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1 Introduction

We have investigated a phase-field model for phase transitions in [6]. We have inves-
tigated a coupled system of two parabolic equations modeling the evolution of a phase
interface in sea-ice growth and proved that in one space dimension an initial bound-
ary value problem to this system has global solution and large-time behavior in [7]. In
this paper, we will investigate the global existence and the long-time behavior of weak
solutions to a phase-field model for sea-ice growth when the order parameter and the
temperature satisfy homogeneous Neumann Boundary conditions.

Let Ω ⊂ RN (1 ≤ N ≤ 3) be an bounded open domain. Te is a positive constant,
which can be chosen arbitrary large. We write QTe := (0, Te)× Ω, and define

(υ, ϕ)Z =

∫
Z
υ(y)ϕ(y)dy,

for Z = Ω or Z = QTe . By introducing a phase field variable (the order parameter φ ∈ R)
to represent the physical state of the system in time and space, that is to distinguish the
liquid phase and solid phase, such as the solid state when the variable is 1. The liquid

∗Corresponding author. Email: hbzhenglin@126.com

1



phase is expressed when the variable is 0. The model reads

φt = K∆φ− ψ̂′(φ) + 2θh
′
(φ), (t, x) ∈ QTe , (1.1)

θt = ∇ · (D∇θ)− l

2
h
′
(φ)φt, (t, x) ∈ QTe , (1.2)

where K,D are constants, ψ̂ is a double potential function. The boundary and initial
conditions are

∂φ

∂n
= 0, (t, x) ∈ [0, Te]× ∂Ω, (1.3)

∂θ

∂n
= 0, (t, x) ∈ [0, Te]× ∂Ω, (1.4)

φ(0, x) = φ0(x), x ∈ Ω, (1.5)

θ(0, x) = θ0(x), x ∈ Ω. (1.6)

Assumptions.
(A1) h ∈ C∞(R) is such that h(0) = 0 and there exist L ∈ R and bounded Lipschitz-

continuous function h
′
, h
′′

such that

h(ξ) = ξ2(3− 2ξ), ξ ∈ R;

(A2) ψ̂ ∈ C∞(Ω) with ψ̂(0) = 0, and there exist constants γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0 such
that

γ1ξ
4 − γ2 ≤ ψ̂(ξ), ψ̂

′′
(ξ) ≥ −γ3, ξ ∈ R.

A typical case would be

ψ̂(ξ) = ξ2(1− ξ)2, ξ ∈ R.

The existence of solutions and a maximal attractor have been investigated in [7]. w(φ) =
a
2φ

2 + b(φ) have been proved in [4]. Here, we consider the polynomials function h of 3th
degree. A main difficult of this paper is the a priori estimates for different dimensional
spaces. Since h is no longer bounded, the proof is more difficult. Firstly, we suppose that
‖∇θ‖ and

∫ t
0 ‖φt‖

2dt are bounded. Then we prove that‖∇θ‖ and
∫ t

0 ‖φt‖
2dt are bounded

in fact. In fact, we shall prove the existence of solutions by a Faedo-Galerkin method
and the well-posedness of (1.1)-(1.2) in W 1,4(Ω). To this end, we first rewrite (1.1)-(1.6)
into the following order parameter φ and the energy density e = θ + l

2h(φ), this gives

φt = K∆φ− ψ̂′(φ)− lh(φ)h
′
(φ) + 2eh

′
(φ), (t, x) ∈ QTe , (1.7)

et = D∆e− l

2
div(h

′
(φ)∇φ), (t, x) ∈ QTe . (1.8)

The boundary and initial conditions are

∂φ

∂n
= 0, (t, x) ∈ [0, Te]× ∂Ω, (1.9)

∂e

∂n
= 0, (t, x) ∈ [0, Te]× ∂Ω, (1.10)

φ(0, x) = φ0(x), x ∈ Ω, (1.11)

e(0, x) = θ0 + h(φ0) = e0(x), x ∈ Ω. (1.12)

2



Definition 1.1 Let φ0 ∈ H1(Ω), θ0 ∈ L2(Ω). A couple of functions (φ, θ) with

φ ∈ L∞(0, Te;H
1(Ω)) ∩ L2(0, Te;H

2(Ω)), (1.13)

θ ∈ L∞(0, Te;L
2(Ω)) ∩ L2(0, Te;H

1(Ω)), (1.14)

is a weak solution to the problem (1.1)-(1.6), if for all ϕ ∈ C∞0 ((−∞, Te) × Ω)), there
hold

0 = (φ, ϕt)QTe −K(∇φ,∇ϕ)QTe − (ψ̂
′
, ϕ)QTe

+2
(
θh
′
(φ), ϕ

)
QTe

+ (φ0, ϕ(0))Ω, (1.15)

0 = (θ, ϕt)QTe −D(∇θ,∇ϕ)QTe +
l

2
(h(φ), ϕt)QTe

+(θ0, ϕ(0))Ω −
l

2
(h(φ(0)), ϕ(0))Ω. (1.16)

The main results of this article are as follows.

Theorem 1.1 For all φ0 ∈ H1(Ω), and θ0 ∈ L2(Ω) there exists a unique weak solution
(φ, θ) of problem (1.1)-(1.6), which, in addition to (1.13)-(1.14), satisfies

φt ∈ L2(QTe) ∩ L
4
3 (QTe), φ ∈ L4(QTe), θt ∈ L2(0, Te;H

−1(Ω)). (1.17)

Note that the space integral of the function e is conserved in time, namely∫
Ω
e(t, x)dx =

∫
Ω
e0(x)dx, t ≥ 0.

We introduce the following function spaces

Xβ = (φ, e) ∈W 1,4(Ω),

∫
Ω
e(x)dx = |Ω|β, Xα =

⋃
|β|≤α

Xβ,

for any real number β and for any non-negative real number α.

Theorem 1.2 Suppose that assumptions (A1)-(A2) hold, that the initial data
(φ0, e0) ∈W 1,4(Ω), and that (φ0, e0) satisfy the compatibility conditions

∂φ(0, x)

∂n
= 0,

∂e(0, x)

∂n
= 0,

φt(0, x) = K∆φ(0, x)− ψ̂′(φ(0, x))− h′(φ(0, x))h(φ(0, x)) + eh
′
(φ(0, x)),

et(0, x) = D∆e(0, x)− div(h
′
(φ(0, x))∇φ(0, x)),

for x ∈ ∂Ω. There exists a unique classic solution

(φ, e) ∈ C([0,+∞)× Ω,R2) ∩ C∞((0,+∞)× Ω,R2),

to the initial-boundary value problem (1.7)-(1.12). Moreover, the mapping

S(t) : (φ0, e0) 7→ (φ(t), e(t))

is a strongly continuous (nonlinear) semigroup on W 1,4(Ω) that maps Xβ into itself for
β > 0.
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Theorem 1.3 For α > 0. There exists a closed ball Bα of H2(Ω) such that, for any
bounded subset B of Xα, there exists t(B) > 0 such that

S(t)(B) ⊂ Bα, t ≥ t(B).

Then, the semigroup S(t) possesses a maximal attractor Aα which is bounded in H2(Ω),
compact and connected in Xα.

Proposition 1.4 Let α > 0 and set

Kα = ClXα

⋃
t≥t(Bα)

S(t)Bα.

There exists an inertial set Mα of Xα such that
(i) Aα ⊂Mα ⊂ Kα, S(t)Mα ⊂Mα for every t ≥ 0;
(ii) Mα has finite fractal dimension in H ;
(iii) there exist constants c0, c1 > 0 such that for all t ≥ 0

sup(φ,e)∈Kα
dH (S(t)(φ, e),Mα) ≤ c0e

−c1t,

where dH denotes the distance on H (H = L2(Ω)× (H1(Ω))
′
).

Remark The distance dH used here is the Hausdorff distance of two sets. Throughout
this paper L2(Ω) is denoted ‖ · ‖ and C is different line in line.

The remaining of this article is organized as follows. In Section 2 we will prove
Theorem 1.1. In Section 3 we will prove the existence of semigroup. More precisely,
using abstract results of Amann [1], we will prove the Proposition 1.4. In Section 4 we
will prove the long-time behavior of the semigroup S(t). In Section 5 we shall prove the
existence of inertial sets for the semigroup S(t) on H .

2 Existence of the solutions

In this section we will prove Theorem 1.1 to the initial-boundary value problem
(1.7)-(1.12).

Theorem 2.1 (Aubin-Lions) Let B0 be a normed linear space imbedded compactly into
another normed linear space B, which is continuously imbedded into a Hausdorff locally
convex space B1, and 1 ≤ p < +∞. If v, vi ∈ Lp(0, t;B0), i ∈ N, the sequence {vi}i∈N
converges weakly to v in Lp(0, t;B0), and {∂vi∂t }i∈N is bounded in L1(0, t;B1), then vi
converges to v strongly in Lp(0, t;B).

A proof of Theorem 2.1 can be found in [5, p. 57].

Lemma 2.1 Let (0, Te)× Ω be an open set in R+ × Rn. Suppose functions gn, g are in
Lq((0, Te)× Ω) for any given 1 < q <∞, which satisfy

‖gn‖Lq((0, Te)× Ω) ≤ C, gn → g a.e.in(0, Te)× Ω.

Then gn converges to g weakly in Lq((0, Te)× Ω).

4



A proof of Lemma 2.1 can be found in [5, p. 12].
Proof of Theorem 1.1 The proof relies on the Faedo-Galerkin method. Let ω∞i=1 be a

base of H1(Ω). They are smooth functions and satisfy

−∆ωj = λjωj , j = 1, 2, . . . ,m

0 = λ1 < λ2 ≤ . . . ≤ λj ≤ . . . .

For each integer m we look for an approximate solution (φm, em) of the form

φm(t) =
i=m∑
i=1

φim(t)ωi, em =
i=m∑
i=1

eim(t)ωi,

satisfying

(φmt, ωj) +K(∇φm,∇ωj) = −(ψ̂
′
(φm), ωj)

− l
2

(h(φm)h
′
(φm), ωj) + (emh

′
(φm), ωj), (2.1)

(emt, ωj) +D(∇em,∇ωj) =
lD

2
(h
′
(φm)∇φm,∇ωj), (2.2)

for j = 1, 2, . . . ,m and

‖φ0m‖ ≤ ‖φ0‖ and φm(0) = φ0m → φ0, in H
1(Ω), as n→∞, (2.3)

‖e0m‖ ≤ ‖e0‖ and em(0) = e0m → e0, in L
2(Ω), as n→∞. (2.4)

Since the nonlinear terms are Lipschitz continuous functions, and {ωj} are smooth func-
tions. According to the standard existence theory for ordinary differential equations.
Problem (2.1)-(2.4) have a unique solution (φm, em) for a.e 0 ≤ t ≤ Tm.

Next we derive the a priori estimates which is independent of m and in particular
Tm = +∞. Multiplying (2.1) and (2.2) by φjmt(t) and 4

l (ejm − h(φjm))t and integrating
respectively and summing on j = 1, 2, . . . ,m and adding, we get

d

dt

∫
Ω

(
K

2
|∇φm|2 +

2

l
θ2
m + ψ̂(φm))dx.+ (

4D

l
‖∇θm‖2 + ‖φmt‖2) = 0. (2.5)

Integrating (2.4) in τ ∈ (0, Te), we have

K

2
‖∇φm‖2 +

2

l
‖θm‖2 +

∫
Ω
ψ̂(φm)dx+

∫ Te

0
(
4D

l
‖∇θm‖2 + ‖φmt‖2)dτ

=
K

2
‖∇φm(0)‖2 +

2

l
‖θm(0)‖2 +

∫
Ω
ψ̂(φm(0))dx ≤ C. (2.6)

From this we obtain

‖φm‖H1(Ω) ≤ C, ‖θm‖ ≤ C,
∫ Te

0
‖φmt‖2dτ,

∫ Te

0
‖∇θm‖2dτ ≤ C. (2.7)

Multiplying (2.1) by φjm, we find

‖φm‖L4(QTe ) ≤ C. (2.8)
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Multiplying (2.1) by −λjφjm(t), we find

1

2

d

dt
‖∇φm‖2 +K‖∆φm‖2 +

1

4

∫
Ω
φ2
m|∇φm|2dx

≤ C(‖φm‖2H1(Ω) + ‖θm‖2H1(Ω)). (2.9)

Integrating the inequality (2.9) in τ ∈ (0, Te), we have∫ Te

0
‖∆φm‖2dτ ≤ C.

From this estimates and (2.7) we can extract a subsequence, which we still denoted by
(φm, θm), such that as m→∞

φm ⇀ φ, weakly in L2(0, Te;H
2(Ω)), (2.10)

θm ⇀ θ, weakly in L2(0, Te;H
1(Ω)), (2.11)

φ̂
′
(φm) ⇀ X , weakly in L

4
3 (QTe). (2.12)

Since L2(0, Te;H
2(Ω)) b L2(0, Te;H

1(Ω)), L2(0, Te;H
1(Ω)) b L2(QTe), we have

φm → φ, strongly in L2(0, Te;H
1(Ω)), (2.13)

φm → φ, a.e. in QTe , (2.14)

θm → θ, strongly in L2(0, Te;L
2(Ω)). (2.15)

From Theorem 2.1, Lemma 2.1 and (2.8), (2.12), (2.14) we conclude that

φ̂
′
(φm) ⇀ ψ̂

′
(φ), weakly in L

4
3 (QTe).

Passing to the limit in (2.1)-(2.2), we find

(φt, ωj) +K(∇φ,∇ωj) = −(ψ̂
′
(φ), ωj)

−(h(φ)h
′
(φ), ωj) + (eh

′
(φ), ωj),

(et, ωj) +D(∇e,∇ωj) = D(h
′
(φ)∇φ,∇ωj).

3 Existence of the semigroup

In this section, we shall prove Theorem 1.2. We define y = (y1, y2) ∈ R2 and

a(y) =

(
K 0

−Dh′(y1) D

)
ajk(x, y) =

{
a(y), if 1 ≤ j = k ≤ N,
0, otherwise.

This version, which we need here, is used in [1]. The boundary-value problem (A (y),B(y))
is defined

A (y)υ = −
N∑

j,k=1

∂

∂xj
(ajk(·, y)

∂υ

∂xk
), υ = (υ1, υ2),

B(y)υ = −
N∑

j,k=1

νjγ∂(ajk(·, y)
∂υ

∂xk
), υ = (υ1, υ2),
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which is used in [1]. Here, γ∂ and ν = (ν1, ν2, . . . , νN ) denote the trace operator and the
outer unit normal vector field to ∂Ω. The normal ellipticity of (A ,B) is a consequence
of [1, Theorem 4.4].

Finally, we define f ∈ C∞(R2 × Ω,R2) by

f(x, y) =

(
−ψ̂′(y1)− lh(y1)h

′
(y1) + 2h

′
(y1)y2

0

)
.

With these notation, the problem (1.7)-(1.8) reads

yt + A (·, y)y = f(·, y), (3.1)

B(y)y = 0, (3.2)

y(·, 0) = (φ0, e0), (3.3)

where y = (φ, e).

Lemma 3.1 For (φ0, e0) ∈W 1,4(Ω), (3.1)-(3.3) has a unique maximal classical solution
y = (φ, e) on [0, t+(φ0, e0)) which is C∞− smooth, that is

(φ, e) ∈ C([0,+∞)× Ω,R2) ∩ C∞((0,+∞)× Ω,R2),

and y = (φ, e) satisfies (3.1)-(3.3) pointwise. Moreover, t+(φ0, e0) = +∞, provided that
there exist 0 < λ < 1 and c : [0,+∞)→ [0,+∞) such that

‖φ‖Cλ(Ω) + ‖e‖Cλ(Ω) ≤ c(T ), 0 ≤ t ≤ T < +∞, t < t+(φ0, e0). (3.4)

The map F : (t, φ0, e)) 7→ (φ(t), e(t)) is a semiflow on W 1,4(Ω), that is, if we set

Y =
⋃

(φ0,e0)∈W 1,4(Ω)

[0, t+(φ0, e0))× {(φ0, e0)},

then Y is open in [0,+∞)×W 1,4(Ω), F is continuous from Y to W 1,4(Ω) with

F (0, φ0, e0) = (φ0, e0),

and if (φ0, e0) ∈W 1,4(Ω), t
′ ∈ [0, t+(φ0, e0)) and t ∈ [0, t+(F (t

′
, φ0, e0))), then

t
′
+ t < t+(φ0, e0), and F (t

′
+ t, φ0, e0) = (t,F (t

′
, φ0, e0)).

The proof of Lemma 3.1 can be found in [1, Section 14, 15].
In Section 2 we have proved

‖φ‖L∞(0,Te;H1(Ω)) + ‖φt‖L2(QTe )

+‖θ‖L∞(0,Te;L2(Ω)) + ‖θ‖L2(0,Te;H1(Ω)) ≤ CTe . (3.5)

Next we shall improve the a priori estimates.

Lemma 3.2 There exists a constant CTe such that

‖t
1
2φt‖L∞(0,Te;L2(Ω)) + ‖t

1
2 θ‖L∞(0,Te;H1(Ω))

+‖t
1
2∇φt‖L2(QTe ) + ‖t

1
2 θt‖L2(QTe ) ≤ CTe , (3.6)

‖t
1
2φ‖L∞(0,Te;H2(Ω)) ≤ CTe , (3.7)

‖te‖L∞(0,Te;H2(Ω)) ≤ CTe . (3.8)

7



Proof. We differentiate (1.1) with respect to t, and multiply the result equation with tφt,
and multiply (1.2) by 4t

l θt and integrate over Ω, and add them, which yields

1

2

d

dt
(t‖φt‖2 +

4D

l
t‖∇θ‖2) + (Kt‖∇φt‖2 +

4

l
t‖θt‖2) + 4

∫
Ω
tφ2φ2

tdx+ 2

∫
Ω
tφ2
tdx

≤ Ct‖φ‖L6(Ω)‖θ‖L3(Ω)‖φt‖2L4(Ω) + Ct‖θ‖‖φt‖2L4(Ω)

+Ct‖φt‖2 + C(‖φt‖2 + ‖∇θ‖2)

≤ Ct(‖∇φt‖‖φt‖+ ‖φt‖2) + Ct(‖∇θ‖
1
3 ‖θ‖

2
3 + ‖θ‖)(‖∇φt‖‖φt‖+ ‖φt‖2)

+Ct‖φt‖2 + C(‖φt‖2 + ‖∇θ‖2)

≤ Ct‖φt‖‖∇φt‖+ Ct‖∇θ‖
1
3 ‖φt‖‖∇φt‖

+Ct(1 + ‖∇θ‖
1
3 )‖φt‖2 + C(‖φt‖2 + ‖∇θ‖2)

≤ t(K
2

+ ε‖∇θ‖2)‖∇φt‖2 + t(C + ε‖∇θ‖2)‖φt‖2

+C(‖φt‖2 + ‖∇θ‖2), n = 2, (3.9)

and

1

2

d

dt
(t‖φt‖2 +

4D

l
t‖∇θ‖2) + (Kt‖∇φt‖2 +

4

l
t‖θt‖2) + 4

∫
Ω
tφ2φ2

tdx+ 2

∫
Ω
tφ2
tdx

≤ Ct(‖φ‖L6(Ω)‖∇φ‖L3(Ω)‖φt‖2L4(Ω)

+Ct‖θ‖‖φt‖2L4(Ω) + Ct‖φt‖2 + C(‖φt‖2 + ‖∇θ‖2)

≤ Ct‖∇φt‖
3
2 ‖φt‖

1
2 + Ct(‖∇θ‖

1
2 ‖‖θ‖+ ‖θ‖)(‖∇φt‖

3
2 ‖φt‖

1
2 + ‖φt‖2)

+Ct‖φt‖2 + C(‖φt‖2 + ‖∇θ‖2)

≤ Ct‖φt‖
1
2 ‖∇φt‖

3
2 + t‖∇θ‖

1
2 ‖φt‖

1
2 ‖∇φt‖

3
2

+Ct(1 + ‖θ‖
1
2 )‖φt‖2 + C(‖φt‖2 + ‖∇θ‖2)

≤ t(K
2

+ ε‖∇θ‖2)‖∇φt‖2 + t(C + ε‖∇θ‖2)‖φt‖2

+C(‖φt‖2 + ‖∇θ‖2), n = 3, (3.10)

where we have used the estimates (3.5) and the Gagliardo-Nirenberg inequality.
Integrating the inequality (3.9) and (3.10) over (0, t) for t ∈ (0, Te), we get

t‖φt‖2 + t(
4D

l
− ε

∫ t

0
‖φt‖2dt)‖∇θ‖2 +

∫ t

0

(
t(
K

2
− ε‖∇θ‖2)‖∇φt‖2 +

4

l
t‖θt‖2

)
dt

≤ C
∫ t

0
t‖φt‖2dt+ C. (3.11)

where ε is enough small.
Using Gronwall’ s inequality in (3.11) yields (3.6).
Multiplying (1.1) by t∆φ, which yields

K

∫
Ω
t|∆φ|2dx ≤ Ct‖φt‖‖∆φ‖+ t‖ψ̂′(φ)‖‖∆φ‖+ t‖θ‖L6(Ω)‖h

′
(φ)‖L3(Ω)‖∆φ‖.

From this inequality and by use of the estimates (3.5) and (3.6), we get∫
Ω
t|∆φ|2dx ≤ CTe . (3.12)
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We differentiate (1.1) with respect to t, and multiply the result equation with tφt, which
yields

1

2

d

dt
(t‖φt‖2) +Kt‖∇φt‖2 + 6

∫
Ω
tφ2‖φt‖2dx

≤ C(t‖φt‖2 + t‖θt‖‖∆φ‖2‖φt‖+ t‖φt‖2L4(Ω) + ‖φt‖2)

≤ C(t‖φt‖2 + t‖θt‖2 +
K

2
t‖∇φt‖2 + ‖φt‖2),

where we have used the continuous imbedding H2(Ω) ⊂ L∞(Ω) and Young’s inequality.
Using the Gronwall inequality yields∫ Te

0
t‖∇φt‖2dt ≤ CTe (3.13)

Let η = ∆θ be a solution to

ηt −D∆η = −div
(
h
′
(φ)∇φt + h

′′
(φ)φt∇φ

)
,

∂η

∂n
= 0.

Multiplying this equation by t2η and integrating over Ω, we find

1

2

d

dt

∫
Ω
t2η2dx+D‖t∇η‖2

≤ C(‖t∇η‖‖t
1
2∇φt‖‖t

1
2h
′
(φ)‖L∞(Ω)

+‖h′′‖L∞(Ω)‖t∇η‖‖t
1
2φt‖L4(Ω)‖t

1
2∇φ‖L4(Ω) + t‖η‖2)

≤ C(1 + ‖φ‖2H2(Ω))t
2‖φ‖2H2(Ω)‖∇φt‖

2
H1(Ω) +

D

2
‖t∇η‖2 + t‖η‖2 + t‖φt‖2H1(Ω),

where we have used Young’s inequality and the continuous embedding H1 ⊂ L6(Ω) and
H2 ⊂ L∞(Ω). Integrating this inequality over (0, Te), when Te is finite we conclude that∫

Ω
t2η2dx+D

∫ Te

0

∫
Ω
t2|∇η|2dxdt ≤ CTe +

∫ Te

0

∫
Ω
tη2dxdt. (3.14)

Multiplying (1.2) by tη and integrating over Ω, we find

D

∫ Te

0

∫
Ω
tη2dxdτ ≤ C

∫ Te

0

∫
Ω
t|θt|2dxdt+ C

∫ Te

0
t‖φ‖2H2(Ω)‖φt‖

2
H1(Ω)dt ≤ CTe . (3.15)

We have used t‖φ‖2H2(Ω) ≤ CTe in the inequalities (3.14) and (3.15) when Te is finite.

Combining (3.14) and (3.15) yields

‖tθ(t)‖L∞(0,Te;H2(Ω)) ≤ CTe , 0 ≤ t ≤ Te, t < t+(φ0, θ0). (3.16)

Thus, (3.8) follows from (3.7), (3.16) and from (A2).
Since H2(Ω) ⊂W 1,4(Ω), we infer from (3.7)-(3.8) that

‖φ(t)‖W 1,4(Ω) + ‖θ(t)‖W 1,4(Ω) ≤ c(Te), 0 ≤ t ≤ c(Te), t < t+(φ0, θ0),

From this we conclude the following lemma.

9



Lemma 3.3 Let (φ0, e0) ∈W 1,4(Ω). Then there exists a positive constant CTe such that

‖φ‖Cλ(Ω) + ‖e‖Cλ(Ω) ≤ CTe .

Due to H1,4(Ω) ⊂ C
1
4 (Ω). Lemma 3.3 is obtained. (3.4) is proved.

We can use the standard bootstrap argument and conclude the following theorem.

Theorem 3.1 Let m ∈ N+ and assume that (φ0, e0) ∈ W 1,4(Ω). Then there exist a
constant C such that

‖φ‖Cm+λ/2,2m+λ((0,+∞)×Ω) + ‖e‖Cm+λ/2,2m+λ((0,+∞)×Ω) ≤ C.

Continue by using the bootstrap argument, we get the C∞((0,+∞)× Ω). Thus, we get
the proof of Theorem 1.2 by use of Theorem 3.1.

4 The maximal attractor

In this section , we shall prove Theorem 1.3. To this end, we shall show the existence
of absorbing sets in H2(Ω) and the compactness in W 1,4(Ω) for semigroup S(t).

Let N(v) is unique solution and v ∈ L2(Ω) satisfies
∫

Ω v(x)dx = 0 for

−∆N(v) = v,
∂N(v)

∂n
= 0,

∫
Ω
N(v)dx = 0. (4.1)

Then there exists a C1 such that

‖∇N(v)‖L2(Ω) ≤ C1‖v‖L2(Ω). (4.2)

Let (φ0, e0) ∈Xα, (φ(t), e(t)) = S(t)(φ0, e0) and

m0 =

∫
Ω

(|φ0|2 + |e0|2)dx, E =
1

|Ω|

∫
Ω
e(t, x)dx =

1

|Ω|

∫
Ω
e0(t, x)dx, t ≥ 0.

Firstly, we define a function σ ∈ C∞(R) by

σ(ξ) =
γ3

2
ξ2 + ψ̂(ξ)− ψ̂′(0)ξ, ξ ∈ R.

Let σ > 0 be a convex function such that σ(0) = 0 and σ
′
(0) = 0, and we have with

(A2),

ξσ
′
(ξ) ≥ σ(ξ) ≥ 0, σ(ξ) ≥ 7γ1

8
ξ6 − γ4, ξ ∈ R, (4.3)

where γ4 is a constant depending on γ1, γ2, γ3 and ψ̂(0). We also have the following
results for h: for δ > 0, there exists a constant Cδ > 0 depending on 2, 3, δ such that

1

2
h
′
(ξ)ξ

(
h
′
(ξ)ξ − lh(ξ)

)
≤ (δ − ε)ξ6 + Cδ, (4.4)

h(ξ)2 ≤ (δ + ε)ξ6 + Cδ, (4.5)

where ξ ∈ R. We shall show that the closed balling Bα of H2(Ω) exits.
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Lemma 4.1 There holds for constants C2, C
′
2 and a monotonic function T1(m0) such

that

‖φ(t)‖+ ‖∇(N(e(t)− E)‖ ≤ C2, (4.6)∫ t+r

t
(‖φ(τ)‖2H1(Ω) + ‖e(τ)‖2)dτ +

∫ t+r

t

∫
Ω
φσ
′
(φ)dxdτ ≤ C ′2, (4.7)

where t ≥ T1(m0), r > 0.

Proof. Multiplying (1.7)-(1.8) by φ and 2
DN(e−E) respectively, and integrating by parts

over Ω and adding, which yields

d

dt
(

1

D
‖∇N(e− E)‖2 +

1

2
‖φ‖2) + 2‖e− E‖2 +

∫
Ω

(K
2
|∇φ|2 + φσ

′
(φ)
)
dx

≤ 2

∫
Ω
|(e− E)h(φ)|dx+ C(1 + ‖φ‖2) + ‖e− E‖2

+
1

2

∫
Ω
h
′
(φ)φ

(
h
′
(φ)φ− lh(φ)

)
dx

≤ ε+ 2γ1

ε+ γ1
(δ0 + ε)

∫
Ω
φ6dx+

ε+ 3γ1

ε+ 2γ1
‖e− E‖2 + (2δ0 − ε)

∫
Ω
φ6dx+ C,

where δ0 = γ1
4

ε+γ1
3ε+4γ1

. From this inequality we have

d

dt
(

1

D
‖∇N(e− E)‖2 +

1

4
‖φ‖2) +

γ1

ε+ 2γ1
‖e− E‖2 +

∫
Ω

(K
2
|∇φ|2 + φσ

′
(φ)
)
dx

≤ 3γ1

4

∫
Ω
φ6dx+ C. (4.8)

From this inequality and (4.2) and (4.3) we get

d

dt
(

1

D
‖∇N(e− E)‖2 +

1

4
‖φ‖2) + C3

( 1

D
‖∇N(e− E)‖2 +

1

4
‖φ‖2

)
+c

∫
Ω

(K
2
|∇φ|2 + φσ

′
(φ) + |e− E|2

)
dx ≤ C4. (4.9)

From this inequality and (4.3), and using the Gronwall Lemma we find

‖∇N(e(t)− E)‖2 + ‖φ(t)‖2 ≤ C5(1 +m0e
−C3t).

When t ≥ T1(m0), we have

‖∇N(e(t)− E)‖2 + ‖φ(t)‖2 ≤ 2C5. (4.10)

where T1(ξ) = 1
C3

ln( ξ
C5

).
Integrating (4.9) over (t, t+ r), when t ≥ T1(m0), we find∫ t+r

t

∫
Ω

(K
2
|∇φ|2 + φσ

′
(φ) + |e− E|2

)
dxdτ ≤ C5. (4.11)

From this inequality (4.7) obtain.
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Lemma 4.2 There exists constants C6, C
′
6 and a monotonic function T2(m0) such that

‖φ(t)‖H1(Ω) + ‖e(t)‖ ≤ C6, (4.12)∫ t+r

t
(‖φτ (τ)‖2 + ‖θ(τ)‖2H1(Ω))dτ ≤ C

′
6, (4.13)

where t ≥ T2(m0) and T2(m0) ≥ T1(m0).

Proof. Multiplying (1.1) and (1.3) by φt and 4
l θ respectively and integrating, using (4.3)

we find

d

dt

∫
(
K

2
|∇φ|2 + σ(φ) +

2

l
|θ|2)dx+

1

2
‖φt‖2 +

4D

l
‖∇θ‖2

≤
∫

(
K

2
|∇φ|2 + σ(φ) +

2

l
|θ|2)dx+ C(1 + ‖φ‖2). (4.14)

Using the uniform Gronwall Lemma [8, Lemma 1.1] yields∫
Ω

(
K

2
|∇φ(t+ r)|2 + σ(φ)(t+ r) +

2

l
|θ(t+ r)|2)dx

≤ (
a1

r
+ C)eC

′
2r, t ≥ 1 + T1(m0) = T2(m0). (4.15)

where a1 is below with Lemma 4.1∫ t+r

t

∫
Ω

(
K

2
|∇φ(τ)|2 + σ(φ)(τ) +

2

l
‖θ(τ)‖2)dxdτ

≤ C(1 +

∫ t+r

t

∫
Ω

(|∇φ|2 + φσ
′
(φ) + e2)dxdτ ≤ C. (4.16)

Integrating (4.14) over (t, t+ r), we obtain (4.13). (4.12) is also obtained from (4.15).

Lemma 4.3 There holds for constants C7, C
′
7 and a monotonic function T3(m0) such

that

‖φt‖+ ‖θ‖H1(Ω) ≤ C7, (4.17)∫ t+r

t
(‖φτ‖2H1(Ω) + ‖θτ‖2)dτ ≤ C ′7, (4.18)

where t ≥ T3(m0) and T3 ≥ T2.

Proof. Differentiating (1.1) with respect to t and multiplying these results by φt, and
multiplying (1.2) by θt, which gives

1

2

d

dt
(‖φt‖2 +

4D

l
‖∇θ‖2) + (K‖∇φt‖2 +

4

l
‖θt‖2) + 4

∫
Ω
φ2φ2

tdx+ 2

∫
Ω
φ2
tdx

≤ C‖θ‖‖φt‖2L4(Ω) + C‖φ‖L6(Ω)‖θ‖L3(Ω)‖φt‖2L4(Ω)

≤ C(‖∇φt‖‖φt‖+ ‖φt‖2) + C(‖∇θ‖
1
3 ‖θ‖

2
3 + ‖θ‖)(‖∇φt‖‖φt‖+ ‖φt‖2)

≤ (
K

2
+ ε‖∇θ‖2)‖∇φt‖2 + (C + ε‖∇θ‖2)‖φt‖2, n = 2, (4.19)
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and

1

2

d

dt
(‖φt‖2 +

4D

l
‖∇θ‖2) + (K‖∇φt‖2 +

4

l
‖θt‖2) + 4

∫
Ω
φ2φ2

tdx+ 2

∫
Ω
φ2
tdx

≤ C‖θ‖‖∇φt‖2L4(Ω) + C‖φ‖L6(Ω)‖θ‖L3(Ω)‖φt‖2L4(Ω)

≤ C(‖∇φt‖
3
2 ‖φt‖

1
2 + ‖φt‖2) + C(‖∇θ‖

1
2 ‖θ‖

1
2 + ‖θ‖)(‖∇φt‖

3
2 ‖φt‖

1
2 + ‖φt‖2)

≤ (
K

2
+ ε‖∇θ‖2)‖∇φt‖2 + (C + ε‖∇θ‖2)‖φt‖2, n = 3, (4.20)

where ε is sufficiently small. Here, we have used the Gagliardo-Nirenberg inequality and
Young’s Inequality.

Integrating the inequalities (4.19) and (4.20) over (0, t) for t ∈ (0, Te) yield

1

2
‖φt‖2 + (

4D

l
− ε

∫ t

0
‖φt‖2dt)‖∇θ‖2 +

∫ t

0

(
(
K

2
− ε‖∇θ‖2)‖∇φt‖2 +

4

l
‖θt‖2

)
dt

≤ C
∫ t

0
‖φt‖2dt. (4.21)

Using the Gronwall inequality to (4.21) yields

‖φt‖L∞(0,Te;L2(Ω)) + ‖θ‖L∞(0,Te;H1(Ω)) ≤ C7, t ≥ 1 + T2 = T3. (4.22)

Integrating the inequalities (4.19) and (4.20) over (t, t+ r) for t ∈ (0, Te) yield∫ t+r

t
(‖φτ‖2H1(Ω) + ‖θτ‖2)dτ ≤ C ′7. (4.23)

Lemma 4.4 There holds for a constant C8 and a monotonic function T4(m0) such that

‖φ‖H2(Ω) + ‖e‖H2(Ω) ≤ C8, (4.24)

where t ≥ T4(m0) and T4 ≥ T3.

Proof. Multiplying (1.1) by ∆φ yields

K

∫
Ω
|∆φ|2dx ≤ C‖φt‖‖∆φ‖+ ‖ψ̂′(φ)‖‖∆φ‖+ ‖θ‖L6(Ω)‖h

′
(φ)‖L3(Ω)‖∆φ‖.

From this inequality we get by use of (4.17)∫
Ω
|∆φ|2dx ≤ C. (4.25)

Hence, by the standard elliptic theory,

‖φ‖H2(Ω) ≤ C. (4.26)

Multiplying (1.2) by −∆θt and integrating, we get

D

2

d

dt
‖∆θ‖2 + ‖∇θt‖2

≤ C
(
‖h′′(φ)‖H2(Ω)‖φt‖H1(Ω)‖φ‖H2(Ω)‖∇θt‖

+‖h′(φ)‖L∞(Ω)‖∇φt‖‖∇θt‖),
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where we have used H2(Ω) ⊂ L∞(Ω). Using Young’ s inequality and the estimate (4.22)
yields

D
d

dt
‖∆θ‖2 + ‖∇θt‖2 ≤ C‖φt‖2H1(Ω).

Integrating this inequality over (0, t) for t ∈ (0, Te) and using the estimates (4.18) yield

‖∆θ‖ ≤ C, t ≥ T4(m0) = 1 + T3(m0).

Hence, by the standard elliptic theory,

‖θ‖H2(Ω) ≤ C, t ≥ T4(m0). (4.27)

Proof of Theorem 1.3. Let B2 be the closed ball of H2(Ω) of radius C8, setting

Bα = B2 ∩Xα. (4.28)

Due to H2(Ω) ⊂ H1,4(Ω), Bα is an compact absorbing set for S(t) in Xα. The proof of
Theorem 1.3 come from an abstract result [8].

We will prove the long-time behavior of solution as t → ∞ with the ω−limit set of
(φ0, e0). The ω−limit set ω(φ0, θ0) of (φ0, θ0) in L2(Ω) is

ω(φ0, θ0) = {(φ∞, θ∞) ∈ L2(Ω),∃tn → +∞ such that(
φ(tn), θ(tn)

)
→ (φ∞, θ∞) in L2(Ω)}.

We put

M0 =

∫
Ω

(
θ0 +

l

2
h(φ0)

)
dx.

Theorem 4.1 If (φ∞, e∞) belongs to ω(φ0, θ0), it satisfies

φ∞ ∈ H1(Ω), θ∞ ∈ L2(Ω),

∫
Ω

(
θ0 +

l

2
h(φ0)

)
dx = M0,

such that

−K∆φ∞ + ψ̂
′
(φ∞) = 2θ∞h

′
(φ∞) in Ω, (4.29)

∂φ∞
∂n

= 0 on ∂Ω. (4.30)

Proof. Considering (φ∞, θ∞) in ω(φ0, θ0) and let tn > 0 such that tn → +∞, and(
φ(tn), θ(tn)

)
→ (φ∞, θ∞) in L2(Ω), (4.31)

‖φ(tn)‖+ ‖θ(tn)‖ ≤ C, n ≥ 1. (4.32)

For t ∈ (0, 1) we put
φn(t) = φ(tn + t), θn(t) = θ(tn + t).

Next we get some estimates.
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Lemma 4.5

‖φn‖L∞(0,1;H1(Ω)) + ‖φnt‖L2(Q1) + ‖θn‖L∞(0,1;L2(Ω)) + ‖∇θn‖L2(Q1) ≤ C, (4.33)

‖φ‖L2(0,1;H2(Ω)) ≤ C, (4.34)

‖φt‖L2(0,+∞;L2(Ω)) + ‖θt‖L2(0,+∞;H−1(Ω)) ≤ C. (4.35)

Proof It follows from (2.6) that

K

2
‖∇φ‖2 +

2

l
‖θ‖2 +

∫
Ω
ψ̂(φ)dx+

∫ Te

0
(
4D

l
‖∇θ‖2 + ‖φt‖2)dτ

=
K

2
‖∇φ(0)‖2 +

2

l
‖θ(0)‖2 +

∫
Ω
ψ̂(φ(0))dx ≤ C. (4.36)

From this inequality we get

‖φt‖L2(0,+∞;L2(Ω)) + ‖∇φ‖L∞(0,+∞;L2(Ω))

+‖∇θ‖L2(0,+∞;L2(Ω)) + ‖θ‖L∞(0,+∞;L2(Ω)) ≤ C. (4.37)

Due to the boundedness of h
′

and the estimates (4.37), and (1.2) yield

‖θt‖L2(0,+∞;H−1(Ω)) ≤ C. (4.38)

From the estimates (4.37) and (4.38) yield (4.35). It follows from (4.37) for t ∈ (tn, tn+1)
that

‖φ(t)− φ(tn)‖L2(Ω) ≤ (t− tn)
1
2 ‖φt‖L2(tn,t;L2(Ω)) ≤ C.

Due to (4.32), we obtain

‖φn‖L∞(0,1;L2(Ω)) ≤ C. (4.39)

From (4.37) and (4.39) we have (4.33). From (1.1) and (4.37) we have (4.34).
We will prove the following result.

Lemma 4.6

φn → φ∞ in L2(Q1), (4.40)

θn → θ∞ in L2(0, 1;H−1(Ω)). (4.41)

Proof For t ∈ (0, 1) we get from (4.35)

‖φn(t)− φ(tn)‖ ≤ t
1
2
( ∫ tn+t

tn

‖φτ‖2dτ
) 1

2

≤
( ∫ +∞

tn

‖φτ‖2dτ
) 1

2 → 0

as tn → +∞. From this and (4.31) yield

‖φn(t)− φ∞‖ → 0 a.e. in (0, 1).
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Thus, (4.40) follows from (4.33) and the Lebesgue dominated convergence theorem. Sim-
ilarly, we prove (4.35).

From Lemma 4.5 and 4.6 we have

φn ⇀ φ∞ in L2(0, 1;H2(Ω)) and in W 1,2(0, 1;L2(Ω)), (4.42)

θn ⇀ θ∞ in L2(Q1) and in W 1,2(0, 1;H−1(Ω)). (4.43)

It follows from Lemma 4.6, and a compactness argument that

φn → φ∞ in L2(0, 1;H1(Ω)).

Since h
′
(φn) is a bounded Lipschitz continuous function, it follows from Lemma 4.6 that

h
′
(φn)→ h

′
(φ∞) in Lp(Q1) for any p ∈ [1, 3]. Then, h

′
(φn)θn ⇀ h

′
(φ∞)θ(φ∞) in L2(Q1).

We consider ρ ∈ C∞0 (0, 1), z ∈ C∞0 (Ω) and take ϕ = ρ(t − tn)z(x) in (1.15), which
yields ∫ 1

0

∫
Ω
φntρ(t)zdxdt+

∫ 1

0

∫
Ω
ψ̂′ρ(t)zdxdt+K

∫ 1

0

∫
Ω
∇φn∇zρ(t)dxdt

= 2

∫ 1

0

∫
Ω
h
′
(φn)θnρ(t)zdxdt. (4.44)

Passing to the limit in (4.44) and getting (4.29) and (4.30). Then the proof of Theorem
4.1 is completed.

5 Exponential attractor in H

In this section, we shall prove the existence of inertial sets for the semi-group S(t) on
H . To this end, we need prove that S(t) satisfies the so-called squeezing property in [3].

Setting

m(u) =
1

|Ω|
< u, 1 >, u ∈ H−1(Ω).

and defining the scale product (·, ·)−1 by

(u1, u2)−1 =
1

|Ω|
< u1, 1 >< u2, 1 > +

∫
Ω
∇N(u1 −m(u1)) · ∇N(u2 −m(u2))dx,

where N is defined by (4.1).
Let ω1, ω2, . . . be the eigenfunctions defined in section 2 and

Wj = span{ω1, . . . , ωj}

and

m(ωj) =

∫
Ω
ωj(x)dx = 0.

Let pj be the orthogonal projection from H−1(Ω) onto Wj(Ω) and qj = Id− pj . Let

Pj(u1, u2) =
(
pj(u1), pj(u2)

)
, Qj(u1, u2) = (qj(u1), qj(u2)), (u1, u2) ∈ H−1(Ω)×H−1(Ω),

16



and

‖∇N(u)‖2 ≤ 1

λN+1
‖∇u‖2 ≤ 1

λ2
j+1

‖∇u‖2, u ∈ qjH1(Ω). (5.1)

Due to Bα which is a compact absorbing set in Xα. Thus, there exists tα such that
S(t)Bα ⊂ Bα for any t ≥ tα. Setting

Kα = ClXα(
⋃
t≥tα

S(t)Bα) ⊂ Bα,

Due to ω−limit set of (φ0, e0). We have S(t)Kα ⊂ Kα for t ≥ 0. Which implies the
Lipschitz continuity of S(t). We need the consequence of [4, Lemma 4.1]. We shall prove
that S(t) have the squeezing property. We introduce the following Lemma before the
proof of squeezing property.

Lemma 5.1 There exists a constant C > 0 such that for any (φ1, e1), (φ2, e2), the pair
(Φj , Ej) := Qj(φ1 − φ2, e1 − e2), (φi(t), ei(t)) = S(t)(φi,0, ei,0), i = 1, 2, satisfies

d

dt
(‖Φj‖2 + ‖Ej‖2−1) +

(
K(λj+1 − 1) + 2

)
‖Φj‖2 +Dλj+1‖Ej‖2−1

≤ Csq‖(φ1, e1)− (φ2, e2)‖2, (5.2)

where j ≥ 2.

The proof of Lemma 5.1 is a similar way of [3].
Proof. Using the operator to (1.4)-(1.5) yields

Φjt −K∆Φj = qj
(
− ψ̂′(φ1)− lh(φ1)h

′
(φ1) + ψ̂

′
(φ2) + lh(φ2)h

′
(φ2)

)
+2qj

(
e1

(
h
′
(φ1)− h′(φ2)

))
+ qj

(
h
′
(φ2)(e1 − e2)

)
, (5.3)

Ejt −D∆Ej = −∆qj
(
h(φ1)− h(φ2)

)
. (5.4)

Multiplying (5.3) and (5.4) by Φj and N(Ej) respectively and integrating and adding,
using (4.1) we get

d

dt
(‖Φj‖2 + ‖Ej‖2−1) + 2K‖∇Φj‖2 + 2D‖Ej‖2

≤ C‖φ1 − φ2‖(‖Φj‖+ ‖Ej‖) + 2|
∫

Ω
h
′
(φ2)(e1 − e2)Φjdx|

≤ C‖φ1 − φ2‖(‖Φj‖+ ‖Ej‖) + 2‖h′(φ2)‖L∞(Ω)‖∇N(e1 − e2)‖‖∇Φj‖

+2‖h′′(φ2)‖L∞(Ω)‖Φj‖L4(Ω)‖∇N(e1 − e2)‖‖∇φ2‖L4(Ω)

≤ C‖φ1 − φ2‖(‖Φj‖+ ‖Ej‖) + C‖Φj‖H1(Ω)‖∇N(e1 − e2)‖
≤ Csq(‖φ1 − φ2‖2 + ‖∇N(e1 − e2)‖2) +K‖Φj‖2 +K‖∇Φj‖2 +D‖Ej‖2.(5.5)

Thus, we obtain

d

dt
(‖Φj‖2 + ‖Ej‖2−1) +K‖∇Φj‖2 + 2‖Φj‖2 −K‖Φj‖2 +D‖Ej‖2

≤ Csq‖(φ1 − φ2, e1 − e2)‖2K . (5.6)

Then, substituting (4.2) and (5.1) into (5.6) yields (5.2).
Now we shall prove the squeezing property.
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Lemma 5.2 There exist (φ01, e01), (φ02, e02) ∈ Kα such that

|Pj∗(S(t∗)(φ01, e01)− S(t∗)(φ02, e02)|H ≤ |Qj∗(S(t∗))(φ01, e01)− S(t∗)(φ02, e02)|H ,(5.7)

and

|S(t∗)(φ01, e01)− S(t∗)(φ02, e02)|H ≤
1

16
|(φ01, e01)− (φ02, e02)|H ], (5.8)

where j∗ ≥ 2 is an integer and t∗ > 0.

The proof of Lemma 5.2 is the same as that of [2, Theorem 4.2]. Now we prove the S(t)
satisfies Proposition 1.4.

Proof of Proposition 1.4 From Lemma 5.2 we conclude that the mapping S(1) is
Lipschitz continuity and maps Kα into itself, and find

|S(1)(φ, e)− S(1)(φ̂, ê)|H ≤
1

16
|(φ, e)− (φ̂, ê)|H ,

or

|Qj∗
(
S(1)(φ, e)− S(1)(φ̂, ê)|H ≤ |Pj∗

(
S(1)(φ, e)− S(1)(φ̂, ê)|H ,

where (φ, e), (φ̂, ê) ∈ Kα and j∗ ≥ 2. This property is squeezing property in [3].
Due to Kα ⊂H , which is compact and connected subset of H . We obtain a compact

subset M ∗
α of H such that Aα ⊂M ∗

α ⊂ Kα, S(1)M ∗
α ⊂M ∗

α from [3, Theorem 6]. M ∗
α

has finite fractal dimension in H . Thus, there exist constant c∗0 > 0, c∗1 > 0 such that

dH

(
S(n)(φ, e),M ∗

α

)
≤ c∗0e−nc

∗
1 , ∀(φ, e) ∈ Kα, ∀n ≥ 1. (5.9)

Thus, S(t) is well-defined on M ∗
α . We obtain Proposition 1.4 (iii) from this inequality

and [4, Lamma 4.1].
Setting

Mα =
⋃

0≤t≤1

S(t)M ∗
α .

We conclude that Mα is a compact subset of H from [4, Lemma 4.1]. Then, Proposition
1.1 (i) holds.

Now we find a ball of radius 0 < ε < 1, there exists the smallest integer, which cover
Mα and M ∗

α . It follows from [4, Lemma 4.1] that, for any ε ∈ (0, 1),

n(Mα, e
D̃ε) ≤ 2

ε
n(M ∗

α , ε).

Thus, Proposition 1.4 (ii) is obtained.
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