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Abstract

In this paper, we study the large time behavior of a class of wave equation with a nonlinear
dissipation in non-cylindrical domains. The result we obtained here relaxes the conditions for
the nonlinear term coefficients (in precise, that is §(¢)|u|Pu) in [1] and [3] (which require 8(t)
to be a constant or 3(t) to be decreasing with time t) and has less restriction for the defined
regions.
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1 Introduction and main results

Fix t > 0. Let Q; be a bounded domain in R. Given T > 0. Set @T = x (0,T) and denote by
Y7 the lateral boundary of Q7. Consider the following wave equation with a nonlinear dissipation

in the non-cylindrical domain Q7 :

U — Au+au +bu+ BO)|ulfu=0 (z,t) € Qr,
u=0 (z,t) € S, (1.1)
u(z,0) = up(z), v'(x,0) =ui(z) x € Qo,

where (ug,u;) is any given initial couple, (u,u) is the state variable and a,b > 0.

In order to study the qualitative theory of (1.1), we need the following assumptions on the
domain Q7 :

(A1) a € C?[0,T] such that a(0) =1, /(t) > 0 and sup o/(¢) < 1.
te[0,7)

(A2) B(t),B(t) > 0, t € [0,T) and B € L=(0,T).

(A3)if n>2 then 0 < p <

2
;ifn=1o0rmn=2,then 0 < p < co.
n—2

The wellposedness result for (1.1) is stated as follows:
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Theorem 1.1 Let ug € H3(0,1) and uy € HE(0,1). If assumptions (A1)-(A3) hold, then there
exists a unique strong solution u of problem (1.1) such that w € L*(0,T; Hj () N H2()), w €
L>(0,T; H (%)), ug € L>®(0,T; L*(8)), and

(uﬁ — Au+ au' + bu + B(t)|ul’u, ) (t) =0, a.e. t € (0,T),
where ¢(t) is an arbitrary function from L*(RY). In addition, u(0) = ug, u(0) = u1.

The proof of Theorem 1.1 is quite similar to the proof of wellposedness results in [2], so we omit
it (but what we need to point out is that since the assumption (A2) is different from g’ < 0, the
result we obtained here just admits the solution to belong to L (0,T; Hg (%) N H*()), not to
L (0, 00; Hy () N H2(Y))).

Lemma 1.1 ([4]) Suppose that Qp has a regular lateral boundary Sp. If u € C* (R; L2()), then
we have

d d
— um,tda::/ J:td$+/um,t:tnxda
i [, weie= [ Gutnde s [ G

:/ du(x,t)d:c—/ u(z, t)nido,
q, dt T,

where Ty is the boundary of Qq, & is the velocity of x € Ty, and n = (ng,ny) is the unit exterior
normal to ET Moreover, it was observed that for u € Hl(QT) with w = 0 on ET (all tangential
derivative of u also vanishes on ET), Consequently the full gradient of u satisfies Vg 1u = (Opu)n
which implies that

ug = (Opu)ny  and Vgu = (Opu)ny.

The energy of system (1.1) &(t) is given by

lu(t)|PT2 | da.

1 1 1 1
Et) = [ 7 —u2 —u?(t t
0= [ [3u0+ 330 + 50+ 80)
Then the main result of this paper is stated as follows.
Theorem 1.2 One can find X > 0 and 5(t) satisfying A(p+1)5(t) > B'(t), such that the inequality
£(t) < CEO)p (1), (1.2)
hold, where p(t) is chosen by p(t) = e, C is some positive constant.

Proof. Firstly, let ¢ be a unknown continuous function. Secondly, Multiplying both sides of the
first equation in (1.1) by (u¢ + Au)e(t), where A > 0, and then integrating it on (0,7) x £, we get

T
/ / (uu — Au+ au’ + bu+ B(t)|ulu) (us + Au)p(t)dzdt = 0.
Q



Calculating the above equality, we have

T
/ / u (up + Au)p(t)dzdt
0 Q

T
=/ / [(%U?W(t))t—i_()‘%p(t)uut) — Ap(t)u? Ago()uut—%go’(t)uﬂdxdt
o (1.3)

= /Q (1Ut2(T)SD(T)+)‘90(T)U(T)Ut(T))d93— / (%uf(O)cp(O)—I—)wp(O)u(O)ut(O))dx

2 Q%

T
Tri r 1
+/ / —ulo(t)nydodt — / / [)\cp(t)u? + A (t)uuy + f¢/(t)u?]d:pdt,
o Jr,2 0 Jo, 2

/ —Au(us + Au)p(t)dzdt
Q
/ /Q — uzupp(t)), + uptep(t) — (updup(t)), — )\go(t)uidmdt}
= / / [( — ugurp(t)), + (%@s@(t))t - %e@’(t)Ui — (Ap(t)uug) , + Ago(t)ui} dedt  (1.4)
0 Jo,
= ' — U U €T luz T — EUQ -
— /0 /Qr( x t@(t))xd dt+/QT 5 “(T)e(T)d /QO 5 2(0)p(0)d

Tr T
+/ / —uZp(t)ngdodt — / / [fgo/(t)ui - )\cp(t)ug]dxdt,
o Jr, 2 o Ja, 2

T T
/0 /Qt au’ (up + Au)p(t)dzdt = /0 /Qt lap(t)ui + aduup(t)]dadt, (1.5)

/OT /Q bu(ug + du)p(t)dzdt
= /T /Qt [buupp(t) + bAp(t)u?] dadt

//Q FPue()), = 5¢ (Ou” + bap(t)u ?) daat

1
:/ b(p(T)uZ(T)dm—/ —bp(0 d:c—/ / tyu® — bAp(t)u?]dzdt,
Qp 2 2 o

(1.6)

T
/ B(t)|uPu(ur + Au)p(t)dzdt
0 Q4



/ /Q pHIUW) o(t) + AB(t)|ulPp(t) | dudt

= [ [ gt 80600, - B0t 501 (0l o
+/0 /Qt AB(t)|ulP T2 p(t)dzdt (1.7)
= [ BEr) ) [ 50)6(0) )
# [ ORIl + 8005 b~ A 0] .
Adding (1.3) to (1.7), we obtain
0= [ (G ApDuTn(T)ds ~ [ (GuE0)0) + Xe(Ou0)(0)

—ulo(t)nydodt — Ao(t)u? + X' (t)uuy + go()ut]dxdt
| /3 [
_ /OT /Q (uptirp(t)) dadt + /Q ) %ui(T)ap(T)da:— /Q 0 %ui(O)g&(O)dw

Tri T
+/ / iuicp(t)ntdadt - / / [igol(t)ug - )\go(t)ui} dxdt
0 Ft 0 Qt

+ /0 ' /Q t [ap(t)u? + aduuyp(t)] dadt (1.8)
+/QT ;bgo(T)uQ(T)d:c—/Qo 500(0 dw—/ /Qt tyu’ — bAp(t)u’] dudt
+ [ ARl - / B(0)p(0) 5 a0} s

[0 [ st - ﬂ(t)sO’(t)lerQIUV’” NS0l (1) dod.

Since the assumption (A1) means that
(H1) The domain Q7 is time-like, i.e., |ng| < |na|.

(H2) @T is monotone increasing, i.e., €y is expanding with respect to ¢t or ny < 0.

T 1 1 T
/ / [iu?gp(t)nt + §uicp(t)nt]dadt - / / (uztisep(t)) dadt
0 Ft 0 Qt
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T T
1 1
:/ / [u?go(t)nt—i-uiap(t)nt]dadt—/ /uxutga(t)nxdadt
o Jr, 2 2 o Jr,
/ / (t)|Onul?(n? — n2)nydodt > 0.
Ft

Furthermore, (1.8) yields

/QT [%u?(T) + Au(T)u(T) + ;ux( )+ %buQ(T) +5(T)p ‘U(T)\erz}(p(T)dx

< /QO [%u,?m)“u(())ut(()) ; w2(0) + (0 )+ B0)-

r 1 T
+/ / [(No(t)ui + A’ ()uuy + ¢ (t)ui]dadt + / / (S (u2 — Ap(t)u?] dodt
o Jo, 2 o Jo, 2
/ / ap(t)ui + aluugp(t)] dedt +/ / tyu? — bap(t)u?]dzdt
Qt Qt

o b

We can choose ¢(t) =

|W+2 + B¢ (t)——

P |ulPT2 — )\ﬁ(t)|u|p+2<p(t)]dxdt. (1.9)

S

est, s > 0. In particular, let () = e* (X be small) and

Ap+ D) > B(2). (1.10)
We can put
Bt) =€ with < A(p+1),

or
B(t) = apt" + an—ltni1 + -+ ait + ao,

with a; > 0(¢ =0, --- ,n) such that (1.10) holds.

Then the last three terms of inequality (1.9) are negative. Hence, we deduce

/Q [Su3(T) + Mu(T)ua(T) + u(T) + S (T) + B(T)

; : Rl (1)

= /Q B £(0) + Au(0)ur(0) + ; uz(0) + 5 Sbu(0 )+5(0)pi2\u(0)w2}¢(0)dm.

From the above inequality, we finally derive
E(t) < CEO0)p™ (1),

for some constant C' > 0.



Remark 1.1 Ifb=0 in (1.1), then use the method before, (1.9) becomes

(D)2 (T)da

[+ () + o)+ 51—

= /Q E“? (0) + Au(0)ur (0) + %ui(O) +B(0)- i 5 [4(0)[*?) p(0)dx

g 2 / 1 / 2 T 1 / 2_ u2 "
+/O /Qt [Ao(t)u; + A (t)uug + 5% (t)ut]dxdt—i—/o /Qt [290(t)u$ Ap(t)u2]dzdt
T
_/ / lap(t)ui + aduupp(t)]dzdt
0 Qq

w7 F@p0 i+ B )t~ NSOl (0] dads

In this case, in order to absorb the mixed term fOT th aluugp(t)dzdt, we must use poincaré in-
equality whose coefficients depend on geometry of the domain. That is

/ u?(z,t)dx < |Qt|2/ ul(z,t)dz.
Qt Qt

/ / aluupp(t dajdt</ / —aX%p( dedt—l—/ / (t)uZdxdt
Qy Qt Qt
Tra Tra
§/ / a)\2|Qt\2g0(t)uidxdt+/ / —ap(t)uldzdt.
0 Jo, 2 0 Jo, 2

When o € L°°(0,00), and there exist two bounded domains ., Q2* C R' such that Q. C Q. C
Q, C QF V7 < t. Then we have |Qy| < |Q*|,Vt > 0. Let a\|Q*|*> < 1. With a similar argument as
before, we get

Thus

Et) <CE0) H(t), t>0,

for some constant C > 0.

If non-cylindrical domains become unbounded in some X1-direction of space, as the time t goes
to infinite, and are bounded in other Xa-direction of space. Since the projection of it in Xa-direction
1s a bounded open set, written as w, then the Poincaré inequality in Xo-direction turns out

/ Ww2(z, t)dz < C2 / IV ,u(z, )2z < C2 [ |Vu(z, t)|2dz,
Qs Q4 of
where C, is the Poincaré constant.

Therefore, the above conclusion is still valid for this case.



Remark 1.2 For the case of domains becoming unbounded in every spatial direction, as the time t
goes to infinite, the condition b # 0 is needed to make (1.2) true. Otherwise, for any given T > 0,
let A= X(T) (depending on time T') be small and then it follows that

Et) < CEO)pp (L), 0<t<T,

where ot (t) = e M,

Since Poincaré inequality does not hold for a fixed number in any totally unbounded area, it
seems difficult for us to get an estimate (1.2) without compensation (b =0) and this is also an open
problem that has been mentioned in some literature such as [3].
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