References
[1]. Knödler M., Buyel J.F., Plant-made immunotoxin building blocks:
A roadmap for producing therapeutic antibody-toxin fusions.Biotechnol Adv . 2021 47 :107683. doi:
10.1016/j.biotechadv.2020.107683.
[2]. Stoger E., Ma J. K., Fischer R., Christou P., Sowing the seeds
of success: pharmaceutical proteins from plants. Curr Opin
Biotechnol . 2005;16(2): 167-173. doi:10.1016/j.copbio.2005.01.005
[3]. Fischer, R., Twyman, R. M., and Schillberg, S. Production of
antibodies in plants and their use for global health. Vaccine ,
2003, 21 , 820-825. doi: 10.1016/s0264-410x(02)00607-2.
[4]. Mikschofsky, H., König, P., Keil, M., Hammer, M., et al.
Choleratoxin B (CTB) is functional as an adjuvant for cytoplasmatic
proteins if directed to the endoplasmatic reticulum (ER), but not to the
cytoplasm of plants. Plant Sci , 2009, 177 , 35–42.
[5]. Ceballo Y., Tiel K., López A., Cabrera G., et al. High
accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1)
influenza. Transgenic Res . 2017, 26(6) :775-789. doi:
10.1007/s11248-017-0047-9.
[6]. Shahid, N., Samiullah, T. R., Shakoor, S., Latif, A., et al.
Early Stage Development of a Newcastle Disease Vaccine Candidate in
Corn. Front Vet Sci , 2020, 7 , 499. doi:
10.3389/fvets.2020.00499
[7]. Salem R., Assem S. K., Omar O. A., Khalil A. A., et al.
Expressing the immunodominant projection domain of infectious bursal
disease virus fused to the fragment crystallizable of chicken IgY in
yellow maize for a prospective edible vaccine. Mol Immunol . 2020,118 :132-141. doi: 10.1016/j.molimm.2019.12.015.
[8]. Vermij P. USDA approves the first plant-based vaccine.Nat Biotechnol , 2006, 24 , 233–234.
[9]. Kanci A., Wijesurendra D. S., Wawegama N. K., Underwood G. J.,
et al. Evaluation of Mycoplasma gallisepticum (MG) ts-304 vaccine as a
live attenuated vaccine in turkeys. Vaccine . 2018,36(18 ):2487-2493. doi: 10.1016/j.vaccine.2018.02.117.
[10]. Khan I., Twyman R. M., Arcalis E., Stoger E., Using storage
organelles for the accumulation and encapsulation of recombinant
proteins. Biotechnol J . 2012, 7(9): 1099-108. doi:
10.1002/biot.201100089.
[11]. Arcalis E., Ibl V., Peters J., Melnik S., et al. The dynamic
behavior of storage organelles in developing cereal seeds and its impact
on the production of recombinant proteins. Front Plant Sci . 2014,3;5 :439. doi: 10.3389/fpls.2014.00439.
[12]. Hudson L. C., Garg R., Bost K. L., Piller K. J., Soybean
seeds: a practical host for the production of functional subunit
vaccines. Biomed Res Int . 2014: 340804. doi: 10.1155/2014/340804.
[13]. Vamvaka E., Arcalis E., Ramessar K., Evans A., et al. Rice
endosperm is cost-effective for the production of recombinant
griffithsin with potent activity against HIV. Plant Biotechnol J .
2016, 14(6): 1427-37. doi: 10.1111/pbi.12507.
[14]. Park Y., An D-J., Choe S., Lee Y., et al. Development of
recombinant protein-based vaccine against classical swine fever virus in
pigs using transgenic Nicotiana benthamiana. Front Plant Sci .
2019, 10 , 624. doi: 10.3389/fpls.2019.00624
[15]. Reddy P. H., Johnson A. A., Kumar J. K., Naveen T., et al.
Heterologous expression of Infectious bursal disease virus VP2 gene in
Chlorella pyrenoidosa as a model system for molecular farming. Plant
Cell Tissue Organ Culture, 2017, 131 , 119–26. doi:
10.1007/s11240-017-1268-6
[16]. Gunter CJ., Regnard GL., Rybicki EP., Hitzeroth II.
Immunogenicity of plant produced porcine circovirus-like particles in
mice. Plant Biotechnol J , 2019, 17 , 1751–9. doi:
10.1111/pbi.13097
[17]. Qu L. Q., Takaiwa F., Evaluation of tissue specificity and
expression strength of rice seed component gene promoters in transgenic
rice. Plant Biotechnol J . 2004, 2(2): 113-25. doi:
10.1111/j.1467-7652.2004.00055.x.
[18]. Naylor, C.J., Al-Ankari A.R., Al-Afaleq, A.I., Bradbury, J.M.
et al. Exacerbation of Mycoplasma gallisepticum infection in turkeys by
rhinotracheitis virus. Avian Pathol , 1992, 21 , 295–305.
doi: 10.1080/03079459208418844.
[19]. Ganapathy, K. & Bradbury, J.M. Pathogenicity of mycoplasma
imitans in mixed infection with infectious bronchitis virus in chickens.Avian Pathol , 1999, 28 , 229–237. doi:
10.1080/03079459994713.
[20]. Takaiwa F., Wakasa Y., Takagi H., Hiroi T. Rice seed for
delivery of vaccines to gut mucosal immune tissues. Plant
Biotechnol J . 2015, 13(8): 1041-55. doi: 10.1111/pbi.12423.
[21]. Takaiwa F., Yang L., Wakasa Y., Ozawa K. Compensatory
rebalancing of rice prolamins by production of recombinant
prolamin/bioactive peptide fusion proteins within ER-derived protein
bodies. Plant Cell Rep . 2018 37(2 ):209-223. doi:
10.1007/s00299-017-2220-2.
[22]. Thomas G. Furin at the cutting edge: from protein traffic to
embryogenesis and disease. Nat Rev Mol Cell Biol . 2002,3(10): 753-66. doi: 10.1038/nrm934.
[23]. Haycraft, C. J., Schafer, J. C., Zhang, Q., Taulman, P. D., et
al. Identification of CHE-13, a novel intraflagellar transport protein
required for cilia formation. Exp Cell Res. 2003;284(2): 251-263. doi:10.1016/S0014-4827(02)00089-7
[24]. Nunoya T., Yagihashi T., Tajima M., and Nagasawa Y.,
Occurrence of keratoconjunctivitis apparentl,y caused by Mycoplasma
gallisepticum in layer chickens. Vet Pathol. ,1995, 32 ,
11–18. doi:10.1177/030098589503200102.
[25]. Levisohn S., and Kleven S. Avian mycoplasmosis (Mycoplasma
gallisepticum). Rev Sci Tech . 2000;19(2 ):425-442.
doi:10.20506/rst.19.2.1232.
[26]. Evans R., and Hafez Y., Evaluation of a Mycoplasma
gallisepticum strain exhibiting reduced virulence for prevention and
control of poultry mycoplasmosis. Avian Dis. 1992, 36 ,
197–201. doi:10.2307/1591490
[27]. Ramessar, K., Capell, T.,
and Christou, P.. Molecular pharming in cereal crops.Phytochemical Reviews 2008, 7, 579-592.
[28]. Boothe J., Nykiforuk C., Shen Y., et al. Seed-based expression
systems for plant molecular farming Plant Biotechnol J . 2010,8(5): 588–606. doi: 10.1111/j.1467-7652.2010.00511.x.
[29]. Stoger E., Vaquero C., Torres E., Sack M., et al. Cereal crops
as viable production and storage systems for pharmaceutical scFv
antibodies. Plant Mol Biol . 2000, 42(4): 583-90. doi:
10.1023/a:1006301519427.
[30]. Shim B. S., Hong K. J., Maharjan P M., and Choe S. Plant
factory: new resource for the productivity and diversity of human and
veterinary vaccines. Clin Exp Vaccine Res , 2019, 8 ,
136–9. doi: 10.7774/cevr.2019.8.2.136
[31]. Firsov A., Tarasenko I., Mitiouchkina T., Ismailova N., et al.
High-yield expression of M2e peptide of avian influenza virus H5N1 in
transgenic duckweed plants. Mol Biotechnol , 2015, 57 ,
653–61. doi: 10.1007/s12033-015-9855-4
[32]. Rizwan H. M., Khan M. K., Iqbal Z., and Deeb F. Immunological
and therapeutic evaluation of wheat (Triticum aestivum) derived
betaglucans against coccidiosis in chicken. International Journal of
Agricultural Biology, 2016, 18, 895–902. doi: 10.17957/IJAB/15.0182
[33]. Berinstein A., Vazquez-Rovere C., Asurmendi S., Gómez E., et
al. Mucosal and systemic immunization elicited by Newcastle disease
virus (NDV) transgenic plants as antigens. Vaccine , 2005,23 , 5583–9. doi: 10.1016/j.
[34]. Yang M., Sun H., Lai H., Hurtado J., et al. Plant-produced
Zika virus envelope protein elicits neutralizing immune responses that
correlate with protective immunity against Zika virus in mice.Plant Biotechnol J . 2018;16(2 ):572-580. doi:
10.1111/pbi.12796