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Abstract: We continue to study an initial boundary value problems to a model
describing the evolution in time of diffusive phase interfaces in sea-ice growth. In a
previous paper global existence and the long-time of behavior of weak solutions in one
space was studied under Dirichlet boundary conditions. Here we show that the global
existence of weak solutions and the long-time behavior are also studied under Neumann
boundary condition. In this paper we study in space dimension lower than or equal to 3.
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1 Introduction

We have investigated a phase-field model for phase transitions in [6]. We have inves-
tigated a coupled system of two parabolic equations modeling the evolution of a phase
interface in sea-ice growth and proved that in one space dimension an initial bound-
ary value problem to this system has global solution and large-time behavior in [7]. In
this paper, we will investigate the global existence and the long-time behavior of weak
solutions to a phase-field model for sea-ice growth when the order parameter and the
temperature satisfy homogeneous Neumann Boundary conditions.

Let @ ¢ RV (1 < N < 3) be an bounded open domain. 7T, is a positive constant,
which can be chosen arbitrary large. We write Q7. := (0,7¢) x €, and define

(v,0)z = /Z o(y)e(y)dy,

for Z = Q or Z = Qr,. By introducing a phase field variable (the order parameter ¢ € R)
to represent the physical state of the system in time and space, that is to distinguish the
liquid phase and solid phase, such as the solid state when the variable is 1. The liquid
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phase is expressed when the variable is 0. The model reads

¢ = KAp— () + 200 (9), (t,z) € Qr., (1.1)

0 = V-(DVO)~ LK (8)o, (t.7) € Qr., (1.2)

where K, D are constants, 12 is a double potential function. The boundary and initial
conditions are

o

% = 0, (t,x) S [O,Te] X 89, (13)
00

% = 0, (t,x) S [O,Te] X (9(2, (14)

¢(0,z) = ¢o(zx), zeQ,
0(0,z) = 6p(x), x € Q.

Assumptions.
(A1) h € C*°(R) is such that h(0) = 0 and there exist L € R and bounded Lipschitz-
continuous function h’, A" such that
h(€) =€°(3-2), (€ R;
(A2) ¢ € C>*(Q) with $(0) = 0, and there exist constants y1 > 0,72 > 0,73 > 0 such
that

7154 -2 < J(f)fl/p\” (5) > -3 § € R.

A typical case would be
YO =1~ CeRr.

The existence of solutions and a maximal attractor have been investigated in [7]. w(¢) =
2¢* + b(¢) have been proved in [4]. Here, we consider the polynomials function % of 3th
degree. A main difficult of this paper is the a priori estimates for different dimensional
spaces. Since h is no longer bounded, the proof is more difficult. Firstly, we suppose that
IV and f(f ||p¢||?dt are bounded. Then we prove that|| V|| and fg |p¢||?dt are bounded
in fact. In fact, we shall prove the existence of solutions by a Faedo-Galerkin method
and the well-posedness of (1.1)-(1.2) in W14(Q). To this end, we first rewrite (1.1)-(1.6)
into the following order parameter ¢ and the energy density e = 6 + éh(qﬁ), this gives

g = KAG—9'(¢) —Ih(@)h'(¢) + 2¢h'(9), (t,2) € Qr,, (1.7)
et = DAe— %dz‘v(h/(qﬁ)Vgﬁ), (t,z) € Qr.. (1.8)

The boundary and initial conditions are

9¢

5, = 0, (t,z) € [0,T¢] x 09, (1.9)
g—z = 0, (t,z) € [0,T¢] x 09, (1.10)
?(0,z) = ¢o(x), x € Q, (1.11)
e(0,z) = 6o+ h(¢o) = eo(z), x €. (1.12)



Definition 1.1 Let ¢g € H'(Q2),0p € L?*(Q). A couple of functions (¢,0) with

¢ € L>=(0,T,; H'(Q)) N L*(0,T.; H*(Q)), (1.13)
6 € L>(0,T,; L*(Q)) N L*(0, T,; H(Q)), (1.14)

is a weak solution to the problem (1.1)-(1.6), if for all ¢ € C§((—00,Te) x )), there
hold

0 = ($¢)an — K(V6,V)ar — (0, 0)or,

+2(01'(9).9) g, + (90, 0(0))a (1.15)
0 = (0:%1)Qr, — D(VO,Vo)or, + é(h(czﬁ),%)QTe
o, 2(0)n — F(h(6(0)), £(0))o (1.16)

The main results of this article are as follows.

Theorem 1.1 For all ¢ € HY(Q), and 0y € L*(Q) there exists a unique weak solution
(¢,0) of problem (1.1)-(1.6), which, in addition to (1.13)-(1.14), satisfies

¢ € LX(Qr,) NL3(Qr.), ¢ € LX(Qr,), 0; € L*(0,To; H1()). (1.17)

Note that the space integral of the function e is conserved in time, namely

/Qe(t,x)dx: /Qeo(x)da?, t > 0.

We introduce the following function spaces
Xy = (6.0) € WH(@), [ ela)do = j0l5. 20 = | X5,
Q
|8]<a

for any real number [ and for any non-negative real number a.

Theorem 1.2 Suppose that assumptions (A1)-(A2) hold, that the initial data
(¢o,e0) € WHH(R), and that (¢o, eo) satisfy the compatibility conditions

on
Oe(0,2)
on 0,

61 (0,2) = KAH(0,z) — z?(qb/(o, z)) — 1 (6(0,2))h(4(0,x)) + eh'($(0,z)),
er(0,2) = DAe(0,x) — div(h (¢(0,2))Ve(0,x)),

for x € 0. There exists a unique classic solution
(¢,e) € C([0, +00) x ,R?) N C((0, +00) x Q,R?),
to the initial-boundary value problem (1.7)-(1.12). Moreover, the mapping
S(t) : (o, e0) = ((1), €(t))

is a strongly continuous (nonlinear) semigroup on WH4(Q) that maps Xz into itself for
B > 0.



Theorem 1.3 For a > 0. There ewists a closed ball B, of H*(Q) such that, for any
bounded subset # of X, there exists t(#) > 0 such that

S(t)(B) C Byt > H(B).

Then, the semigroup S(t) possesses a maximal attractor <, which is bounded in H?(Y),
compact and connected in Z,.

Proposition 1.4 Let a > 0 and set

Ho=Cly, |J S(t)%a.

t>t(%a)

There exists an inertial set My of Zo such that
(i) Ao C Mo C Ho, S(t) Mo C My for every t > 0;
(ii) My has finite fractal dimension in J;
(iii) there exist constants co,c1 > 0 such that for allt > 0

cit
3

Sup(¢,e)€%adﬁf(5(t)(¢’ e), Ma) < coe”
where d e denotes the distance on A (A = L*(Q) x (H'(Q))').
Remark The distance d_  used here is the Hausdorff distance of two sets. Throughout
this paper L?(€) is denoted || - || and C is different line in line.

The remaining of this article is organized as follows. In Section 2 we will prove
Theorem 1.1. In Section 3 we will prove the existence of semigroup. More precisely,
using abstract results of Amann [1], we will prove the Proposition 1.4. In Section 4 we
will prove the long-time behavior of the semigroup S(¢). In Section 5 we shall prove the
existence of inertial sets for the semigroup S(¢) on 7.

2 Existence of the solutions

In this section we will prove Theorem 1.1 to the initial-boundary value problem
(1.7)-(1.12).

Theorem 2.1 (Aubin-Lions) Let By be a normed linear space imbedded compactly into
another normed linear space B, which is continuously imbedded into a Hausdorff locally
convez space By, and 1 < p < 4oo. Ifv,v; € LP(0,t; By),1 € N, the sequence {v;}ien
converges weakly to v in LP(0,t; By), and {%}%N is bounded in L'(0,t; By), then v;
converges to v strongly in LP(0,t; B).

A proof of Theorem 2.1 can be found in [5, p. 57].

Lemma 2.1 Let (0,7T.) x Q be an open set in R* x R™. Suppose functions gn,g are in
L1((0,T,) x Q) for any given 1 < q < oo, which satisfy

llgnllLa((0,T2) x Q) < C, gn — g a.e.in(0,T,) x Q.

Then gy, converges to g weakly in L9((0,T) x Q).



A proof of Lemma 2.1 can be found in [5, p. 12].
Proof of Theorem 1.1 The proof relies on the Faedo-Galerkin method. Let w;°; be a
base of H'(2). They are smooth functions and satisfy

—ij:)\jwj, j:1,2,...,m
0:>\1<)\2§...§)\j§....

For each integer m we look for an approximate solution (¢, e,,) of the form

i=m i=m
Pm(t) = Z Gim(t)wi, em = Z eim (t)wi,
=1 i=1
satisfying

(¢mt7wj) + K(Vom, ij) = _({E(Qf’m)ij)

S (BB (D), 03) + (e (6m), ), (21)
(emts 5) + D(Verm, Viaz) = 2 (1 (6) Vo, Vi), (22)
for j=1,2,...,m and
ol < lléoll and 6m(0) = Gom — G0, in HY(Q), asn o0, (23)
leomll < lleoll and e, (0) = egm — eo, in L*(Q), as n — occ.

Since the nonlinear terms are Lipschitz continuous functions, and {w;} are smooth func-
tions. According to the standard existence theory for ordinary differential equations.
Problem (2.1)-(2.4) have a unique solution (¢, €n,) for a.e 0 <t < T),.

Next we derive the a priori estimates which is independent of m and in particular
Ty, = 4o00. Multiplying (2.1) and (2.2) by ¢jm:(t) and %(ejm — h(¢jm))+ and integrating
respectively and summing on j = 1,2,...,m and adding, we get

d

K 2 ~ 4D
T (§’V¢m\2 + 797271 + Y(pm))dz. + (T VO |? + ||éme]|?) = 0. (2.5)
Q

Integrating (2.4) in 7 € (0,7.), we have

K 2 ~ Te 4D
1900l + 11012+ [ S6n)da+ [ IVOME + [60l)ar
= 51T + 110, 0)1 + [ D60 < C. (2.6)
From this we obtain
Te ) Te 9
WMW@SQWMSQA wmwmé|w%umsa (2.7)
Multiplying (2.1) by ¢, we find
lomllLa(Qqr,) < C- (2.8)
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Multiplying (2.1) by —X;j@;jm(t), we find

1d 2 2 1/ 2 2
o m K A m n m d
5 gl Vomll” + Kl[Adm|” + 7 Q%IW “dx

< Cllgmli ) + 10ml7 0))- (2.9)

Integrating the inequality (2.9) in 7 € (0,7¢), we have

Te
/ | Apm || ?dr < C.
0

From this estimates and (2.7) we can extract a subsequence, which we still denoted by
(Am, Om), such that as m — oo

bm — ¢, weakly in L*(0,T,; H*(R)), (2.10)
O, — 0, weakly in L*(0,T,; H(Q)), (2.11)
& (pm) — X, weakly in L3 (Qr,). (2.12)

Since L%(0,T; H*(Q)) € L?(0,T.; H(Q)), L*(0, T.; HY(Q)) € L*(Qr1,), we have

bm — &, strongly in L*(0,T.; H(Q)), (2.13)
Om — ¢, a.e.in Qr., (2.14)
O, — 0, strongly in L*(0,T.; L*(Q)). (2.15)

From Theorem 2.1, Lemma 2.1 and (2.8), (2.12), (2.14) we conclude that

-~ -~ .4
¢ (dm) = ¥ (9), weakly in L3 (Qr,).
Passing to the limit in (2.1)-(2.2), we find

4

(6e,wj) + K (Vo, Vey) = — (¢ (¢),w;)
—(h($)R (¢),w;) + (el (¢), w;),
(er,w;) + D(Ve, Vw;) = D(h' (¢)V¢, Vew;).

3 Existence of the semigroup

In this section, we shall prove Theorem 1.2. We define y = (y1,%2) € R? and

W) ( K 0> (2.1) ay), if1<j=k<N,
a = / a;ip(xr,y) =
4 ~Dh' (y1) D IR Y 0, otherwise.

This version, which we need here, is used in [1]. The boundary-value problem (< (y), Z(y))
is defined

N
dyp=—3" aij(ajk(-,y)g;), v = (u1,v2),

ov

N
PBy)v = — Z ujw(ajk(-,y)a—m

), v=(v1,v2),



which is used in [1]. Here, 75 and v = (v!,22,...,v"V) denote the trace operator and the

outer unit normal vector field to 9€2. The normal ellipticity of (<7, %) is a consequence
of [1, Theorem 4.4].
Finally, we define f € C*(R? x Q,R?) by

flz,y) = <—$ (y1) — lh(yl)g, (y1) + 2R (yl)y2> _

With these notation, the problem (1.7)-(1.8) reads

yt"‘%(’vy)y = f('7y)’
By = 0,
y(0) = (¢o,e€0),

where y = (¢, e).

Lemma 3.1 For (¢, ep) € WH4(), (3.1)-(3.3) has a unique mazimal classical solution
y=(p,e) on [0,tT(¢o,e0)) which is C*°— smooth, that is

(¢,e) € C([0, +00) x Q,R?) N C((0, +00) x Q,R?),

and y = (¢, e) satisfies (3.1)-(3.3) pointwise. Moreover, t* (o, eq) = 400, provided that
there exist 0 < A < 1 and c: [0,400) — [0, 4+00) such that

IPlor@ + lelleagy < e(T), 0<t <T < oo, t < t™(¢o,en). (3.4)
The map F : (t,¢o, €)) = ($(t),e(t)) is a semiflow on Wh4(Q), that is, if we set
Y = U (0,7 (60, €0)) x {(¢0, €0)},
(¢0,e0)EW4(Q)
then Y is open in [0, +00) x WH4(Q), F is continuous from Y to WH4(Q) with
F(0, do, e0) = (do, €0),
and if (¢o,e0) € WHA(Q),t € [0, (o, e0)) and t € [0,tT(F(t, ¢, e0))), then
£+t <tt(¢o,e0), and F(t +t,¢o,e0) = (t, F(t, o, e0)).

The proof of Lemma 3.1 can be found in [1, Section 14, 15].
In Section 2 we have proved

[l oo 0,151 () + 108l 2@, )
+10] oo 0,72 2(0)) + 101l 20,7251 () < O (3.5)
Next we shall improve the a prior: estimates.

Lemma 3.2 There exists a constant Ct, such that
1 1
182 el Loo (0,2 )) + 1201 oo (0,751 (02))
1 1
T2Vl 2(Qr) + 120t 22y, ) < O (3.6)

1
182 6| oo 0,125 2(0)) < O
[tell Lo 0,7:m2(02)) < O (3.8)



Proof. We differentiate (1.1) with respect to ¢, and multiply the result equation with ¢,
and multiply (1.2) by %Ht and integrate over €2, and add them, which yields

L

2dt
< ]|l o101l L3y |66l Fa iy + CHION D6l e
+Ct)|oel* + Cllgel® + [IVO]1%)

< Ct(|[Vaullligel + lleel®) + Ct(Iv0ll5 6115 + |01 IV illll gl + lloc])
+Ctlléel* + C(llel® + 11VO]1%)

1
< Ct| e[|V el + Ct[VO]3 ]| e |||V e |
1
+Ct(1 + |[VO[I3)|l¢ell* + Clloell* + V0%

K
<t +el|VOI)IVrl® + t(C + e VOI*) o
+C([l6el* +IVO)*), n=2, (3.9)

4D 4
tloel® + ——tIVOI?) + (KHI Vil + SHl|6]*) + 4 /Q t¢*¢ids +2 /Q tg;dz

and
1d 4D 4
5@(“\@”2 + TtHVQHQ) + (Kt[|Veu|* + thGtHQ) + 4/ to®dpdz + 2/ tojde
Q Q
< Ct(H¢HL6(Q)HVW\LB(Q)H@H%AL(Q)
+CtH0HH¢tH%4(Q) + Ctll¢ell* + Clloell® + [VO]1*)

< Ct|Ver 2 |ellz + CH(IVOII2 (1161 + 161N IV ell2 0] + o)

+Otée|1? + Cll el + IV6]1?)

< Ot el 2V ellz + tIVO]2 [ bel ]|V e | 2

+Ot(1+ 012)lgell? + Cllerl* + [ VOII)

< t(% + e VOI2) IV ee]2 + H(C + el VO] 2) | el

+O(lgell? + V8]), n =3, (3.10)

where we have used the estimates (3.5) and the Gagliardo-Nirenberg inequality.
Integrating the inequality (3.9) and (3.10) over (0,t) for ¢ € (0,T%), we get

4D t t K 4
ol + 457 =< [ NoPanIVol+ [ (15 = I Do) Vol + Felonl)ar
t
< C/ t|| || ?dt + C. (3.11)
0
where ¢ is enough small.

Using Gronwall’ s inequality in (3.11) yields (3.6).
Multiplying (1.1) by tA¢, which yields

K/ﬂtlﬁqﬁ!% < Ctl gl AG] + ¢ (D) AS] + tl10] Loy 1B () ] (e 1A

From this inequality and by use of the estimates (3.5) and (3.6), we get

/ t|A¢|2dz < O, (3.12)
Q
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We differentiate (1.1) with respect to ¢, and multiply the result equation with t¢;, which
yields

1d
L9 g + Kt Vrl? + 6 / 162 6|2z
2 dt 0

< C(tllgell® + tllO A dell + tlpell 7y + lloel?)
K
< Ctlloel® + t10el* + S tIVoull* + llenl),

where we have used the continuous imbedding H?(Q2) C L>(Q) and Young’s inequality.
Using the Gronwall inequality yields

/OTe HIVen|2dt < Ci, (3.13)
Let 7 = A be a solution to
m— DAy = —div(h ($)V: + 1" (8)$: V),
gz .

Multiplying this equation by ¢?1 and integrating over €, we find

ld 2 2 2
—— [ t°n*d DItV
2dt/Q n-dr + H 77”

1 1.
< C([[evnllitzVeellllt2h (9)ll Lo ()
" 1 1
HIP N oo @ 1V 182 el Loy 187 VBl Ly + tlnll*)

D
< O+ (19172 () NSl 72 ) V21701 02y + EH’WHHQ + |l + e F oy

where we have used Young’s inequality and the continuous embedding H' c L5(2) and
H? C L*(9). Integrating this inequality over (0,7.), when T, is finite we conclude that

Te Te
/t2772da: +D/ / t2|Vn|*dzdt < Cr, +/ / tn*dxdt. (3.14)
Q 0 Q 0 Q

Multiplying (1.2) by ¢n and integrating over 2, we find

Te Te Te
D/ /tn2d1’d7 < C/ /t|9t]2d1:dt+0/ Bl ) D6l 71 0yt < Cr,. (3.15)
0 Q 0 Q 0

We have used tH¢H§{2(Q) < Cr, in the inequalities (3.14) and (3.15) when T is finite.
Combining (3.14) and (3.15) yields

1E0(8)]| oo (0,112 (0)) < Oy 0 <t < Toy &< (o, o). (3.16)

Thus, (3.8) follows from (3.7), (3.16) and from (A2).
Since H2(Q2) ¢ W14(Q), we infer from (3.7)-(3.8) that

[ lwra@) + 10 lwra@) < e(Te), 0 <t <c(Te), t <t (¢o,00),

From this we conclude the following lemma.



Lemma 3.3 Let (¢, eq) € WH4(Q). Then there exists a positive constant Cr, such that

[oller) + llellery < Cr..

Due to HY4(Q) C C%(Q). Lemma 3.3 is obtained. (3.4) is proved.
We can use the standard bootstrap argument and conclude the following theorem.

Theorem 3.1 Let m € NT and assume that (¢o,e0) € WHH(Q). Then there exist a
constant C such that

[l cm+r/22mix((0,400)x) T €l gmrrzzmer (o 400)x0) < C-

Continue by using the bootstrap argument, we get the C°°((0,+00) x Q). Thus, we get
the proof of Theorem 1.2 by use of Theorem 3.1.

4 The maximal attractor

In this section , we shall prove Theorem 1.3. To this end, we shall show the existence
of absorbing sets in H?($2) and the compactness in W14(Q) for semigroup S(t).
Let N(v) is unique solution and v € L*(Q) satisfies [, v(z)dz = 0 for

CAN@) = v, N0 / N(v)dz = 0. (4.1)
371 0
Then there exists a C; such that
VN (0)|l2) < Crllvllp2(q)- (4.2)

Let (¢0,€0) € Za, (4(t), e(t)) = S(t)(¢o, e0) and
mo = [ +leoPyis, £= o [ eltarie = o [ oft.onts, 12 0.
Firstly, we define a function o € C*°(R) by
o(6) = D& +D(©) - ¥ (0, R

Let o > 0 be a convex function such that ¢(0) = 0 and o (0) = 0, and we have with

(42),

£/(€) 200 20, 0(€) 2 1, E€R, (43)

where 4 is a constant depending on 71, 72,73 and 12(0) We also have the following
results for h: for § > 0, there exists a constant Cs > 0 depending on 2, 3, such that

LH ©E (R ()€ — 1h(€)) < (5 — €5+ Cs, (4.4)

2
h(€)? < (6 + €)&° + Cs, (4.5)

where ¢ € R. We shall show that the closed balling %, of H?(Q) exits.
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Lemma 4.1 There holds for constants CQ,C; and a monotonic function Ti(mg) such
that

16 + IV (N (e(t) — B < Ca, (46)
[ 0oy + e ar + [ [ oo @)iar < (47)
¢ T @ ¢ Q - '

where t > Ty (mg),r > 0.

Proof. Multiplying (1.7)-(1.8) by ¢ and %N (e — ) respectively, and integrating by parts
over () and adding, which yields

d(l
dt"D

<2/|e O)ldz + C(1+ [6]2) + lle — E|?

K /
[N (e— E)J? + §||¢||2> t2e=EP+ [ (5196P + 60 (0))ds
Q

w5 [ H @01 (0)6 = h(6))da

€+271 / 6 6“‘371 2 / 6
(0 dx —FE 260 — dzx + C,
< G0 [ otr+ e B+ 20— ) [ o+
where 6y = 4 3::1; From this inequality we have
d, 1 Y1 K ’
N(e— 2, _N . B2 / Ly 2 d
SSIVN = B+ 1101 + =l = Bl + [ (5196 + 60 (6)) o
< / #Sdx + C. (4.8)
4 Ja

From this inequality and (4.2) and (4.3) we get

d 1

dt(D

v [ (GNP +00'(6) + e — B)de < O (49)
Q

1 1 1
IVN(e = B)I? + 7191%) + Cs (519N (e ~ B)IP + 711611)

From this inequality and (4.3), and using the Gronwall Lemma we find
IVN(e(t) = E)II* + llo(t)|* < C5(1 + moe™ ).
When t > T1(my), we have
IVN(e(t) = B)|I* + llo(®)]* < 2. (4.10)

where T1(¢) = & In(¢;).
Integrating (4.9) over (¢,t 4 r), when t > Ty (mg), we find

i+r K ,
| [ (GI96R + 60 (6) + e - BP)dadr < G, (4.11)
t Q

From this inequality (4.7) obtain.
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Lemma 4.2 There exists constants Cg, C’é and a monotonic function To(mg) such that
om0 + lle(®) < Cs, (4.12)
Ul + 18 < (1.13

where t > To(mg) and Ta(mg) > T1(mo).-

Proof. Multiplying (1.1) and (1.3) by ¢ and %0 respectively and integrating, using (4.3)
we find

d

- 5 2 g 2 1 2 @ 2
= [(GIVol +0(6) + T10P)d + Slloull? + == V0]

K 2
< [ (GNP +a(0) + 8Pz + O+ [0]P) (414)
Using the uniform Gronwall Lemma [8, Lemma 1.1] yields

| G190+ P+ @)+ 1) + 100+ ) o
<@+ 0)eC2", t > 1+ Ti(mg) = Ta(mo). (4.15)

where ap is below with Lemma 4.1
t+r K 2)
| [ G0 +o@)n) + 7100 dodr
t+r ,
<c +/ /(\v¢|2 + 60’ (6) + )dadr < C. (4.16)
t Q

Integrating (4.14) over (¢,t + r), we obtain (4.13). (4.12) is also obtained from (4.15).

Lemma 4.3 There holds for constants C’7,C; and a monotonic function T3(mg) such
that

el + 1161112y < C, (4.17)

t+r
(1671771 0 + 167 1%)dr < C, (4.18)
] Q)

where t > T3(mg) and Ts > T.

Proof. Differentiating (1.1) with respect to ¢ and multiplying these results by ¢, and
multiplying (1.2) by 6;, which gives

1d 4D 4
L9 6002 + 22 19012) + (K Vel + 2(1602) + 4 / S $Rda +2 / o2du
2 dt ! l 0 0

< C160ée2aiqy + Clldllioon 6oy el 2y
1 2
< C(IVarlller + ) + CAVIF181F + 161UV Sellignh + 1]
K
< (5 +eIVOIRIVS2 + (C + VoI o], n =2, (4.19)
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and
1d 4D 4
L9 60 + 22 19012) + (K Vol + 21012) + 4 / PP $Rd + 2 / brdu
2 dt I l 0 0
< Cl8I1V el Fa(q) + Clldl Lo 10l s @ 0l 7 a0
3 1 1 1 3 1
< (V13 [6el1F + 6el®) + CAIVOIE181E + 161D IVl F gellF + lonll?)

K
< (5 +elVOIIVl® + (C + el VolIllel®, n =3, (4.20)

where ¢ is sufficiently small. Here, we have used the Gagliardo-Nirenberg inequality and
Young’s Inequality.
Integrating the inequalities (4.19) and (4.20) over (0,t) for ¢t € (0,T:) yield

1 4D t t K 4
glhont? + 2 = [loPanivor? + [ (G = IVoIRITe® + 16 ar
t
< c/ el 2. (4.21)
0
Using the Gronwall inequality to (4.21) yields

el oo (0,10522(0)) + 10l oo 0,111 () < Cry 2 1+ T2 =1Tj. (4.22)

Integrating the inequalities (4.19) and (4.20) over (¢,t + ) for ¢t € (0,T) yield
t+r 5 5 ,
| el oy + ooy < (4.23)

Lemma 4.4 There holds for a constant Cs and a monotonic function Ty(mg) such that
161l 2 + llellm2@) < Cs, (4.24)

where t > Ty(mg) and Ty > Ts.

Proof. Multiplying (1.1) by A¢ yields

K/Q\A¢|2d:c < Clloellll A + 16 (SN AS] + 1010y 17 ()] (e | Al

From this inequality we get by use of (4.17)

/ |A¢|dx < C. (4.25)
Q
Hence, by the standard elliptic theory,
19l 72y < C- (4.26)
Multiplying (1.2) by —A#, and integrating, we get

Dd

——||Ag|? 04|

> 1801 + V6|

< C(IIR" (&) | 2o 10l 2 ) 6| sz ) V6|
R (@)l oo @ IV V),
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where we have used H?(Q)) C L*>°(Q2). Using Young’ s inequality and the estimate (4.22)
yields

D0 + 90 < Clloulys o
Integrating this inequality over (0,t) for ¢t € (0,7,) and using the estimates (4.18) yield
A0 < C, t > Ty(mg) =1+ T3(mo).
Hence, by the standard elliptic theory,
10]| 72y < C, t > Ta(mo). (4.27)
Proof of Theorem 1.3. Let Bs be the closed ball of H?(€2) of radius Cy, setting
PBo = Bo N 2. (4.28)

Due to H?(Q) c H*(Q), %, is an compact absorbing set for S(t) in 2. The proof of
Theorem 1.3 come from an abstract result [8].
We will prove the long-time behavior of solution as ¢t — oo with the w—limit set of
((;50, 60). The w—limit set w(¢0, 90) of ((;5(), (90) in LQ(Q) is
W(00,00) = {(¢o0,0s0) € L*(R), I, — +00 such that
(6(tn), B(t0)) = (dc,0u0) i LA},
We put
l
My = / (90 + §h((l)0))dl’
Q

Theorem 4.1 If (¢oo, €x0) belongs to w(eo, bo), it satisfies

Poo € Hl(Q), O € Lz(Q), / (90 + %h((bo))dw = M,

Q
such that
—KA¢oo + U (dos) = 2000h (doo) in Q, (4.29)
09oc

Proof. Considering (¢oo, 0o0) in w(¢o, 0o) and let ¢, > 0 such that ¢, — +o0, and

(6(tn), 0(tn)) = (¢oo, bs) in L*(Q), (4.31)
¢t + 10t < C, n > 1. (4.32)

For t € (0,1) we put
¢n(t) = (Z)(tn + t)a Hn(t) = H(tn + t)'

Next we get some estimates.
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Lemma 4.5

|PnllLoe 0,151 () + | Dntll2(Q1) + 100l Loo0,1;2(02)) + VOl L2(0)) < C, (4.33)
9l 22(0,1;m2(02)) < C, (4.34)
Dell 220, 400;22(0)) + 10ell 200,400 1(2)) < C. (4.35)

Proof Tt follows from (2.6) that

K 2 ~ Te 4D

FIVOR 4 F10E + [ Gorda+ [ CPIVOPR + lou)ar

= 5161 + 1O + [ Do)z <c. (4.36)
Q

From this inequality we get

(D¢l 20, +00;22(02)) + IVl Loo(0,400;2(02))
HIVO 2(0,4-00:22(22)) T 101l oo (0, 400522 (02)) < C- (4.37)

Due to the boundedness of &' and the estimates (4.37), and (1.2) yield

10ell L2 (0,1 00; -1 (22)) < C- (4.38)

From the estimates (4.37) and (4.38) yield (4.35). It follows from (4.37) for ¢ € (t,,t,+1)
that

1
16(6) — dltn)ll 2@y < (¢ — ta)2104] 2oz < C-
Due to (4.32), we obtain
H¢n||Loo(o,1;L2(Q)) <C. (4.39)

From (4.37) and (4.39) we have (4.33). From (1.1) and (4.37) we have (4.34).
We will prove the following result.

Lemma 4.6

bn = boo in L*(Q1), (4.40)
0, — 0o in L*(0,1; H1(Q)). (4.41)

Proof For t € (0,1) we get from (4.35)

[N

1 tn+t
16,0 = 6tta)ll < 5[ lorlar)

+o00o 1
( / 6 2dr)? — 0

IN

as t, — +oo. From this and (4.31) yield

|pn(t) — Pool| = 0 a.e. in (0,1).
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Thus, (4.40) follows from (4.33) and the Lebesgue dominated convergence theorem. Sim-
ilarly, we prove (4.35).
From Lemma 4.5 and 4.6 we have

bn — doo in L*(0,1; HX(Q)) and in WH2(0,1; L*(Q)), (4.42)
0, — 0o in L*(Q1) and in W12(0,1; H1(Q)). (4.43)
It follows from Lemma 4.6, and a compactness argument that
bn = doo in L2(0,1; H'(2)).
Since h'(¢p) is a bounded Lipschitz continuous function, it follows from Lemma 4.6 that
W () = h'(9oo) in LP(Qu) for any p € [1,8]. Then, h'(¢n)fn — h'(60)0(6o0) in L*(Q1)-

We consider p € C3°(0,1), z € C§°(2) and take ¢ = p(t — t,)z(z) in (1.15), which
yields

/01/S)¢”tp(t)2d$dt+/01/QTZ'P(t)ZdQCdtJFK/OI/QV%VZ/)(t)da;dt
=2 /0 1 /Q W (én)0np(t)zdedt. (4.44)

Passing to the limit in (4.44) and getting (4.29) and (4.30). Then the proof of Theorem
4.1 is completed.
5 Exponential attractor in J7

In this section, we shall prove the existence of inertial sets for the semi-group S(¢) on
. To this end, we need prove that S(t) satisfies the so-called squeezing property in [3].
Setting

1
m(u) = 9] <u,1>, ue H Q).

and defining the scale product (-,-)_1 by

1
(uy,uz)—1 = @ <uy,l><wug, 1> +/ VN (u; —m(uy)) - VN (ug — m(ug))dz,
Q

where N is defined by (4.1).
Let wy,ws, ... be the eigenfunctions defined in section 2 and

W; = spanf{wi, ..., w;}

and

m(w;) = / wj(z)dx = 0.
Q
Let p; be the orthogonal projection from H1(£2) onto W;(Q) and g; = Id — p;. Let

Pj(ur,uz) = (pj(u1),pj(u2)), Qj(ur, uz) = (gj(u1),q;(u2)), (u1,uz) € H Q) x H (),
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and
IVN(u)|? < = Vulf* < 7HVUH2 u€ g H (). (5.1)
/\N )\]+1
Due to %, which is a compact absorbing set in Z,. Thus, there exists t, such that
S(t)Bo C By for any t > t,. Setting
Ho = Cla, (| S(t)Ba) C B,
>t

Due to w—limit set of (¢o,eq). We have S(t).#, C H#, for ¢ > 0. Which implies the
Lipschitz continuity of S(¢). We need the consequence of [4, Lemma 4.1]. We shall prove
that S(t) have the squeezing property. We introduce the following Lemma before the
proof of squeezing property.

Lemma 5.1 There exists a constant C' > 0 such that for any (¢1,e1), (p2,e2), the pair
(@), Ej) = Qj(¢1 — d2,e1 — e2), (di(t), ei(t)) = S(t)(di0,€i0), i = 1,2, satisfies

d

ﬁ(H@’jH2 HIE120) + (K1 — 1) +2) 19512 + DA |l Ejl12,

< Cyyll(61,€1) — (d2,€2) I, (5.2)
where j > 2.

The proof of Lemma 5.1 is a similar way of [3].
Proof. Using the operator to (1.4)-(1.5) yields

O; — KAD; = g;( - < 1) = Uh($1)h (¢1) + &' (d2) + Ih(d2)h (62))
+2¢; <61( (1) — )) +q; (R (d2)(e1 — e2)), (5.3)
Eji — DAE, :—qu(< 1) — h(¢2)). (5.4)

Multiplying (5.3) and (5.4) by ®; and N(E;) respectively and integrating and adding,
using (4.1) we get

d
(12517 + 1B [2,) + 2K [V 5| + 2D B |
< Cllgr = oal| (11l + 1| E5]]) + 2| /Q W (¢2)(e1 — e2)®;dx|

< Cllgr — dall (1251 + IE;1) + 2118 (¢2) | L@ IV N (e1 = e2) || V5|

200" (¢2) | Lo (|25 ]| L2 I VN (e1 — e2) [ V2l 1
< Cllgr — gall([| 251 + |1 ES1) + Cll®;[ g1 () IVN (€1 — e2) |
< Coqlllor — da2l* + IVN(e1 — e2)|1?) + K||®,]* + K[|V, ||* + D E;*.(5.5)

Thus, we obtain
d
%(H‘IUH2 1B 1121) + K|V, + 2(|95]|* — K1|@;* + D By
< Cuqll(1 — p2,e1 — €2)[1 % (5.6)

Then, substituting (4.2) and (5.1) into (5.6) yields (5.2).
Now we shall prove the squeezing property.
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Lemma 5.2 There exist (¢o1,€01), (do2, €02) € HFo such that

| P (S(t7) (o1, €01) — S(t*)(Po2, €o2) | < |Qj+(S(t*)) (o1, €01) — S(t*) (o2, €o2) |, (5.7)

and

w < L (do1, €01) — (do2 €02) |y, (5.8)

[S(t*)(do1, e01) — S(t*)(¢o2, €02) TG

where j* > 2 is an integer and t* > 0.

The proof of Lemma 5.2 is the same as that of [2, Theorem 4.2]. Now we prove the S(¢)
satisfies Proposition 1.4.

Proof of Proposition 1.4 From Lemma 5.2 we conclude that the mapping S(1) is
Lipschitz continuity and maps %, into itself, and find

1S(1)(,€) = S(1)($,8)].r < (8, ) — (6,8) ],

Q- (S(1)(¢,¢) — S(1)(, )| < [Py (S(1)(¢,€) — S(1)(, )|

where (¢, e), (&5, €) € K, and j* > 2. This property is squeezing property in [3].

Due to J#, C 57, which is compact and connected subset of 7. We obtain a compact
subset . of S such that o, C A} C JH,, S(1).4} C A from [3, Theorem 6]. ./
has finite fractal dimension in J#. Thus, there exist constant cj > 0,c] > 0 such that

dy (S(n)(o,e), %) < che™ "1, V(p,e) € Ha, Yn > 1. (5.9)

Thus, S(t) is well-defined on .Z}. We obtain Proposition 1.4 (iii) from this inequality
and [4, Lamma 4.1].
Setting

Mo = | St

0<t<1

We conclude that .#Z, is a compact subset of .7 from [4, Lemma 4.1]. Then, Proposition
1.1 (i) holds.

Now we find a ball of radius 0 < € < 1, there exists the smallest integer, which cover
Mo, and A . 1t follows from [4, Lemma 4.1] that, for any € € (0, 1),

(M, D) < %n(///;,e).

Thus, Proposition 1.4 (ii) is obtained.
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