References
[1]. Knödler M., Buyel J.F., Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions.Biotechnol Adv . 2021 47 :107683. doi: 10.1016/j.biotechadv.2020.107683.
[2]. Stoger E., Ma J. K., Fischer R., Christou P., Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol . 2005;16(2): 167-173. doi:10.1016/j.copbio.2005.01.005
[3]. Fischer, R., Twyman, R. M., and Schillberg, S. Production of antibodies in plants and their use for global health. Vaccine , 2003, 21 , 820-825. doi: 10.1016/s0264-410x(02)00607-2.
[4]. Mikschofsky, H., König, P., Keil, M., Hammer, M., et al. Choleratoxin B (CTB) is functional as an adjuvant for cytoplasmatic proteins if directed to the endoplasmatic reticulum (ER), but not to the cytoplasm of plants. Plant Sci , 2009, 177 , 35–42.
[5]. Ceballo Y., Tiel K., López A., Cabrera G., et al. High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Res . 2017, 26(6) :775-789. doi: 10.1007/s11248-017-0047-9.
[6]. Shahid, N., Samiullah, T. R., Shakoor, S., Latif, A., et al. Early Stage Development of a Newcastle Disease Vaccine Candidate in Corn. Front Vet Sci , 2020, 7 , 499. doi: 10.3389/fvets.2020.00499
[7]. Salem R., Assem S. K., Omar O. A., Khalil A. A., et al. Expressing the immunodominant projection domain of infectious bursal disease virus fused to the fragment crystallizable of chicken IgY in yellow maize for a prospective edible vaccine. Mol Immunol . 2020,118 :132-141. doi: 10.1016/j.molimm.2019.12.015.
[8]. Vermij P. USDA approves the first plant-based vaccine.Nat Biotechnol , 2006, 24 , 233–234.
[9]. Kanci A., Wijesurendra D. S., Wawegama N. K., Underwood G. J., et al. Evaluation of Mycoplasma gallisepticum (MG) ts-304 vaccine as a live attenuated vaccine in turkeys. Vaccine . 2018,36(18 ):2487-2493. doi: 10.1016/j.vaccine.2018.02.117.
[10]. Khan I., Twyman R. M., Arcalis E., Stoger E., Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J . 2012, 7(9): 1099-108. doi: 10.1002/biot.201100089.
[11]. Arcalis E., Ibl V., Peters J., Melnik S., et al. The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front Plant Sci . 2014,3;5 :439. doi: 10.3389/fpls.2014.00439.
[12]. Hudson L. C., Garg R., Bost K. L., Piller K. J., Soybean seeds: a practical host for the production of functional subunit vaccines. Biomed Res Int . 2014: 340804. doi: 10.1155/2014/340804.
[13]. Vamvaka E., Arcalis E., Ramessar K., Evans A., et al. Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV. Plant Biotechnol J . 2016, 14(6): 1427-37. doi: 10.1111/pbi.12507.
[14]. Park Y., An D-J., Choe S., Lee Y., et al. Development of recombinant protein-based vaccine against classical swine fever virus in pigs using transgenic Nicotiana benthamiana. Front Plant Sci . 2019, 10 , 624. doi: 10.3389/fpls.2019.00624
[15]. Reddy P. H., Johnson A. A., Kumar J. K., Naveen T., et al. Heterologous expression of Infectious bursal disease virus VP2 gene in Chlorella pyrenoidosa as a model system for molecular farming. Plant Cell Tissue Organ Culture, 2017, 131 , 119–26. doi: 10.1007/s11240-017-1268-6
[16]. Gunter CJ., Regnard GL., Rybicki EP., Hitzeroth II. Immunogenicity of plant produced porcine circovirus-like particles in mice. Plant Biotechnol J , 2019, 17 , 1751–9. doi: 10.1111/pbi.13097
[17]. Qu L. Q., Takaiwa F., Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J . 2004, 2(2): 113-25. doi: 10.1111/j.1467-7652.2004.00055.x.
[18]. Naylor, C.J., Al-Ankari A.R., Al-Afaleq, A.I., Bradbury, J.M. et al. Exacerbation of Mycoplasma gallisepticum infection in turkeys by rhinotracheitis virus. Avian Pathol , 1992, 21 , 295–305. doi: 10.1080/03079459208418844.
[19]. Ganapathy, K. & Bradbury, J.M. Pathogenicity of mycoplasma imitans in mixed infection with infectious bronchitis virus in chickens.Avian Pathol , 1999, 28 , 229–237. doi: 10.1080/03079459994713.
[20]. Takaiwa F., Wakasa Y., Takagi H., Hiroi T. Rice seed for delivery of vaccines to gut mucosal immune tissues. Plant Biotechnol J . 2015, 13(8): 1041-55. doi: 10.1111/pbi.12423.
[21]. Takaiwa F., Yang L., Wakasa Y., Ozawa K. Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies. Plant Cell Rep . 2018 37(2 ):209-223. doi: 10.1007/s00299-017-2220-2.
[22]. Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol . 2002,3(10): 753-66. doi: 10.1038/nrm934.
[23]. Haycraft, C. J., Schafer, J. C., Zhang, Q., Taulman, P. D., et al. Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Exp Cell Res. 2003;284(2): 251-263. doi:10.1016/S0014-4827(02)00089-7
[24]. Nunoya T., Yagihashi T., Tajima M., and Nagasawa Y., Occurrence of keratoconjunctivitis apparentl,y caused by Mycoplasma gallisepticum in layer chickens. Vet Pathol. ,1995, 32 , 11–18. doi:10.1177/030098589503200102.
[25]. Levisohn S., and Kleven S. Avian mycoplasmosis (Mycoplasma gallisepticum). Rev Sci Tech . 2000;19(2 ):425-442. doi:10.20506/rst.19.2.1232.
[26]. Evans R., and Hafez Y., Evaluation of a Mycoplasma gallisepticum strain exhibiting reduced virulence for prevention and control of poultry mycoplasmosis. Avian Dis. 1992, 36 , 197–201. doi:10.2307/1591490
[27]. Ramessar, K., Capell, T., and Christou, P.. Molecular pharming in cereal crops.Phytochemical Reviews 2008, 7, 579-592.
[28]. Boothe J., Nykiforuk C., Shen Y., et al. Seed-based expression systems for plant molecular farming Plant Biotechnol J . 2010,8(5): 588–606. doi: 10.1111/j.1467-7652.2010.00511.x.
[29]. Stoger E., Vaquero C., Torres E., Sack M., et al. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol . 2000, 42(4): 583-90. doi: 10.1023/a:1006301519427.
[30]. Shim B. S., Hong K. J., Maharjan P M., and Choe S. Plant factory: new resource for the productivity and diversity of human and veterinary vaccines. Clin Exp Vaccine Res , 2019, 8 , 136–9. doi: 10.7774/cevr.2019.8.2.136
[31]. Firsov A., Tarasenko I., Mitiouchkina T., Ismailova N., et al. High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol , 2015, 57 , 653–61. doi: 10.1007/s12033-015-9855-4
[32]. Rizwan H. M., Khan M. K., Iqbal Z., and Deeb F. Immunological and therapeutic evaluation of wheat (Triticum aestivum) derived betaglucans against coccidiosis in chicken. International Journal of Agricultural Biology, 2016, 18, 895–902. doi: 10.17957/IJAB/15.0182
[33]. Berinstein A., Vazquez-Rovere C., Asurmendi S., Gómez E., et al. Mucosal and systemic immunization elicited by Newcastle disease virus (NDV) transgenic plants as antigens. Vaccine , 2005,23 , 5583–9. doi: 10.1016/j.
[34]. Yang M., Sun H., Lai H., Hurtado J., et al. Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice.Plant Biotechnol J . 2018;16(2 ):572-580. doi: 10.1111/pbi.12796