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Abstract 13 

1. The receiver operating characteristic (ROC) and precision-recall (PR) plots have 14 

been widely used to evaluate the performances of species distribution models. 15 

Plotting ROC/PR curves requires a traditional test set with both presence and 16 

absence data (namely PA approach), but species absence data are usually not 17 

available in reality. Plotting ROC/PR curves from presence-only data while treating 18 

background data as pseudo absence data (namely PO approach) may provide 19 

misleading results.  20 

2. In this study we propose a new approach to calibrate the ROC/PR curves from 21 

presence and background data with user-provided information on a constant c, 22 

namely PB approach. An estimate of c can also be derived from the PB-based 23 

ROC/PR plots given that a model with good ability of discrimination is available. 24 

We used three virtual species and a real aerial photography to test the effectiveness 25 

of the proposed PB-based ROC/PR plots. Different models (or classifiers) were 26 

trained from presence and background data with various samples sizes. The ROC/PR 27 

curves plotted by PA approach were used to benchmark the curves plotted by PO 28 

and PB approaches.  29 

3. Experimental results show that the curves and areas under curves by PB approach 30 

are more similar to that by PA approach as compared with PO approach. The PB-31 

based ROC/PR plots also provide highly accurate estimations of c in our experiment.  32 

4. We conclude that the proposed PB-based ROC/PR plots can provide valuable 33 

complements to existing model assessment methods, and they also provide an 34 
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additional way to estimate the constant c (or species prevalence) from presence and 35 

background data.      36 

 37 
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1. INTRODUCTION 42 

Species distribution modeling (SDM) is an important tool to understand the statistical 43 

relationship between occurrences of species and environmental variables, and it has 44 

been applied in a variety of fields (Peterson & Holt, 2003; Guisan & Thuiller, 2005; 45 

Elith et al., 2006). For example, Kueppers et al. (2005) used discriminant analysis to 46 

study the potential ranges of two California endemic oaks in response to regional 47 

climate change. Hagar et al. (2020) used maximum entropy (MAXENT) to predict the 48 

habitat suitability of northern spotted owl in Oregon with forest structural attributes 49 

derived from airborne light detection and ranging data. When both observed presence 50 

and absence data are available, it is straightforward to apply standard binary classifiers 51 

such as logistic regression and neural network to predict the conditional probability of 52 

species occurrence at given locations (Guisan et al., 2002; Marmion et al., 2009; Li et 53 

al., 2011). However, reliable species absence data are usually not available in practice, 54 

which is referred to as the presence-only problem (Elith et al., 2006). With presence-55 

only data, it is difficult to estimate the probability of species occurrence, so researchers 56 
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usually estimate a relative index of habitat suitability instead (Elith et al., 2006; Hastie 57 

& Fithian, 2013; Phillips & Elith, 2013). One category of methods for presence-only 58 

data is to train models using only presence data, such as ecological niche factor analysis 59 

(Hirzel et al., 2002), BIOCLIM (Busby, 1986), and DOMAIN (Carpenter et al., 1993). 60 

Another category of presence-only methods involves generating pseudo absence or 61 

background data and combining them with observed presence data to train models, such 62 

as MAXENT, maximum likelihood analysis (MAXLIKE), inhomogeneous Poisson 63 

point process, naive logistic regression, and presence and background learning (Keating 64 

& Cherry, 2004; Phillips et al., 2006; Ward et al., 2009; Li et al., 2011; Aarts et al., 2012; 65 

Royle et al., 2012). 66 

Model performance can be evaluated from two different aspects, namely 67 

calibration and discrimination (Lobo et al., 2008; Phillips & Elith, 2010; Jiménez-68 

Valverde et al., 2013). Calibration measures the agreement between predicted and true 69 

probabilities of species occurrence, whereas discrimination measures the ability to 70 

distinguish between presence and absence data (Phillips & Elith, 2010). In this study 71 

we only focus on the aspect of discrimination. Using an independent test set consisting 72 

of both presence and absence data, we can generate a 2 × 2 confusion matrix to cross-73 

tabulate binary predictions and observations, from which a variety of accuracy 74 

measures can be derived, such as overall accuracy, kappa statistic, true skill statistic 75 

(TSS), and F-measure (Congalton, 1991; Fielding & Bell, 1997; Liu et al., 2011; Li & 76 

Guo, 2013). These accuracy measures consider both commission and omission errors, 77 

and they are threshold-dependent, so a single threshold is required to convert 78 
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continuous outputs to binary outputs. Without absence data, however, commission error 79 

cannot be calculated, making model evaluation problematic with these traditional 80 

accuracy measures. To solve this problem, absolute validation index (AVI) and contrast 81 

validation index (CVI) were proposed to evaluate binary predictions without 82 

considering commission error (Hirzel et al., 2006). Li and Guo (2013) proposed two 83 

new statistics, namely Fcpb and Fpb, to evaluate the predictive accuracy of binary 84 

predictions from presence and background data. Fcpb is an unbiased estimate of F-85 

measure, but it requires prior information of species prevalence. When species 86 

prevalence is not available, Fpb can be applied as a proxy of F-measure, but it is only 87 

applicable to rank models for the same species because its upper bound is affected by 88 

the unknown prevalence. Liu et al. (2013) proved that maximizing TSS from presence 89 

and pseudo absence data is equivalent to maximizing TSS from presence and absence 90 

data in terms of threshold selection. 91 

The receiver operating characteristic (ROC) curve and area under the ROC curve 92 

(AUCROC) have also been commonly used for model evaluation in SDM (Fielding & 93 

Bell, 1997). Unlike the threshold-dependent measures that rely on a single threshold, 94 

ROC curve and AUCROC evaluate model performance by considering all possible 95 

thresholds, so they are applicable to continuous outputs without requiring thresholding. 96 

Alternatively, users can plot precision-recall (PR) curve and calculate area under the 97 

PR curve (AUCPR) to evaluate model performance (Davis & Goadrich, 2006). Please 98 

note that ROC curve incorporates correctly predicted absence sites (true negative), and 99 

hence AUCROC value is influenced by total geographic extent (Lobo et al., 2008). 100 
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When species prevalence is very small or the geographic extent is very large, AUCROC 101 

value may be inflated unrealistically (Sofaer et al., 2019). By contrast, the PR curve 102 

ignores true negative, so it is more robust to geographic extent and suitable for species 103 

with small prevalence (Leroy et al., 2018; Sofaer et al., 2019). In other words, ROC 104 

curve is more suitable for balanced datasets whereas PR curve is more suitable for 105 

imbalanced datasets (Davis & Goadrich, 2006; Saito & Rehmsmeier, 2015; Sofaer et 106 

al., 2019). 107 

Essentially, ROC and PR curves are based on both commission and omission errors, 108 

so they also suffer from the presence-only problem. Currently, it is a common practice 109 

to plot ROC/PR curves and calculate area under the curve (AUC) by treating the 110 

background data as absence data in the literature, but researchers have pointed out that 111 

this approach can make the results misleading and difficult to interpret because 112 

background data are actually contaminated by presence data (Phillips et al., 2006; 113 

Peterson et al., 2008; Jiménez-Valverde, 2012). Li and Guo (2013) have proved that 114 

both recall (inversely related to omission error) and precision (inversely related to 115 

commission error) can be unbiasedly estimated from presence and background data 116 

given that species prevalence is available, thus making it possible to plot the correct 117 

ROC/PR curves without absence data. However, this approach has not yet been applied 118 

to correct the ROC/PR curves from presence and background data in the field of SDM. 119 

In this study, therefore, we aim to investigate the following two questions. Given true 120 

species prevalence, can we plot the correct ROC/PR curves from presence and 121 

background data? Without true species prevalence, can we estimate prevalence from 122 
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presence and background data? 123 

2. MATERIALS AND METHODS 124 

2.1 Model evaluation with a non-traditional test set 125 

An independent test set with random samples drawn from the population is required for 126 

model evaluation. Let y = 1 denote presence data and y = 0 denote absence data; s = 1 127 

denote labeled data and s = 0 denote unlabeled data. A traditional test set contains fully 128 

labeled presence-absence data randomly sampled from the population. A non-129 

traditional test set contains labeled and unlabeled data, in which only presence data are 130 

labeled and unlabeled data are a mixture of presence and absence data whose labels are 131 

unknown. In other words, the labeled data (s = 1) must be presence data (y = 1), but 132 

unlabeled data (s = 0) may be presence (y = 1) or absence (y = 0) data in a non-traditional 133 

test set. By comparing the true labels and binary predictions on a traditional test set, we 134 

can generate a confusion matrix with four quadrants: true positive (TP), false positive 135 

(FP), false negative (FN), and true negative (TN). If we simply treat the unlabeled data 136 

as absence data in a non-traditional test set, we also create a confusion matrix with the 137 

four quadrants denoted differently: true positive (TP'), false positive (FP'), false 138 

negative (FN'), and true negative (TN') (see Table 1).  139 

From a traditional confusion matrix, we can calculate precision (p), recall (r), and 140 

false positive rate (FPR) using the following equations: 141 

𝑝 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (1) 142 

𝑟 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (2) 143 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                (3) 144 
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The species prevalence P(y = 1) and the proportion of predicted presences P(y' = 1) can 145 

be calculated through the following equations:  146 

𝑃(𝑦 = 1) =  
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
             (4) 147 

𝑃(y′ = 1) =  
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
             (5) 148 

Therefore, we can rewrite Equation 3 as: 149 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

𝑃(y′ = 1)×(1−𝑝)

1−𝑃(𝑦=1)
            (6) 150 

By considering all possible thresholds, the ROC curve plots true positive rate (TPR) 151 

versus FPR, whereas the PR curve plots p versus r (Fig. 1). TPR is exactly the same as 152 

r that is related omission error (FN), and both FPR and p are related to commission 153 

error (FP), so we can connect ROC and PR curves through Equation 6. 154 

TABLE 1  Confusion matrices from traditional and non-traditional test sets. 155 

Prediction 

Reference 

Traditional test set Non-traditional test set 

y = 1 y = 0 s = 1 s = 0 

y' = 1 TP FP TP' FP' 

y' = 0 FN TN FN' TN' 

      156 

                 (a)                                 (b)    157 

FIGURE 1  Examples of ROC (a) and PR (b) curves. 158 
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On a non-traditional test set, only a proportion of presence data are labeled and the 159 

labels of absence data are unknown, so the traditional confusion matrix cannot be 160 

completely determined. Here we consider two common sampling scenarios: single-161 

training-set (Elkan & Noto, 2008) and case-control (Lancaster & Imbens, 1996). In the 162 

single-training-set scenario, we visit a number of sites randomly distributed within the 163 

study area, and a site is labeled as presence if species occurrence is observed or 164 

unlabeled otherwise. In the case-control scenario, the labeled presence data are 165 

randomly sampled from the presence subset, and unlabeled data are randomly sampled 166 

from the population. Let c = P(s = 1|y = 1) define the probability that species occurrence 167 

is detected (labeled), i.e. the ratio of labeled presence data to the total number of 168 

presence data in a test set (Li et al., 2011). The value of c is usually smaller than one, 169 

so unlabeled data actually contain both presence and absence data. 170 

With a non-traditional test set, we can define the following measures:  171 

𝑝′ =  
𝑇𝑃′

𝑇𝑃′+𝐹𝑃′
                 (7) 172 

𝑟′ =  
𝑇𝑃′

𝑇𝑃′+𝐹𝑁′
                 (8) 173 

Because r' is calculated from the observed (labeled) presence data, we have r' = r. 174 

However, p' is not equal to p because it is calculated from unlabeled data. According to 175 

Li and Guo (2013), p' and p have the following relationship: 176 

𝑝 =
1−𝑐

𝑐
×

𝑝′

1−𝑝′
                (9) 177 

in the case-control scenario. In the single-training-set scenario, their relationship is 178 

slightly different, which should be:  179 

p = p' / c                  (10) 180 
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Here we use Table 2 to illustrate the derivations of Equations 9 and 10. In Table 2, 181 

m1 and m4 can be calculated from labeled data, but m2, m3, m5, and m6 cannot be 182 

calculated because the true labels of unlabeled data are not known. Meanwhile, the total 183 

number of labeled data n1, total number of unlabeled data n0, total number of predicted 184 

presences k1, total number of predicted absences k0, and total number of test data t are 185 

known. According to the definitions of c, p' and r', we have the following equations: 186 

𝑐 =
𝑚1+𝑚4

𝑚1+𝑚2+𝑚4+𝑚5
               (11) 187 

𝑝′ =
𝑚1

𝑚1+𝑚2+𝑚3
                (12) 188 

𝑟′ =
𝑚1

𝑚1+𝑚4
                 (13) 189 

In the case-control scenario, the unlabeled data are randomly sampled from the 190 

population, so p, r, P(y = 1), and P(y' = 1) can be calculated as: 191 

𝑝 =
𝑚2

𝑚2+𝑚3
                 (14) 192 

𝑟 =
𝑚2

𝑚2+𝑚5
                 (15) 193 

P(y = 1) = (m2 + m5) / n0              (16) 194 

P(y' = 1) = (k1 – m1) / n0              (17) 195 

According to Equations 11 and 12, we have: 196 

1−𝑐

𝑐
×

𝑝′

1−𝑝′
=

𝑚2+𝑚5

𝑚1+𝑚4
×

𝑚1

𝑚2+𝑚3
=

𝑚1

𝑚1+𝑚4
×

𝑚2+𝑚5

𝑚2+𝑚3
        (18) 197 

Because r = r', substituting Equations 13-15 to 18, we have: 198 

1−𝑐

𝑐
×

𝑝′

1−𝑝′
=

𝑚2

𝑚2+𝑚5
×

𝑚2+𝑚5

𝑚2+𝑚3
= 𝑝            (19) 199 

which proves the relationship between p and p' in Equation 9 under the case-control 200 

scenario. Please note that (1 – c) / c here is equal to the reciprocal of the constant term 201 

c in Li and Guo (2013), so Equation 9 of this article is equivalent to Equation 9 in Li 202 
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and Guo (2013).  203 

Unlike the case-control scenario where unlabeled data alone are random samples 204 

of the population, the combined labeled and unlabeled data together constitute random 205 

samples of the population in the single-training-set scenario, so p, r, P(y = 1), and P(y' 206 

= 1) are calculated differently:   207 

𝑝 =
𝑚1+𝑚2

𝑚1+𝑚2+𝑚3
                (20) 208 

𝑟 =
𝑚1+𝑚2

𝑚1+𝑚2+𝑚4+𝑚5
               (21) 209 

P(y = 1) = (m1 + m2 + m4 + m5) / t            (22) 210 

P(y' = 1) = k1 / t                (23) 211 

According to Equations 11 and 12, we have: 212 

𝑝′

𝑐
=

𝑚1

𝑚1+𝑚2+𝑚3
×

𝑚1+𝑚2+𝑚4+𝑚5

𝑚1+𝑚4
=

𝑚1

𝑚1+𝑚4
×

𝑚1+𝑚2+𝑚4+𝑚5

𝑚1+𝑚2+𝑚3
      (24) 213 

Since r = r', substituting Equations 13, 20, and 21 to 24, we have: 214 

𝑝′

𝑐
=

𝑚1+𝑚2

𝑚1+𝑚2+𝑚4+𝑚5
×

𝑚1+𝑚2+𝑚4+𝑚5

𝑚1+𝑚2+𝑚3
= 𝑝          (25) 215 

which proves the relationship between p and p' in Equation 10 under the single-training-216 

set scenario. 217 

Please note that c has the same definition in both scenarios, i.e. c = P(s = 1|y = 1), 218 

but its relationship with species prevalence is different in two scenarios: 219 

c = n1 / [n1 + n0 × P(y = 1)]             (26) 220 

according to Equations 11 and 16 in the case-control scenario;  221 

c = n1 / [t × P(y = 1)]              (27) 222 

according to Equations 11 and 22 in the single-training-set scenario. Given a non-223 

traditional test set, c is a fixed constant whose value is affected by the number of labeled 224 
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data (n1), number of unlabeled data (n1), and species prevalence. Meanwhile, P(y' = 1) 225 

is equal to the proportion of predicted presences among the unlabeled set in the case-226 

control scenario, or equal to the proportion of predicted presences among the whole test 227 

set in the single-training-set scenario. According to Equation 6, FPR can be determined 228 

if p, P(y' = 1), and P(y = 1) are known. Therefore, if species prevalence is available, we 229 

can calculate p, r, and FPR from a non-traditional test set, and then plot the corrected 230 

ROC/PR curves. 231 

TABLE 2  A confusion matrix from a non-traditional test set. 232 

 
Reference 

 
s = 1 s = 0 

Prediction y = 1 y = 1 y = 0 Total 

y' = 1 m1 m2 m3 k1 = m1 + m2 + m3 

y' = 0 m4 m5 m6 k0 = m4 + m5 + m6 

Total n1 = m1 + m4 n0 = m2 + m3 + m5 + m6   t = n1 + n0 

Note: numbers with shade are known, and numbers without shade are not known. 233 

 Here the key information is the species prevalence or the constant c. If one of them 234 

is known, the other one can be determined as well. In real-world applications, however, 235 

species prevalence and hence the constant c are usually unknown. Although species 236 

prevalence is normally unidentifiable without absence data, it can be estimated under 237 

certain assumptions or conditions (Lancaster & Imbens, 1996; Ward et al., 2009; Li et 238 

al., 2011; Royle et al., 2012; Hastie & Fithian, 2013; Phillips & Elith, 2013). Here we 239 

propose to estimate c from the ROC/PR curves under the condition that a model with 240 

good discrimination ability exists. When we increase the threshold to produce binary 241 
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prediction, the omission error will increase but commission error will decrease. If a 242 

model has a good ability to separate presence from absence data, we can set a high 243 

threshold to minimize commission error, so p will reach its maximum value of one and 244 

FPR will reach its minimum value of zero. The ROC/PR curves in Fig. 1 are produced 245 

by a model that satisfies the condition of good discrimination ability, from which we 246 

can observe that the ROC curve passes the positions with minimum FPR in the lower 247 

left corner and PR curve passes the positions with maximum p in the upper left corner.  248 

According to Equations 9 and 10, p is a monotonically increasing function of p', so 249 

we can find the maximum value of p' (i.e. the highest point in the PR curve or the most 250 

left point in the ROC curve) to infer the constant c. Because the maximum value of p' 251 

(denoted as p'max) is the position where p = 1, we obtain c = p'max according to Equation 252 

9 or 10. However, estimating c using a single point in the ROC/PR curve may result in 253 

a large variance, so we propose to select multiple points whose values of p' are relatively 254 

high to estimate c. Let PP be a subset of points in the ROC/PR curve whose values of 255 

p' fall within a range of user-specified percentiles. We have the following estimator:  256 

𝑐 =
1

𝑗
∑ 𝑝𝑖

′
𝑖∈𝑃𝑃                  (28) 257 

where j is the cardinality of PP. For example, we can select those points where p' falls 258 

between 90th and 99th percentiles across all possible thresholds. Once c is estimated, 259 

species prevalence can be estimated as well according to Equation 26 or 27. 260 

2.2 Experimental design 261 

In this section we investigate the effectiveness of the proposed method to correct 262 

ROC/PR curves from presence and background data, which is the case-control scenario 263 
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commonly used in SDM. We trained different models from presence and background 264 

data, and model performances were evaluated using a traditional test set with presence-265 

absence data and a non-traditional test set with presence-background data, respectively. 266 

ROC/PR curves were plotted using three different approaches: standard presence-267 

absence (PA) approach, presence-only (PO) approach by simply treating background 268 

data as absence data, and presence-background (PB) approach using the proposed 269 

method to calibrate the curves. Curves produced by PO and PB approaches were 270 

compared to the benchmark curves produced by PA approach. Because it is difficult to 271 

obtain reliable species absence data in reality, we used virtual species in our experiment, 272 

which has become a common approach to test models from different aspects (Hirzel et 273 

al., 2001; Li et al., 2011; Meynard & Kaplan, 2013; Duan et al., 2015). One-class 274 

classification of remote sensing imagery is similar to SDM in that classifiers are 275 

evaluated using the same approach, and it is possible to collect reliable absence data in 276 

image classification, so we also used a real aerial photograph to test the proposed 277 

method.   278 

2.3 Dataset 279 

We simulated three virtual species with different prevalence values following the 280 

procedure of Li et al. (2011). The conditional probability of species occurrence P(y = 281 

1|x) was modeled using the following equation: 282 

𝑃(𝑦 = 1|𝑥) =
𝑒𝑏0+𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3

1+𝑒𝑏0+𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3
           (29) 283 

where bi is a coefficient (see Table 3) and xi is an environmental variable. We considered 284 

three environmental variables in California, including annually average precipitation, 285 
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annually average temperature, and elevation, all of which were extracted from the 286 

WorldClim database (https://worldclim.org/) with a spatial resolution of 1 km (Fick & 287 

Hijmans, 2017). At each pixel we used a random number (0 <= q < 1) to generate 288 

realized binary labels, i.e. presence (y = 1) if q < P(y = 1|x) or absence (y = 0) if q >= 289 

P(y = 1|x). From the realized binary map, we drew a non-traditional training set and a 290 

non-traditional test set, separately, both of which contained case-control presence-291 

background data. The number of presence data in the test set was 1000, whereas the 292 

number of presence data in the training set varied, including 10, 50, 100, 500, and 1000. 293 

The number of background data in the training/test set was five times of presence data. 294 

With virtual species, we actually know the true labels of random background data, so 295 

we also used them to constitute a traditional test set. The training and test sets were 296 

randomly realized ten different times, and the experimental results were averaged in 297 

our analysis. 298 

TABLE 3  Prevalence and coefficients of three virtual species. 299 

Species Prevalence 

Coefficients 

b0 b1 b2 b3 

Spec1 0.1638 -10 -0.15 -2.5 28 

Spec2 0.3298 0.5 -1.5 -8.5 18 

Spec3 0.4471 -0.4 -0.8 -5 18 

The aerial photograph in Li et al. (2021) was also used to test the proposed method. 300 

The image covers an extent of 500 m × 500 m in the city of El Cerrito in California, 301 

with a spatial resolution of 0.3 m. The total number of pixels is 2778889, and the 302 

prevalence values of urban, tree, and grass are 0.2292, 0.2106, and 0.1880, respectively. 303 
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We performed different one-class classifications to map different land types (i.e. urban, 304 

tree, and grass), separately, treating them as three different species. For each land type, 305 

we drew a non-traditional training set and a non-traditional test set, respectively, 306 

following the case-control sampling scheme. The number of presence data in the test 307 

set was 2000, and the number of presence data in the training set was set as 200, 1000, 308 

and 5000, respectively. The number of background data was five times of presence data 309 

in both training and test sets. Again, the true labels of background data in the non-310 

traditional test set can be obtained through manual interpretation, so we also used these 311 

background data to constitute a traditional test set. Both the training and test sets were 312 

randomly realized ten different times, and the experimental results were averaged in 313 

our analysis. 314 

 We trained different classifiers using different sample sizes to produce different 315 

model performances. For convenience we refer to sample size as the number of labeled 316 

presence data in a training set throughout this paper. For the virtual species, we trained 317 

DOMAIN (Carpenter et al., 1993), generalized linear model (GLM) (Guisan et al., 318 

2002), and artificial neural network (ANN) (Hecht-Nielsen, 1989) using five sample 319 

sizes (i.e. 10, 50, 100, 500, and 1000); for the aerial photograph, we trained GLM and 320 

ANN using three sample sizes (i.e. 200, 1000, and 5000) and convolutional neural 321 

network (CNN) (Lecun et al., 1998) with only one sample size (i.e. 5000). DOMAIN 322 

was trained from presence-only data whereas other classifiers were trained from 323 

presence-background data. All of the models were evaluated by a traditional test set and 324 

a non-traditional test set, respectively. We plotted ROC/PR curves and calculated AUC 325 
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values using PA, PO, and PB approaches. For the PB approach, we tested two different 326 

scenarios: true species prevalence was given; and species prevalence was estimated 327 

from ROC/PR curves. 328 

3. RESULTS 329 

In Fig. 2 we present part of the ROC/PR curves by different approaches. Generally, the 330 

curves produced by PB approach are quite similar to the benchmark curves by PA 331 

approach, whereas the curves produced by PO approach are obviously lower than that 332 

by PA approach for all species. Meanwhile, the discrepancies between PR curves are 333 

obviously larger than that between ROC curves. According to Fig. 3, the rankings of 334 

models by AUC values are similar for PA, PB, and PO approaches, and the correlations 335 

of AUC values between different approaches are strong in general. The correlation 336 

coefficient of AUC between PA and PB is slightly higher than that between PA and PO 337 

approaches. For example, the correlation coefficient of AUCPR between PA and PB is 338 

0.9789 when true prevalence is given or 0.9731 when prevalence is estimated, whereas 339 

the correlation coefficient of AUCPR between PA and PO is 0.9689 for the virtual 340 

species spec1. 341 

Based on the ranking of models by PO approach, we used the ROC (or PR) curve 342 

produced by the best model with the highest AUCROC (or AUCPR) value to estimate 343 

the constant c and prevalence, which are shown in Table 4. As can be seen, the 344 

accuracies of estimated prevalence and c are relatively high in most cases. For example, 345 

the true values of prevalence and c for urban are 0.2292 and 0.4660, respectively, and 346 

the estimated values are 0.2275 and 0.4678, respectively. For the virtual species, the 347 
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absolute value of relative error of prevalence ranges from 5%–8%, whereas the absolute 348 

value of relative error of c ranges from 3%–6%. For the aerial photograph, the absolute 349 

value of relative error of prevalence ranges from 0%–14%, whereas the absolute value 350 

of relative error of c ranges from 0%–7%. The highest accuracy is produced by 351 

classification of urban, and the largest error is produced by classification of tree from 352 

the real aerial photograph.  353 

        354 

(a)      355 

(b)      356 

(c)      357 
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(d)      358 

(e)      359 

(f)      360 

Figure 2  The ROC (left) and PR (right) curves by PA, PB, and PO approaches. PB1: 361 

prevalence is given; PB2: prevalence is estimated. Model: ANN trained with a sample 362 

size of 1000. Virtual species: spec1 (a); spec2 (b); spec3 (c). Aerial photograph: urban 363 

(d); tree (e); grass (f). 364 

  365 
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(a)    366 

(b)    367 

(c)    368 
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(d)    369 

(e)    370 

(f)    371 

Figure 3  The average values of AUCROC (left) and AUCPR (right) over ten random 372 

realizations by PA, PB, and PO approaches. PB1: prevalence is given; PB2: prevalence 373 

is estimated. Virtual species: spec1 (a); spec2 (b); spec3 (c). Aerial photograph: urban 374 

(d); tree (e); grass (f). For virtual species, models 1–15 refer to DOMAIN with five 375 
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sample sizes, GLM with five samples, and ANN with five samples, respectively. For 376 

aerial photograph, models 1–7 refer to GLM with three sample sizes, ANN with three 377 

sample sizes, and CNN with one sample size, respectively.     378 

TABLE 4  The true and estimated values of prevalence and c. 379 

Type 

True value Estimated value Relative error (%) 

P(y = 1|x) c P(y = 1|x) c P(y = 1|x) c 

Spec1 0.1638  0.5498  0.1531  0.5664  -6.53  3.02  

Spec2 0.3298  0.3775  0.3117  0.3908  -5.48  3.54  

Spec3 0.4471  0.3091  0.4128  0.3263  -7.66  5.59  

Urban 0.2292  0.4660  0.2275  0.4678  -0.74  0.39  

Tree 0.2106  0.4871  0.2394  0.4552  13.68  -6.56  

Grass 0.1880  0.5154  0.1839  0.5210  -2.18  1.08  

 380 

According to Table 4, the largest absolute value of relative error of estimated c in 381 

our experiment is 6.56%. The sensitivity of the calibrated curves by PB to the constant 382 

c is shown in Fig. 4, in which the ROC/PR curves are plotted using the true value of c 383 

with additive relative errors of ±10%. We can see that the ROC curve moves rightward 384 

and PR curve moves downward when c is overestimated, and this trend switches to the 385 

opposite direction correspondently when c is underestimated. Consequently, AUCROC 386 

and AUCPR values are underestimated when c is overestimated, whereas they are 387 

overestimated when c is underestimated. Take virtual species spec1 as an example, the 388 

values of AUCROC and AUCPR for PA approach are 0.9823 and 0.9224, respectively; 389 

the values of AUCROC and AUCPR for PB approach are 0.9800 and 0.9000, 390 

respectively, when true value of c is given; the values of AUCROC and AUCPR for PB 391 
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approach are 0.9622 and 0.7443, respectively, when c with +10% relative error is given; 392 

the values of AUCROC and AUCPR for PB approach are 0.9929 and 0.9746, 393 

respectively, when c with -10% relative error is given. Meanwhile, the variation of PR 394 

curve by PB approach with different values of c is larger than the variation of ROC 395 

curve.  396 

 397 

(a)      398 

(b)      399 

(c)      400 

Figure 4  The sensitivity of ROC (left) and PR (right) curves to constant c by PB 401 
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approach for the virtual species: spec1 (a); spec2 (b); spec3 (c). Model: ANN trained 402 

with a sample size of 1000. 403 

4. DISCUSSION 404 

Developing novel methods to evaluate the performance of models without absence data 405 

is important in SDM since reliable absence data are usually not available in real-world 406 

applications. Currently, one of the most commonly used approaches to address the 407 

presence-only problem in SDM is to train models using presence and background data, 408 

which belongs to the case-control sampling scenario, and models are usually evaluated 409 

using ROC/PR plots by simply treating the background data as absence data (Phillips 410 

et al., 2006; Lobo et al., 2008; Peterson et al., 2008; Jiménez-Valverde, 2012; Sofaer et 411 

al., 2019). This PO approach can rank the models by the relative value of AUC, but the 412 

absolute value of AUC may be quite different from its true value and hence is 413 

misleading (Lobo et al., 2008; Sofaer et al., 2019). In this study, both the AUCROC and 414 

AUCPR are underestimated by PO approach in all cases. Take the classification of 415 

urban as an example, the AUCROC and AUCPR values by GLM trained with a sample 416 

size of 200 are 0.9529 and 0.8303 for the PA approach, but the AUC values become 417 

0.8474 and 0.4148 for the PO approach. Please note that the ROC curve of a null model 418 

is a straight line connecting the points (0, 0) and (1, 1) in the ROC space, showing that 419 

TPR is equal to FPR. By contrast, the ROC curve of a trained model is usually higher 420 

than that of a null model, showing that TPR is larger than FPR. In other words, m2 / (m2 421 

+ m5) is larger than m3 / (m3 + m6) for a trained model according to Table 2. 422 

Consequently, (m2 + m3) / (m2 + m5 + m3 + m6) is larger than m3 / (m3 + m6), i.e. FPR' 423 
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of PO approach is larger than FPR of PA approach. Meanwhile, TPR' (equivalent to r') 424 

of PO approach is equal to TPR (equivalent to r) of PA approach. As a result, the ROC 425 

curve and AUCROC of a trained model by PO approach are usually lower than that by 426 

PA approach. Meanwhile, we can infer that p' = p / [p + (1 – c) / c] according to Equation 427 

9. In this study c ranges from 0.3 to 0.55 and p ranges from zero to one, so p is larger 428 

than p' in most cases, which is the reason why the PR curve and AUCPR of a trained 429 

model by PO approach are also lower than that by PA approach in our experiment. 430 

Unlike the PO approach that treats all of the background data as absence data, the 431 

PB approach acknowledges that background data contain both presence and absence 432 

data, and it infers the true performance of a model based on a constant c. According to 433 

our experimental results, the PB approach is effective in calibrating ROC/PR curves 434 

given that the true value of c is known. The curves and AUC values by PB approach 435 

are very similar to that by PA approach. In reality, however, the true value of c is usually 436 

unknown and hence it has to be estimated. According to Equation 9, an overestimate of 437 

c will result in an underestimate of p. Because p is negatively related to commission 438 

error whereas FPR is positively related to commission error, an underestimate of p will 439 

result in an overestimate of FPR. These are the reasons why the ROC/PR curves and 440 

AUC values are underestimated when c is overestimated. Since the largest absolute 441 

value of relative error of c is 6.56% in this study, we tested the sensitivity of the 442 

calibrated curves by PB to c with additive relative errors of ±10%, and the results show 443 

that the curves and AUC values by PB with the largest relative error of c are still better 444 

than that by PO approach. Previous research has indicated that ROC curve and 445 
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AUCROC value may be inflated when a large number of TN data exist in a confusion 446 

matrix (Lobo et al., 2008). By contrast, PR curve does not consider TN data in a 447 

confusion matrix so it is more robust to geographic extent and species prevalence, but 448 

it has a more variable shape than ROC curve especially at the positions with low values 449 

of r (Boyd et al., 2012; Sofaer et al., 2019). Consistently, we can observe that AUCROC 450 

values are larger than AUCPR values, and ROC curves are generally more stable than 451 

PR curves. In the sensitivity analysis of c, the variation of ROC curve is smaller than 452 

that of PR curve probably because the effect of c is offset by a large number of TN data. 453 

 The proposed PB method to calibrate ROC/PR curves is based on the work of Li 454 

and Guo (2013). The omission error is related to r whereas commission error is related 455 

to p, both of which are quantified in ROC/PR plots. The relationship between r and r' 456 

and the relationship between p and p' derived in Li and Guo (2013) are used to 457 

reconstruct the true ROC/PR curves from presence and background data. The key 458 

information of this PB method is the constant c or species prevalence. Although true 459 

species prevalence is regarded as unidentifiable without absence data, an estimation of 460 

prevalence is helpful and possible under certain conditions (Li et al., 2011; Royle et al., 461 

2012; Hastie & Fithian, 2013; Phillips & Elith, 2013). Please note that r is equal to r', 462 

and the relationship between p and p' is similar to the relationship between probability 463 

of species occurrence and a naive model fitted from presence-background data. Let f = 464 

P(y = 1|x) denote probability of species occurrence and f ' = P(s = 1|x) denote a naive 465 

model. We have f = f ' / c and p = p' / c in the single-training-set scenario, or f = (1 – c) 466 

/ c × f ' / (1 – f ') and p = (1 – c) / c × p' / (1 – p') in the case-control scenario (Elkan 467 
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& Noto, 2008; Li et al., 2011). Therefore, an estimation of c (or prevalence) not only 468 

enables us to model the probability of species occurrence, but also helps us to assess 469 

the model performance without requiring labeled absence data. 470 

There are several ways to estimate the constant c (or prevalence). Li et al. (2011) 471 

proved that the average predicted values of f ' at prototypical presence sites where the 472 

habitats are maximally suitable for a species can be used to estimate c, but this approach 473 

may lead to an underestimate of c because the probability of species occurrence at a 474 

selected prototypical presence site may be smaller than one. Royle et al. (2012) 475 

proposed the MAXLIKE that can be used to infer prevalence, but the linear logistic 476 

model assumption may be violated in reality (Hastie & Fithian, 2013; Phillips & Elith, 477 

2013). Li and Guo (2013) showed that thresholding a naive model based on maximizing 478 

the measure Fpb on a validation set can also estimate prevalence, but Liu et al. (2016) 479 

argued that it is difficult to estimate prevalence using threshold-based approach. In this 480 

study, we propose to estimate c from ROC/PR plots based on the fact that a model of 481 

good discrimination ability can produce the maximum value of p (or minimum value 482 

of FPR) with a high value of threshold. In other words, we can adjust the PR curve so 483 

that its highest point reaches the maximum value of one (equivalent to adjusting the 484 

ROC curve so that its most left point reaches the minimum value of zero), and the 485 

relationship between p and p' yields an estimate of c. Because there could be multiple 486 

threshold values that can produce maximum value of p, we use multiple points rather 487 

than the highest point in the PR curve to obtain a more robust estimate of c, e.g. the 488 

higher threshold values between 90th to 99th percentiles. In our experiment, this 489 
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percentile range consistently produces high accuracies of c for different species, and it 490 

can be adjusted in other situations. Meanwhile, the discrimination ability of a model 491 

can affect the accuracy of c. The largest relative error of c is observed for the 492 

classification of tree because the model cannot perform well in discriminating tree from 493 

other land types, with the lowest value of AUCPR compared with other species. If 494 

possible, users can also derive c (or prevalence) from other sources such as limited 495 

presence–absence surveys or expert knowledge (Phillips & Elith, 2013). However, the 496 

uncertainty of c is almost inevitable no matter it is derived from models or surveys. 497 

In this study we only focus on calibrating the ROC/PR curves from presence and 498 

background data, but model evaluation may involve multiple aspects and multiple 499 

measures. The strengths and drawbacks of ROC/PR plots have been well investigated 500 

in the literature (Fielding & Bell, 1997; Davis & Goadrich, 2006; Lobo et al., 2008; 501 

Boyd et al., 2012; Sofaer et al., 2019). For example, current ROC/PR plots have been 502 

criticized to equally weigh the commission and omission errors, but these two types of 503 

errors may not be of the same importance (Lobo et al., 2008; Peterson et al., 2008). In 504 

spite of the limitations of ROC/PR plots, the proposed method can be used as a 505 

complement to other model assessment methods. For example, the presence-only 506 

calibration (POC) plot by Phillips and Elith (2010) can be used to measure the ability 507 

of calibration for continuous outputs. The AVI and CVI in Hirzel et al. (2006), Fpb and 508 

Fcpb in Li and Guo (2013), and TSS in Liu et al. (2013) can assess the accuracy of binary 509 

outputs without requiring absence data. Other methods such as Boyce index and the 510 

compositional and multinomial procedure can also be considered to quantify model 511 
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performance from different aspects when absence data are not available (Boyce et al., 512 

2002; Ottaviani et al., 2004). 513 

Similar to the proposed PB-based ROC/PR plots, both the POC plot and Fcpb also 514 

require additional information on the constant c (or species prevalence) (Phillips & 515 

Elith, 2010; Li & Guo, 2013). Actually, the four quadrants of a confusion matrix can be 516 

fully determined from presence and background data if c is known, and all of the 517 

accuracy measures derived from a confusion matrix can be calculated, which should be 518 

investigated in future research. Although different approaches to estimate c still have 519 

their limitations, such attempts are necessary. In practice, users can consider applying 520 

multiple approaches to reduce the uncertainty of c. Since c = n1 / [n1 + n0 × P(y = 1)] in 521 

the case-control scenario, n1 / (n1 + n0) ≤ c ≤ 1 because 0 ≤ P(y = 1) ≤ 1. If we can 522 

provide a rough estimate of prevalence such as from survey or expert knowledge, then 523 

the range of c can be refined. Meanwhile, the estimator derived from prototypical 524 

presences in Li et al. (2011) usually underestimates c, so it can be used as the lower 525 

bound of c.  526 

In this study the ROC/PR curves plotted from PA approach are used to benchmark 527 

the curves from PO and PB approaches, so a test set with presence-absence data are 528 

required. Because we do not have real species datasets with reliable absence data, we 529 

only tested the proposed method using virtual species datasets. In addition, we used a 530 

real aerial photograph since model evaluation of binary classification in remote sensing 531 

is mathematically similar to model evaluation in SDM, and both presence and absence 532 

data can be obtained through manual interpretation of the aerial photography. However, 533 
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there are still some differences between remote sensing classification and SDM due to 534 

the complicated biological processes like biotic interactions (Warren et al., 2020). 535 

Therefore, the proposed PB method should be further investigated using real species 536 

datasets in the future when reliable species absence data are available.    537 

5. CONCLUSION 538 

In this study we propose a new PB approach to plot ROC/PR curves from presence- 539 

background data with additional information of a constant c (or species prevalence). 540 

The accuracy measures r and p derived from presence-absence data can be connected 541 

to r' and p' derived from presence-background data through the constant c, which 542 

enables reconstructing the true ROC/PR curves from presence-background data. 543 

Meanwhile, c can be estimated from ROC/PR plots under the condition that a model of 544 

good discrimination ability exists. Our experimental results demonstrate that the 545 

proposed PB approach is effective both in plotting ROC/PR curves and estimating c 546 

from presence-background data in the case-control sampling scenario. 547 

 548 
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