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Abstract. The components of complex differentiable functions define solutions for the Laplace’s
equation, and in a simply connected domain each solution of this equation is the first component
of a complex analytic function. In this paper we generalize this result; for each PDE of the form
Aty +Bugy+Cuyy = 0 and for each affine planar vector field ¢, we give an associative and commutative
2D algebra with unit A, with respect to which the components of all functions of the form £ o ¢ define
solutions for this PDE, where L is differentiable in the sense of Lorch with respect to A. By using the
generalized Cauchy-Riemann equations associated with pA-differentiability we show that each solution
of these PDEs is a component of a @A-differentiable function. In the same way, for each PDE of the
form Augy + Bugy + Cuyy + Duy + Euy + Fu = 0, the components of the exponential function e¥
defined with respect to A, define solutions for this PDE. Also, solutions for two independent variables
30 order PDEs and 4" order PDE are constructed; among these are the bi-harmonic, bi-wave, and
bi-telegraph equations.
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Introduction

In this paper we consider the class of PDEs of the form
Augy + Bugy + Cuyy + Duy + Euy + Fu = 0. (1)
An important subclass is the PDEs having the form
Augy + Bugy + Cuyy = 0. (2)

This includes Laplace’s, wave, and heat equations between others.



When proposing a solution of the form w = e® ™ of (1) it is concluded that a and b must

satisfy
Aa® 4 Bab + Cb* + Da+ Eb+ F = 0.

So, generically this set of solutions is parameterized by a conic. In this paper, given a PDE like
(1) and a vector field
o(x,y) = (ax + by + k,cx + dy + 1) (3)

with Ac? + Bed + Cd? # 0, we found an algebra A with respect to which the components of the

exponential function
E(z,y) = CE) (4)

define solutions of (1). If D = E = 0 in (1), similar results are obtained by using sine, cosine,
hyperbolic sine, and hyperbolic cosine functions instead of the exponential function.

The components of complex analytic functions are harmonic functions, and in a simply
connected domain each harmonic function is the first component of a complex analytic function.
This result has been generalized in Theorems 2.2 and 2.3; for each PDE (2) and for each affine
planar vector field ¢ with Ac?+ Bed+Cd? # 0, an associative and commutative 2D algebra with
unit A (see Section (1.1)) is given, with respect to which the components of all pA-differentiable
functions (see Section (1.2)) are solutions for this PDE, and we show in each simply connected
region that each solution of (2) is a component of a pA-differentiable function.

In Section 1 we introduce the definitions of algebra A, of the pre-twisted differentiability,
and the Cauchy-Rieman equations for the pre-twisted differentiability. In Section 2, given a 2°¢
order PDE and an affine planar vector field, we give an algebra with respect to which the com-
ponents of the exponential function e? define solutions of the PDE, and we give these solutions
explicitly. Also used the sine, cosine, hyperbolic sine, and hyperbolic cosine functions instead the
exponential function, for constructing solutions of 2 order PDEs. Moreover, for PDEs of the
form (2) we construct families of pre-twisted differentiable functions whose components define
solutions, and we show that each solution of these PDEs is a component of a pA-differentiable
function. In the same sense in Section 3 3'" order PDEs and a 4'" order PDE are considered. In
Section 2.5, given a PDEs of the form (2) and an affine planar vector fields ¢, we give algebras
A for which we show that components of the @A-differentiable functions are solutions of the
given PDE.

1 Pre-twisted differentiability

1.1 Algebras A;(p;, p2)

We call to a R-linear space I an algebra if it is endowed with a bilinear product L x L. — L
denoted by (u,v) — uv, which is associative and commutative u(vw) = (uv)w and uv = vu for
all u,v,w € LL; furthermore, there exists a unit e € L., which satisfies eu = u for all u € L. An
element u € LL is called regular if there exists u=! € L called the inverse of u such that v 'u = e.

We also use the notation e/u for u=. If u € L is not regular, then u is called singular. L*



denotes the set of all the regular elements of L. If u,v € L and v is regular, the quotient u/v

means uv 1 .

An algebra A will be an algebra where . = R? and an algebra M will be an algebra where L
is a two dimensional matrix algebra in the space of matrices M (2, R), where the algebra product
corresponds to the matrix product. We say that two matrix algebras M; and M, are conjugated
if there exists an invertible matrix 7" such that M; = TM,T 1.

The A-product between the elements of the canonical basis {e1, ea} of R? is given by e;e; =
Zizl cijker, where ¢ € R for 4,5,k € {1,2} are called structure constants of A. The first
fundamental representation of A is the injective linear homomorphism R : A — M (2, R) defined
by R :e; — R;, where R; is the matrix with [R;];; = ¢, for i = 1,2.

The linear space R? endowed with the product

: ‘ €1 €2
€1 | €1 €2 (5)
€2 | €2 D€y + P2ea

is an algebra A which we denote by A;(p1,p2), see [2]. These algebras are associative, commu-
tative, and have unit e = ey, see also [7]. The first fundamental representation of A;(py,ps) is

defined by R(e):<1 o) R(e):(o pl) (6)
V=10 1) o\l )

This representation allows us to use the corresponding matrix algebra in order to get expressions
of pA-functions, like the defined in the following section.

1.2 pA-differentiability

The pre-twisted differentiability is defined in [5], this definition is closely related with the differ-
entiability in the sense of Lorch, see [6]. Let A be an algebra and ¢ a differentiable planar vector
field in the usual sense. We say that a planar vector field F is pA-differentiable (pre-twisted
differentiable) if F is differentiable in the usual sense and if there exists a planar vector field F7,
which we call A-derivative of F, such that

dF, = F,(p)dp,,  p=(v,y) (7)

where F,(p)dp,(v) denotes the A-product of F/(p) and ¢,(v) for every vector v in R?. In the
same way, we say that F has a second order pA-derivative F), if F is pA-differentiable, F is
differentiable in the usual sense, and JF is a planar vector field, such that

Ad(F,)p = Fo(p)dey, — p=(z,y). (8)

Therefore, in this way we define the n-order pA-derivative ]-"é") for n € N.
A pA-polynomial function P : A — A is defined by

P(€) = co + c19p(€) + ca(p(€))* + -+ + cm((€))" (9)
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where ¢y, ¢y, -+, ¢ € A are constants, £ = (z,y) is A-variable, and the products involved in
cr(p(€))k for k € {1,2,--- ,m} are defined with respect to A. In the same way exponential,
trigonometric, and hyperbolic pA-functions are defined. If P and Q are pA-polynomial func-
tions, the pA-rational function P/Q is defined on the set Q~'(A*). All these functions have
n-order pA-derivatives for n € N and the usual rules of differentiation are satisfied for this
differentiability.

1.3 Partial derivatives of F

We suppose that F has A-derivatives of first and second orders F, and F, respectively, like

the cases of functions defined in last section. The first partial derivatives F, and F, of every
pA-differentiable function F are expressed by

Fo = F u, Fy = F 0y, (10)
the second ones F,,, F,y, and Fy, by
fmr - -F:olgoi + -F:o@xma -Fa:y - (ngmgpy + }Zp@mya -Fyy = -F:olgpgz/ +-;C;/090yy' (11>

Since ¢ is affine its second partial derivatives are zero, then the second partial derivatives given
n (11) become
Foz = ]:(ngi, F:cy = ‘/—';Z‘;Doc(pyv fyy = fg@z (12)

By the product of A = Al(py,p2) and the form of ¢ in (3) we have

w2 = (a®+pic?, 2ac+ pac?),
Oupy = (ab+ picd,ad + be + pacd), (13)
vy = (0P pud 2bd + pad®),

which can be calculated easily by using the first fundamental representation of A.

1.4 ¢A Cauchy-Riemann equations
By using F, and F, given in (10) we obtain
pyFz = paFy,
which for A = A(py, p2) and ¢ given by (3) define the pA Cauchy-Riemann equations

bfx +p1dg:r = afy +p109y7 (14)
dfz + (b +p2d)gx = ny + (a +p2c>gy‘

So, if F = (f, g) is ¢A-differentiable, then their component functions f and g satisfy the set of
PDEs (14). The converse affirmation is: if functions f and g satisfy (14), then F = (f,g) is
pA-differentiable, see [5].



2 Solutions defined by £ = ¢¥

2.1 Looking for the algebra

In the following theorem we found the algebra A with respect to which the components of the
exponential function £ = e¥ define solutions of the PDE (1).

Theorem 2.1 Consider the PDE (1) and the vector field ¢ given in (3). Suppose that Ac* +
Bed + Cd? # 0. Thus, for the algebra A = Ai(py, p2) with parameters p; and py given by

Aa® 4+ Bab+ Cb?> + Da+ Eb+ F
Ac? + Bed + Cd? ’

P11 = (15)

and
__2Aac+ B(ad + bc) +2Cbd + Dc + Ed
b2 = Ac? + Bed + Cd? ’

we have that the components f and g of the exponential function (4) defined with respect to A,
are solutions of the PDE (1).

(16)

Proof. Let A = Ay(p1,p2). The equalities (15) and (16) are equivalent to

A(a® + p1c®) + B(ab + pyed) + C(W* + p1d?) + Da+ Eb+ F = 0,

A(2ac + pac®) + B(ad + be + pacd) + C(2bd + ped?) + De+ Ed = 0, (17)
respectively. From (13) and (17) it can be obtained
Ap? + Boyy + Cpi + Do, + Eg, + F(1,0) = 0. (18)

As & = e? with respect to the product of A, we have £ = F/, = F. From this and the equalities
(12), by multiplying £ with respect to A we get

A&, + BE,, +CEyy + DE, + EE,+ FE = 0. (19)

Since € = (f, g) we have that f and g are solutions for (1). OJ

By using the first fundamental representation R defined in Section 1.1, expressions for f and
g can be obtained, as we see in the following example.

Example 2.1 Consider the PDE (1) with A=1, B=2,C =3, D=4, E=5, and F = 6.
We can define ¢ with c = d = 1, and a = b = 0, that is, p(x,y) = (0,2 +y). So p1 = —1,
po = —3/2, and by using the first fundamental representation R we can found that f and g are
given by

7008(@) + 3ﬁsin(@)

f(xa y) = 3(z+y) ) (20)
e 1
and Vet
44/7 sin (YEE8)
g(z,y) = e R (21)
e 4



and they are solutions for (1).
If we consider the same PDE and ¢(z,y) = (0,z), so py = —6, ps = —4,

Fla,y) =e <cos(x/§x) V2 Sin(\/§x)> , (22)

and

g(z,y) = geh sin(v/2z). (23)

2.2 Expression for £ = ¢e¥

In this Section we will use Theorem 2.1 to give explicit solutions for PDEs of the type (1).
By means of the first fundamental representation R defined in Section 1.1 we will work on the
corresponding matrix algebra. Although calculating the exponentials of matrices is well known
and commonly used in differential equations, this section will introduced so that the work is
more complete and that solutions for (1) can be directly obtained.

To each matrix in its normal form a matrix algebra can be associated, see [1]; in the case
of 2-by-2 real matrices, we have three types of algebras that correspond to the three types of
normal canonical forms of matrices.

2.2.1 Case py?2 +4p; <0

When the algebra A = A;(p1,ps) is isomorphic to the algebra of the complexes C, we have the
following proposition.

Proposition 2.1 If py®+4p, < 0, then the solutions f and g of the PDE (1) given in Theorem
2.1 for ¢(x,y) = (ax + by, cx + dy) are the following

flz,y) = e tby+ 1 (cotdy) <cos (l(cw + dy)) — 2 gin (l(cx + dy))) (24)
2 v 2
and
g(:ﬂ y) _ ea:z:—i-by—i-p%(c:c—&-dy) <(_p22 — 72) Sin (%(C{E + dy))) (25)
’ 2p1y ’

where v = \/—ps? — 4p;.

Proof. If py%2 4+ 4p; < 0, then p; < 0 and
(12)-( 30 (3
L po 7 P2 CREY 21

P2 _
elle(@y)) — gaatby 5 (catdy) § roBleatdy) o r 17

¥

O
~

We have



where R is the first fundamental representation of Al(py, ps),

NI

o _ (5

(cx—i—dy) —sm(V cx—l—dy)
sin( ’

(cx + dy)) cos (%(cx + dy))

M:(O 2pl>.
Y P2

Thus, the expressions for f and g are given by (49) and (46), respectively. [J

N0 2

and

2.2.2 Case py2 +4p; =0

When the algebra A = A;(py, p2) is isomorphic to the algebra spanned by the Jordan canonical
form, we have the following proposition.

Proposition 2.2 [fp,2+4p, = 0, then the solutions f and g of the PDE (1) given in Theorem
2.1 for p(z,y) = (ax + by, cx + dy) are the following

P2 _ d 2
Fla,y) = e thvtg (crtdy) ( P 2(“’5; y) + ) (26)

and p
g(z,y) = eax+by+72(0x+dy)(cx +dy). -

Proof. If py? + 4p; = 0, then p; = —po?/4, and

0p\_(-%1 21 0 1
1 ps 1 0 0 2 1 B )

We have
(cx+d )( 0 1)
cx+dy
Re@w) _ gartbyt B(eatay) (% 1), 00)(0 1
10 1)
then

eRle(zy)) _ paztby+TE (cotdy)
cr + dy

—p2(cx+dy)+2  —po?(caz+dy)
1

palcatdy)+2
2

Thus, in this case the expressions for f and g are given by (26) and (27), respectively. O

2.2.3 Case p2 +4p; >0

When the algebra A = A;(py, p2) is the direct sum of R and R, we have the following proposition.

Proposition 2.3 Let ps2 +4p; > 0 and v = /p22 + 4p1. Then the solutions f and g of the
PDFE (1) given in Theorem 2.1 for p(z,y) = (ax + by, cx + dy) are the following

7



1. ]fpl %07

3 (cx —X(cx
flz,y) = ewvtbut i3 (cotdy) (7 — p2)ez(HW) 4 (4 4 py)e2(cotdy)

28
- (28)
and 2 2\ 2 (cz+dy) 2 2\ ,— X (cx+dy)
g(:c,y) _ eam+by+%2(cx+dy) (’7 — P2 )62 v — (’V — P2 )6 2 Y (29>
4p1y
2. ]fp1 = 0,
flz,y) = et (30)
and .
g(x,y) = —e=tw (—1 + epz(m“dy)) . (31)

D2

Proof. If py2 4 4p; > 0, we have that the matrix

0 p
L po
is diagonalizable. If p; # 0, then

—p2+
2 2 —P1 ?
L ps p2t7 p2—7 0 5 iy e

where v = y/p2? 4+ 4p;. Thus, in this case the expressions for f and g are given by (28) and

(29), respectively.
00\ (p O 0 0 - 0

If p; = 0, then
Thus, in this case the expressions for f and g are given by (30) and (31), respectively. [

2.3 The 1D heat equation

Now we will consider the 1D heat equation.

Example 2.2 The 1D heat equation is given by
QUyy — U = 0. (32)
In this case we change the variable y by t, A=«, E=—1, B, C, D, and F are zero. So,

aa® —b

2ccac — d
b1 = ) P2 = — .

ac? ac?



Suppose that « = 1/7, a =c = V7, b=1, and d = 2, then

aa® —b 2cac — d
, P2=————"7""

P11 = —

ac? ac?

Thus, py = 0 and ps = 0. By Proposition 2.2
flat)=eV™ 1 gla,t) = eV (VT + 2t)

are solutions. For the same value of o we may choose values for the constants a, b, ¢ and d with
the only condition that ¢ # 0.

2.4 Solutions by trigonometric and hyperbolic functions of ¢

In the following proposition we now consider the trigonometric sine and cosine functions instead
of the exponential function.

Proposition 2.4 Suppose that in the PDE (1) D = 0, E = 0 and Ac* + Bed + Cd? # 0.
Denote by T the trigonometric functions

S(z,y) =sin(p(z,y)),  Clz,y) = cos(p(x,y))
defined with respect to the A = A1(p1,p2) product. Let p1 and py be defined by

_Aa2 + Bab+ Cbh — F

L= T T A Bed+ Ca2 (33)
and 2 Aac + Blad + be) + 2Chd
pr== Ac? + Bed + Cd? ’ (34)
then the functions f and g given by
(f,9) =T (azx + by, cx + dy) (35)

are solutions of the PDE (1) with D =0 and E = 0.

Proof. Proof is similar to that of Theorem 2.1 but in this case it is used that 7 = —7:;. O

In the following proposition are considered now the functions hyperbolic sine and hyperbolic
cosine instead of the exponential function.

Proposition 2.5 Suppose that in the PDE (1) D = 0, E = 0 and Ac* + Bed + Cd? # 0.
Denote by T the hyperbolic functions

S(z,y) = sinh(p(z,y)),  C(x,y) = cosh(p(z,y))



defined with respect to the A = Aq(p1,p2) product. Let p; and py be defined by

Aa® + Bab+ Ob? + F
Ac? + Bed + Cd?

p1=—

and
_ 2Aac + B(ad + be) + 2Cbd

Ac? + Bed + Cd? ’

P2 =
then the functions f and g defined by
(f,9) =T (ax + by, cx + dy) (38)
are solutions of the PDE (1) with D =0 and E = 0.

Proof. Proof is similar to that of Theorem 2.1, but in this case it is used that 7 = 7. U

2.5 PDEs Au,, + Buy, + Cuyy =0

We will construct algebras A with respect to which the class of all the second order @A-
differentiable functions have component functions f and g which are solutions of the PDE
(2). Thus, the pre-twisted differentiability can be used for constructing solutions of PDEs.

Theorem 2.2 Consider the PDE (2) and the affine planar vector field ¢ given in (3). Suppose
that Ac* + Bed+ Cd?* # 0. Thus, for the algebra A = Ai(py, pa) with parameters p; and py given

by
Aa? + Bab + Cb?

" Ac® + Bed + Cd?’

P = (39)

and
_ 2Aac + B(ad + be) + 2Cbd
Ac? + Bed + Cd? ’

we have that the components f and g of each p(A)-differentiable function F = (f, g) are solutions
of the PDE (2).

p2 = (40)

Proof. Let A = A;(p1,p2). The equalities (39) and (40) are equivalent to
Ala® +p1c®) + Blab + pred) + C(0* +pud®) - = 0,

A(2ac + pac®) + B(ad + be + paed) + C(2bd + pod®) = 0, (41)
respectively. From (13) and (41) it can be obtained
Ap? + By,py + C’gpz =0. (42)

From this and the equalities (12), by multiplying F, with respect to A we get
AF,p + BF, + CF,, = 0. (43)
Since F = (f, g) we have that f and g are solutions for (1). O

Theorem 2.2 is a generalization of a well known and important result, as we see in the
following corollary.
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Corollary 2.1 Suppose that A = 1, B =0, C = 1, and ¢(x,y) = (x,y). Then, PDE (2)
is the Laplace’s equation uz, + uy, = 0, and py = —1 and p, = 0. Thus, A = A;(—1,0) is
the algebra of the complexr numbers A = C, the pA-differentiability corresponds to the usual
complex differentiability, and the components of the pA-differentiable functions are solutions of
the Laplace’s equation.

We consider again the case of the Laplace’s equation in the following example.

Example 2.3 Suppose that A=1, B=0,C =1, and ¢(x,y) = (x+2y,3x+4y). Then, PDE
(2) is the Laplace’s equation g, + uy, = 0. By Theorem 2.2

1 22
p1 = 5 P2 = o5

Then, for A = Ay(—1/5,—22/25) the class of all the second order A-differentiable functions

are solutions for (2). Thus, the components of ¢* = (f,g) are solutions for (2) for the given

values of A, B, and C. Since

(e(z,9))? = ((x+29)* — 13z +4y)*,2(z + 2y) 3z + dy) — £ (3z + 4y)?)
= 5 (—2022 4 20y? — 20zy, —48z% + 48y* — 28xy),

we have

1 1
flz,y) = 5(—4x2 +4y? —day),  glz,y) = %(—48932 + 48y* — 28xy).
We consider the wave equation in the following example.

Example 2.4 Suppose that A =1, B=0, C = —1, and p(z,y) = (z + 2y,3x + 4y). Then,
PDE (2) is the classical wave equation uy, — uy, = 0. By Theorem 2.2
3 10
b1 = 7a P2 = 7 .
Then, for A = A(—=3/7,—10/7) the class of all the second order pA-differentiable functions are

solutions for (2). Thus, the components of * = (f,g) are solutions for (2) for the given values
of A, B, and C. Since

(p(z,y))* = ((x+2y)* = 23z +4y)*, 2(z + 2y) (3 + dy) — 2 (3z + 4y)?)
(2022 4 20y + 4xy, 4827 + 48y* + 100zy),

we have

2022 + 20y? + 4xy 4822 + 48y* + 100xy
fxy) = - o gly) =— :
7 7
Suppose that (k,1) # (0,0), that is, p(z,y) = (v + 2y + k, 3z + 4y + 1). Since

(p(z,9))? = ((@+2y+k)?—2Bz+4y+1)%2(x+2y+k)(B3z + 4y + 1) — 23z + 4y + 1)?)
= %(7/{:2 — 312 — 202% + 14kx — 181z — 20y + 28ky — 241y — 44xy)e;
+1(—100% + 14kl — 4822 + 42kx — 46lx — 48y> + 56ky — 52ly — 100zy)es,

11



we have

ey Tk — 312 — 2022 + 14kx — 181z — 20y? + 28ky — 241y — 4day
m? y = )
7

and
(2.9) —100% 4 14kl — 4822 + 42kx — 46lx — 48y® + 56ky — 52y — 100zy
g\r,y) = .
7

Example 2.5 Consider the 1D wave equation (the PDE (2)). Then, A = 1, B = 0, and
C = —1. Let ¢ be defined by p(x,y) = (y,z). By Theorem 2.2

p1 =1, p2 = 0.

Then, for A = A;1(1,0) the class of all the second order pA-differentiable functions are solutions
for (2). Thus, the components of p* = (f,g) are solutions for (2) for the given values of A, B,
and C. Since

(p(z,9))* = (2° + ¥, 22y)
we have
flr,y) =2 +y*  glz,y) = 2wy.

2.6 Solutions of PDEs and ¢A-differentiable functions

Each solutions of a PDEs of the form (2) is a component of a pA-differentiable function, as we
see in the following theorem.

Theorem 2.3 Consider the PDE (2) and the affine planar vector field ¢ given in (3). Suppose
that Ac®> + Bed + Cd? # 0, and that equalities (39) and (40) are satisfied.

1) If p1(ad — be) # 0, then the A Cauchy-Riemann equations (14) can be expressed by

—ab+cdp1 —bcpa a?—c?p1+acps
Jot fys

gz = (ad—bc)p1 (ad—bc)p1 (44)
o = S, s s,
from which we obtain
(ad — be)
(gz>y - <9y)w = —<Afxz + Bfwy + nyy)‘ (45)

4!

Therefore, if f is a solution of PDE (2) and

9= /gxdx+/ {gy - %/gwdl} dy, (46)

then, F = (f,g) is oA-differentiable.

12



2) If (ad — bc) # 0, then the oA Cauchy-Riemann equations (14) can be expressed by

—ab+cdp1 —ad a?—c? ac;
G SN (47)
f = ting, et
from which we obtain
(fe)y — (fy)2 = (ad — bc)(Ages + Bguy + Cgyy). (48)

Therefore, if g is a solution of PDE (2), and

1= [ sty [ 1= o [t as (19)

then, F = (f, g) is pA-differentiable.

Proof. The systems (44) and (47) can be obtained from system (14); in the system of 1) we
use (fy,,9,) = (a,¢)"1(b,d)(fs,9:) and in 2) we use (fr,9.) = (b,d)"*(a,c)(fr,gz). In the first

case we have

pi(ad —be)((9z)y — (9y)z) = (ad — bC)Z(Afm + Bfey + Cfyy),

thus we obtain (45). In the first case we have

(ad —be)((fe)y — (fy)z) = (ad — bc)Q(Agm + Bgey + Cgyy),

thus we obtain (48). Since g,, = s, if f is a solution of (2), we have that there exists a function
g(x,y) (uniquely defined under a constant additive) which satisfies (44). In the same way, since
fye = fay if g is a solution of (2), we have that there exists a function f(z,y) (uniquely defined
under a constant additive) which satisfies (47). The function F = (f, g) so constructed satisfy
the corresponding @A Cauchy-Riemann equations. Since ¢ is a linear isomorphism hypotheses
of Theorem 1.2 of [5] are satisfied, so we obtain that F is pA-differentiable. [J

This example show the relation between the solutions of the 1D wave equation and the pA-
differentiable functions for the algebra A = A;(1,0) and for ¢(z,y) = (y,x); this is similar to
the relation between 2D harmonic functions and complex analytic functions.

Example 2.6 The oA Cauchy-Riemann equations (14) for ¢ and A given in Example 2.5, are
defined by

fx = Gy, fy = Jzx- (50)

The function f(x,y) = 23 + 3zy? is a solution of the 1D wave equation. Then, by 1) of
Theorem 2.3 we have
g(x,y) =32y +y° + k,

where k is a constant.

In this case F = (f,g) is given by F(z,y) = (p(x,y))> + (0, k).
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3 3th order PDE

Now consider the 3" order PDE
GUyzy + HUggy + Kty + Ly, + Atz + Bugy + Cuyy + Duy, + Eu, + Fu = 0. (51)

In this case we also are looking for solutions which are defined by the columns the exponential
functions £ = e?. The third partial derivatives of F = (f, g) for affine planar vector filed ¢ are
given by

Foze = -FZD”SO:;? szy = Fz’@i@y’ -nyy = ./—";//9096905, Fyyy = fg@g, (52>
From the A = A;(p1, p2) product and the proposed form of ¢ in (3) we have

Soi = (a37 3@20 + Cgpl) + (3&62 + Cgpg)(pl’pQ),
©2p, = (a®b,2abc + a*d + Adpy) + (bc® 4 2acd + dps)(p1, p2),
¢epr = (ab? 2abd 4 b*c + cd®py) + (ad® + 2bcd + c*dps) (1, p2),
03 = (b3, 3b%d + dpy) + (3bd? + dPps) (p1, p2).

(53)

Theorem 3.1 Consider the PDE (51), the affine planar vector field ¢ given in (3), and the
quadratic system of equations

(Ge® + He*d + Ked? + Ld3)xy

+ (3Gac? + H(bc? + 2acd) + K (ad? + 2bcd) + 3Lbd% + Ac? + Bed + Cd*)x
R Ga® + Ha’b + Kab? + Lb® + Aa® + Bab+ Cb?> + Da+ Eb+ F =0,
(54)
(G + Hc*d + Ked? + Ld®)y? + (G + H(c*d + bc?) + Ked® + Ld®)x
+ (3Gac® + H(bc? + 2acd) + K (ad? + 2bcd) + 3Lbd? + Ac? + Bed + Cd?)y + 3Ga’c
+ 2H(abc + a*d) + K (b*c + 2abd) + 3Lb*d + 2Aac + B(ad + be) + 2Cbd + Dc + Ed = 0.

If (p1,p2) is a solution of the quadratic system (54), for the algebra A = A1(p1,pa) the compo-
nents functions f and g of the exponential function (4) defined with respect to A, are solutions

of the PDE (51).

Proof. Let A = A (p1,p2), where p; and ps is a solution of the quadratic system (54). Using
the equalities (12), (13), (52), (53), and the obtained by substituting p;,ps in (54), we obtain
that columns of £ are solutions for (51). O

The following corollary could help us to construct solutions for (51).

Corollary 3.1 If ¢ is satisfies
(Ge+ Hd) + d*(Kc+ Ld) =0 (55)

and
3Gac® + H(bc* + 2acd) + K (ad® + 2bed) + 3Lbd* + Ac® + Bed + Cd®* # 0, (56)
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then the quadratic system (54) given in Theorem 3.1 reduces to a the linear system with solutions

- Ga® + Ha?b + Kab?> + Lb® + Aa®2 + Bab+ Cb? + Da+ Eb+ F
PL="3Gac T H(be® + 2acd) + K (ad? + 2bed) + 3Lbd® + A2 + Bed + O

(57)

and

B _3G’a2c + 2H (abc + a*d) + K (b*c + 2abd) + 3Lb%*d + 2Aac + B(ad + be) + 2C0bd + Dc + Ed—Hbc2
b2 = 3Gac® + H(be + 2acd) + K (ad® + 2bed) + 3Lbd2 + Ac® + Bed + Cd? b1
(58)

Proof. It follows from the Theorem 3.1 since
(Ge+ Hd) + d*(Kc+ Ld) = Gé® + Hcd + Ked® + Ld®.
O

We have the following example.

Example 3.1 Consider the PDE
Uzzz + 2Ugey + 2Ugyy + 4Uyyy + gy + OUgy + Ty, + 8uy + Yuy, + 10u = 0. (59)
Forc=2 and d = —1 we have c+2d =0, 2c+4d = 0, then from Corollary 3 is satisfied. Thus,

_a3—|—2a2b+2ab2—|—4b3+5a2+6ab+7b2+8a+9b+10
12a 4 2(4b — 4a) +2(a — 4b) + 120+ 20 — 124+ 7

p1=

and
_6a2 + 4(2ab — a2) + 2(262 — 2ab) — 12b% + 20a + 6(—a+20) —14b+ 16 —9 L
12a + 2(4b — 4a) + 2(a — 4b) + 120+ 20 — 124+ 7

If we take a = b =0, then « = —2/3 and 3 = —87/5. In this case p5 + 4p; > 0, so functions f
and g giwen in Proposition 2.3 are solutions for the PDE (59).

b2 = 8p1.

Consider the 3™ order PDE
GUyyy + Huggy + Kty + Luy,, = 0. (60)

Theorem 3.2 Consider the PDE (60), the affine planar vector field ¢ given in (3), and the
quadratic system of equations

(Ge® + Hc?d + Ked? + Ld®)xy

+ (3Gac* + H(bc* + 2acd) + K (ad® + 2bed) + 3Lbd*)x
+ Ga® + Ha?b + Kab®> + Lb® = 0,
(61)
(Ge3 + He?d + Ked? + Ld®)y? + (Ge® + H(c*d + be?) + Ked? + Ld®)x
+ (3Gac? + H(bc? + 2acd) + K (ad? + 2bed) + 3Lbd?)y + 3Ga’c
+ 2H (abc + a?d) + K (b%c + 2abd) + 3Lb*d = 0.

If (p1,p2) is a solution of the quadratic system (61), for the algebra A = A;(p1,pa) the compo-
nents of all the third order pA-differentiable function, are solutions of the PDE (51).

Proof. Let A = A;(p1,p2), where p; and ps is a solution of the quadratic system (61). Using
the equalities (12), (13), (52), (53), and the obtained by substituting p;,ps in (61), we obtain
that columns of the pA-differentiable functions are solutions for (51). O

15



4 4" order PDEs

The bi-harmonic equation is the 4" order PDE
Uppwe + 2payy + Uyyyy = 0, (62)
the biwave equation is the 4" order PDE
Upzzzr — 2Uggyy + Uyyyy = 0, (63)
and the bi-telegraph equation is the 4™ order PDE
Upprs — LUy + Uyyyy — N1 =0, (64)

see [8]. For ¢ being an affine planar vector field, the fourth partial derivatives Fpppz, Foayy, and
Fyyyy of every fourth order pA-differentiable function F, are given by

Froee = -/T-megoi7 f:v:vyy = ]::0/”903209027 fyyyy = "T'Za///gpzl/ (65>
From the A = A;(py, p2) product and the proposed form of ¢ in (3) we have

oy = Hpips 4 p3, 05 4 2pipa) + 4ac (pipa, p3 4 1) + 667 (p1, p2) + a’(a, 4c),
pror = EdX(pps + P34 2p1ps) + (2cd(ad + be)py + a*d? + 4abed + b2¢?) (p1, p2)
+(a?v?, 2(ad + be)(cdpy + ab)),
oy = dYpip} + Pl p3 + 2p1pa) + 4bdP (p1pa, p3 4 p1) + 6b2d? (p1, pa) + (b, 4d).

(66)

Theorem 4.1 Consider the PDE (62), the affine planar vector field ¢ given in (3), and the
cubic system of two equations

(2 + d*)*(xy? + 22) + 4(ac + bd) (¢ + d*)zy
+2(3ac® + a*d* + 4abed + V?c? + 3b%d*)z + (a® + b?)? = 0,
(67)
(2 + d*)*(y3 + 2zy) + 4(ac + bd) (A + d?)(y* + )
+2(3a*c® + a*d* + 4abed + b*c* + 3b%d*)y + 4(a® + b*)(ac + bd) = 0.

If (p1,p2) is a solution of the cubic system (67), then for A = Aq(p1,p2) the components of all
the fourth order A-differentiable functions are solutions of the PDE (62).

Proof. Let A = A;(p1, p2), where p; and ps is a solution of the cubic system (67). Using the
equalities (65), (66), and (67), we obtain that components of all the pA-differentiable functions
are solutions for the bi-harmonic equation (62). O

Example 4.1 If p(z,y) = (t+y+k,x —y+1), then p1 = —1 and py = 0, satisfy conditions
(67). Thus, for A = C the components of all the pA-differentiable functions are solutions of the
bi-harmonic equation (62). Function

k — l
(x+y+k,:c—y+l)1:< Tyt Tyt )

(x+y+k)32+@—y+0? (r+y+k)2+(x—y+1)?
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has components

r+y+k
(x+y+k)32+(x—y+1)?

x—y+1
(x+y+k)32+(@x—y+1)?

[, y) = g(r,y) =

which are bi-harmonic functions. Also function (x +vy + k,z —y + 1)*, has components

flz,y) = k' +1* —6K%1* — 42 — 8ka® — 8la® — 24kix® + 4k + 4Pz — 12k*x — 1212
— 4yt — 8ky® + 8ly® + 24kly? + 242y? + 24kay® + 24lxy® + 4k3y — 4Py
—12k%y + 12k21y + 24ka>y — 24la?y + 24k*xy — 2412y,

g(x,y) = —4kl® +4K31 + 8ka® — 8la® + 12k%2® — 12172 + 4kx — 41w — 12k1%z + 12Kz
—8ky® — 8ly® — 162y — 12k%y? + 120%y* — 24kay?® + 24lay® — 4k%y — 4Py
+12klPy + 12Ky 4 1623y + 24kx?y + 2412y + 48klxy,

which are bi-harmonic functions.

Example 4.2 If p(z,y) = (y+ k,—x + 1), then py = —1 and py = 0 satisfy conditions (67).
Thus, for A = C the components of all the pA-differentiable functions are solutions of the
bi-harmonic equation (62).

Theorem 4.2 Consider the PDE (63), the affine planar vector field ¢ given in (3), and the
cubic system of two equations

(¢ — d*)?(zy* + 22) + 4(ac — bd)(* — d*)xy
+2(3a*c? — a*d* — 4abed — b*c* + 3b*d*)x + (a* — b*)? = 0,
(68)
(¢ = d*)*(y* + 2zy) + 4(ac — bd)(c* — d*)(y* + )
+2(3a*c® — a*d? — dabed — b*c? + 3v*d*)y + 4(a® — b*)(ac — bd) = 0.

If (p1,p2) is a solution of the cubic system (68), then for A = Ai(p1,p2) the components of all
the fourth order oA-differentiable functions are solutions of the biwave equation (63).

Proof. Let A = A;(p1,p2), where p; and ps is a solution of the cubic system (68). Using the
equalities (65), (66), and (68), we obtain that components of all the pA-differentiable functions
are solutions for (63). OJ

Example 4.3 Ifp(z,y) = (y+k,x—y-+1), then p = —1/4 and py = 1 satisfy conditions (68).
Thus, for A = A2(1/4,1) the components of all the pA-differentiable functions are solutions of
the biwave equation (63). Function ¢~ is pA-differentiable, and

(y+ka—y+0)""=(flz,y) 9(z,y)),

where
4 + 4k + 4l
flzy) = 5 5>
(x+y)2+ (4k +2)(z +y) + (2k + 1)
—Adx + 4y — 4
g(z,y) =

(x 4+ )2+ (4k + 20)(z +y) + (2k + 1)%’
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which are solutions of the biwave equation. In the same way for ¢* we have

(y+kx—y+0)'=(f(z,9),9(z,9)),

where
—3a* — 16kz® — 1212 — 24k%x? — 181222 — 48klx? — 1213x — 48k[?x — 48k>1x
+5yt + 32Ky + 121y3 + 12293 + 72k%y? + 61%y? + 48kly? + 622y? + 48kxy?
16
+12lzy? + 64k3y — 4Py + 48k2ly — 423y — 12122y + 48Kk%xy — 12[%zy
16
+16k* — 314 — 16k13 — 24K%1?
16 ’
(z.1) xt + 6ka® + 4lad + 12k%22 + 61222 + 18klx? + 18Kki%x + 24k%lx — y* — 6ky3
ag\r,y) =
2
=23 — 2z + 8k3x + 413z — 12k2%y? — 6kly? — 6kay? — 8k3y
2
+213y + 6kl?y + 223y + 6kx?y + 6la?y + 6122y + 12kizy

2
+I4 4+ 6k + 12k212 + 8K31
2 )

which are solutions of the biwave equation.

Example 4.4 If p(z,y) = (x+y+k,x+1), then p; =0 and ps = —2 satisfy conditions (68).
Thus, for A = A2(0,—2) the components of all the pA-differentiable functions are solutions of
the biwave equation (63). Function ¢~ is pA-differentiable, and

(T+y+k o+~ =(f(z,y),9(xy)),

where
1 (2,y) = —x —
sryt k. Y T T e ol 2k — Dy + k2 — 2K’

which are solutions of the biwave equation.

fx,y) =

Theorem 4.3 Consider the PDE (64), the affine planar vector field ¢ given in (3), and the
cubic system of two equations

(2 — d®)?(xy? + 2%) + 4(ac — bd)(® — d®)xy
+2(3a%c* — a?d® — 4abed — b>c? + 3b%d*)x + (a* — b*)2 — A1 =0,
(69)
(2 —d*)?(y3 + 2zy) + 4(ac — bd)(c* — d*)(y? + )
+2(3a?c? — a?d® — 4abed — V*c* + 362 d?)y + 4(a® — b*)(ac — bd) = 0.
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If (p1,p2) is a solution of the cubic system (69), then for A = A1(p1,pa) the components of the
functions

eV sin(p(x,y)), cos(p(z,y)), sinh(p(z,y)), cosh(p(z,y)),

are solutions of the bi-telegraphic equation (64).

Proof. Let A = A;(py,p2), where p; and ps is a solution of the cubic system (69). Using the
equalities (65), (66), and (69), we obtain that components of all the pA-differentiable functions
are solutions for (64). OJ

Example 4.5 Ifo(z,y) = (Ax+k, \e+Ay+1), then py = 0 and p» = —1 satisfy conditions (69).
Thus, for A = A3(0,—2) the components of all the A-differentiable functions are solutions of
the bi-telegraphic equation (64). By Proposition 2.3 components of function e?@Y) are given by

flzy) =N, gla,y) =N —e,

which by Theorem 4.3 are solutions of the bi-telegraphic equation.

Example 4.6 [fo(z,y) = (x—y+k,x+y+I1), then py = (\/2)* and py = 0 satisfy conditions
(69). By Proposition 2.3, for A = A2((\/2)*,0) the components of function e*™¥) are given by

ey N, 22 2e"Y
(€T L) gl y) = =

(eg(wﬂ/) _ 6—%2(1?+y))

flx,y) =

Y

which by Theorem 4.3 are solutions of the bi-telegraphic equation. Components of sin(p(x,y))
are given by

2

f(z,y) = sin(x—y+k) cos <)\Z($ +y+ k)> . g(zyy) = %cos(m—y—i—k) sin (/\ZZ(:U +y+ k)) :

So, by proof of Theorem 4.3 they are solutions of the bi-telegraphic equation.

Example 4.7 If o(x,y) = (0, (VN2 + d? )z +dy+1), then p1 = 1 and ps = 0 satisfy conditions
(69). Thus, for A = A?(0,—2) the components of all the pA-differentiable functions are solutions
of the bi-telegraphic equation (64). Following proof of Proposition 2.3 components of functions

sin(p(z,y)) are given by
Flay) =0, glay) =sin (V@ )a+dy+1),

which by Theorem 4.3 are solutions of the bi-telegraphic equation. In the same way components
of functions cos(p(x,y)) are given by

f(z,y) = cos ((v>\2+d2)$+dy+l>, g(z,y) =0,
and they are solutions of the bi-telegraphic equation.
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