting p1, p2 in (61), we obtain
that columns of the ϕA-differentiable functions are solutions for (51). �
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4 4th order PDEs

The bi-harmonic equation is the 4th order PDE

uxxxx + 2uxxyy + uyyyy = 0, (62)

the biwave equation is the 4th order PDE

uxxxx − 2uxxyy + uyyyy = 0, (63)

and the bi-telegraph equation is the 4th order PDE

uxxxx − 2uxxyy + uyyyy − λ4u = 0, (64)

see [8]. For ϕ being an affine planar vector field, the fourth partial derivatives Fxxxx, Fxxyy, and
Fyyyy of every fourth order ϕA-differentiable function F , are given by

Fxxxx = F ′′′′ϕ ϕ4
x, Fxxyy = F ′′′′ϕ ϕ2

xϕ
2
y, Fyyyy = F ′′′′ϕ ϕ4

y. (65)

From the A = A1(p1, p2) product and the proposed form of ϕ in (3) we have

ϕ4
x = c4(p1p

2
2 + p21, p

3
2 + 2p1p2) + 4ac3(p1p2, p

2
2 + p1) + 6a2c2(p1, p2) + a3(a, 4c),

ϕ2
xϕ

2
y = c2d2(p1p

2
2 + p21, p

3
2 + 2p1p2) + (2cd(ad+ bc)p2 + a2d2 + 4abcd+ b2c2)(p1, p2)

+(a2b2, 2(ad+ bc)(cdp1 + ab)),
ϕ4
y = d4(p1p

2
2 + p21, p

3
2 + 2p1p2) + 4bd3(p1p2, p

2
2 + p1) + 6b2d2(p1, p2) + b3(b, 4d).

(66)

Theorem 4.1 Consider the PDE (62), the affine planar vector field ϕ given in (3), and the
cubic system of two equations

(c2 + d2)2(xy2 + x2) + 4(ac+ bd)(c2 + d2)xy
+2(3a2c2 + a2d2 + 4abcd+ b2c2 + 3b2d2)x+ (a2 + b2)2 = 0,

(c2 + d2)2(y3 + 2xy) + 4(ac+ bd)(c2 + d2)(y2 + x)
+2(3a2c2 + a2d2 + 4abcd+ b2c2 + 3b2d2)y + 4(a2 + b2)(ac+ bd) = 0.

(67)

If (p1, p2) is a solution of the cubic system (67), then for A = A1(p1, p2) the components of all
the fourth order ϕA-differentiable functions are solutions of the PDE (62).

Proof. Let A = A1(p1, p2), where p1 and p2 is a solution of the cubic system (67). Using the
equalities (65), (66), and (67), we obtain that components of all the ϕA-differentiable functions
are solutions for the bi-harmonic equation (62). �

Example 4.1 If ϕ(x, y) = (x + y + k, x− y + l), then p1 = −1 and p2 = 0, satisfy conditions
(67). Thus, for A = C the components of all the ϕA-differentiable functions are solutions of the
bi-harmonic equation (62). Function

(x+ y + k, x− y + l)−1 =

(
x+ y + k

(x+ y + k)2 + (x− y + l)2
,

x− y + l

(x+ y + k)2 + (x− y + l)2

)
,
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has components

f(x, y) =
x+ y + k

(x+ y + k)2 + (x− y + l)2
, g(x, y) =

x− y + l

(x+ y + k)2 + (x− y + l)2
,

which are bi-harmonic functions. Also function (x+ y + k, x− y + l)4, has components

f(x, y) = k4 + l4 − 6k2l2 − 4x4 − 8kx3 − 8lx3 − 24klx2 + 4k3x+ 4l3x− 12kl2x− 12k2lx

−4y4 − 8ky3 + 8ly3 + 24kly2 + 24x2y2 + 24kxy2 + 24lxy2 + 4k3y − 4l3y

−12kl2y + 12k2ly + 24kx2y − 24lx2y + 24k2xy − 24l2xy,

g(x, y) = −4kl3 + 4k3l + 8kx3 − 8lx3 + 12k2x2 − 12l2x2 + 4k3x− 4l3x− 12kl2x+ 12k2lx

−8ky3 − 8ly3 − 16xy3 − 12k2y2 + 12l2y2 − 24kxy2 + 24lxy2 − 4k3y − 4l3y

+12kl2y + 12k2ly + 16x3y + 24kx2y + 24lx2y + 48klxy,

which are bi-harmonic functions.

Example 4.2 If ϕ(x, y) = (y + k,−x + l), then p1 = −1 and p2 = 0 satisfy conditions (67).
Thus, for A = C the components of all the ϕA-differentiable functions are solutions of the
bi-harmonic equation (62).

Theorem 4.2 Consider the PDE (63), the affine planar vector field ϕ given in (3), and the
cubic system of two equations

(c2 − d2)2(xy2 + x2) + 4(ac− bd)(c2 − d2)xy
+2(3a2c2 − a2d2 − 4abcd− b2c2 + 3b2d2)x+ (a2 − b2)2 = 0,

(c2 − d2)2(y3 + 2xy) + 4(ac− bd)(c2 − d2)(y2 + x)
+2(3a2c2 − a2d2 − 4abcd− b2c2 + 3b2d2)y + 4(a2 − b2)(ac− bd) = 0.

(68)

If (p1, p2) is a solution of the cubic system (68), then for A = A1(p1, p2) the components of all
the fourth order ϕA-differentiable functions are solutions of the biwave equation (63).

Proof. Let A = A1(p1, p2), where p1 and p2 is a solution of the cubic system (68). Using the
equalities (65), (66), and (68), we obtain that components of all the ϕA-differentiable functions
are solutions for (63). �

Example 4.3 If ϕ(x, y) = (y+k, x−y+ l), then p1 = −1/4 and p2 = 1 satisfy conditions (68).
Thus, for A = A2

1(1/4, 1) the components of all the ϕA-differentiable functions are solutions of
the biwave equation (63). Function ϕ−1 is ϕA-differentiable, and

(y + k, x− y + l)−1 = (f(x, y), g(x, y)) ,

where

f(x, y) =
4x+ 4k + 4l

(x+ y)2 + (4k + 2l)(x+ y) + (2k + l)2
,

g(x, y) =
−4x+ 4y − 4l

(x+ y)2 + (4k + 2l)(x+ y) + (2k + l)2
,
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which are solutions of the biwave equation. In the same way for ϕ4 we have

(y + k, x− y + l)4 = (f(x, y), g(x, y)) ,

where

f(x, y) =
−3x4 − 16kx3 − 12lx3 − 24k2x2 − 18l2x2 − 48klx2 − 12l3x− 48kl2x− 48k2lx

16
+5y4 + 32ky3 + 12ly3 + 12xy3 + 72k2y2 + 6l2y2 + 48kly2 + 6x2y2 + 48kxy2

16
+12lxy2 + 64k3y − 4l3y + 48k2ly − 4x3y − 12lx2y + 48k2xy − 12l2xy

16
+16k4 − 3l4 − 16kl3 − 24k2l2

16
,

g(x, y) =
x4 + 6kx3 + 4lx3 + 12k2x2 + 6l2x2 + 18klx2 + 18kl2x+ 24k2lx− y4 − 6ky3

2
−2ly3 − 2xy3 + 8k3x+ 4l3x− 12k2y2 − 6kly2 − 6kxy2 − 8k3y

2
+2l3y + 6kl2y + 2x3y + 6kx2y + 6lx2y + 6l2xy + 12klxy

2
+l4 + 6kl3 + 12k2l2 + 8k3l

2
,

which are solutions of the biwave equation.

Example 4.4 If ϕ(x, y) = (x+ y + k, x+ l), then p1 = 0 and p2 = −2 satisfy conditions (68).
Thus, for A = A2

1(0,−2) the components of all the ϕA-differentiable functions are solutions of
the biwave equation (63). Function ϕ−1 is ϕA-differentiable, and

(x+ y + k, x+ l)−1 = (f(x, y), g(x, y)) ,

where

f(x, y) =
1

x+ y + k
, g(x, y) =

−x− l
−x2 + y2 − 2lx+ 2(k − l)y + k2 − 2kl

,

which are solutions of the biwave equation.

Theorem 4.3 Consider the PDE (64), the affine planar vector field ϕ given in (3), and the
cubic system of two equations

(c2 − d2)2(xy2 + x2) + 4(ac− bd)(c2 − d2)xy
+2(3a2c2 − a2d2 − 4abcd− b2c2 + 3b2d2)x+ (a2 − b2)2 − λ4 = 0,

(c2 − d2)2(y3 + 2xy) + 4(ac− bd)(c2 − d2)(y2 + x)
+2(3a2c2 − a2d2 − 4abcd− b2c2 + 3b2d2)y + 4(a2 − b2)(ac− bd) = 0.

(69)
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If (p1, p2) is a solution of the cubic system (69), then for A = A1(p1, p2) the components of the
functions

eϕ(x,y), sin(ϕ(x, y)), cos(ϕ(x, y)), sinh(ϕ(x, y)), cosh(ϕ(x, y)),

are solutions of the bi-telegraphic equation (64).

Proof. Let A = A1(p1, p2), where p1 and p2 is a solution of the cubic system (69). Using the
equalities (65), (66), and (69), we obtain that components of all the ϕA-differentiable functions
are solutions for (64). �

Example 4.5 If ϕ(x, y) = (λx+k, λx+λy+l), then p1 = 0 and p2 = −1 satisfy conditions (69).
Thus, for A = A2

1(0,−2) the components of all the ϕA-differentiable functions are solutions of
the bi-telegraphic equation (64). By Proposition 2.3 components of function eϕ(x,y) are given by

f(x, y) = eλx, g(x, y) = eλx − e−λy,

which by Theorem 4.3 are solutions of the bi-telegraphic equation.

Example 4.6 If ϕ(x, y) = (x−y+k, x+y+ l), then p1 = (λ/2)4 and p2 = 0 satisfy conditions
(69). By Proposition 2.3, for A = A2

1((λ/2)4, 0) the components of function eϕ(x,y) are given by

f(x, y) =
ex−y

2
(e

λ2

4
(x+y) + e−

λ2

4
(x+y)), g(x, y) =

2ex−y

λ2
(e

λ2

4
(x+y) − e−

λ2

4
(x+y)),

which by Theorem 4.3 are solutions of the bi-telegraphic equation. Components of sin(ϕ(x, y))
are given by

f(x, y) = sin(x−y+k) cos

(
λ2

4
(x+ y + k)

)
, g(x, y) =

4

λ2
cos(x−y+k) sin

(
λ2

4
(x+ y + k)

)
.

So, by proof of Theorem 4.3 they are solutions of the bi-telegraphic equation.

Example 4.7 If ϕ(x, y) = (0, (
√
λ2 + d2 )x+dy+ l), then p1 = 1 and p2 = 0 satisfy conditions

(69). Thus, for A = A2
1(0,−2) the components of all the ϕA-differentiable functions are solutions

of the bi-telegraphic equation (64). Following proof of Proposition 2.3 components of functions
sin(ϕ(x, y)) are given by

f(x, y) = 0, g(x, y) = sin
(

(
√
λ2 + d2 )x+ dy + l

)
,

which by Theorem 4.3 are solutions of the bi-telegraphic equation. In the same way components
of functions cos(ϕ(x, y)) are given by

f(x, y) = cos
(

(
√
λ2 + d2 )x+ dy + l

)
, g(x, y) = 0,

and they are solutions of the bi-telegraphic equation.
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