References
1. Thébaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia.Nat Rev Dis Primers. 2019;5(1):78.
2. Baker EK, Cheong JLY, Doyle LW. Short- and Long-Term Outcomes After
Bronchopulmonary Dysplasia. In: Kallapur SG, Pryhuber GS, eds.Updates on Neonatal Chronic Lung Disease. Elsevier; 2020:291-305.
3. Chunxi L, Haiyue L, Yanxia L, Jianbing P, Jin S. The Gut Microbiota
and Respiratory Diseases: New Evidence. J Immunol Res.2020;2020:2340670.
4. Illiano P, Brambilla R, Parolini C. The mutual interplay of gut
microbiota, diet and human disease. FEBS J. 2020;287(5):833-855.
5. Baeckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI.
Host-Bacterial Mutualism in the Human Intestine. Science.2005;307(5717):1915-1920.
6. Thursby E, Juge N. Introduction to the human gut microbiota.Biochem J. 2017;474(11):1823-1836.
7. Sakkas H, Bozidis P, Touzios C, Kolios D, Gartzonika C. Nutritional
Status and the Influence of the Vegan Diet on the Gut Microbiota and
Human Health. Medicina (Kaunas, Lithuania). 2020;56(2):88.
8. Becattini S, Taur Y, Pamer EG. Antibiotic-Induced Changes in the
Intestinal Microbiota and Disease. Trends in Molecular Medicine.2016:S1471491416300077.
9. Yan J, Charles JF. Gut Microbiota and IGF-1. Calcif Tissue
Int. 2018;102(4):406-414.
10. Belizário JE, Faintuch J, Garay-Malpartida M. Gut Microbiome
Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic
Diseases. Mediators of inflammation. 2018;2018:2037838.
11. McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal
immunity. Immunology. 2014;142(1):24-31.
12. Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on
immunity, health and disease in the lung. Clin Transl Immunology.2017;6(3):e133.
13. Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut
Microbiota Subjected to Disturbance. Trends in microbiology.2016:S0966842X16000263.
14. Nguyen TTB, Chung H-J, Kim H-J, Hong S-T. Establishment of an ideal
gut microbiota to boost healthy growth of neonates. Critical
reviews in microbiology. 2019;45(1):118-129.
15. Tirone C, Pezza L, Paladini A, et al. Gut and Lung Microbiota in
Preterm Infants: Immunological Modulation and Implication in Neonatal
Outcomes. Front Immunol. 2019;10:2910.
16. Rodrguez JM, Murphy K, Stanton C, et al. The composition of the gut
microbiota throughout life, with an emphasis on early life. 2015.
17. Tauchi H, Yahagi K, Yamauchi T, et al. Gut microbiota development of
preterm infants hospitalised in intensive care units. Benef
Microbes. 2019;10(6):641-651.
18. La Rosa PS, Warner BB, Zhou Y, et al. Patterned progression of
bacterial populations in the premature infant gut. Proc Natl Acad
Sci USA. 2014;111(34):12522-12527.
19. Grier A, Qiu X, Bandyopadhyay S, et al. Impact of prematurity and
nutrition on the developing gut microbiome and preterm infant growth.Microbiome. 2017;5(1):158.
20. Stanisavljević S, Čepić A, Bojić S, et al. Oral neonatal antibiotic
treatment perturbs gut microbiota and aggravates central nervous system
autoimmunity in Dark Agouti rats. Scientific Reports. 2019;9(1).
21. Dierikx TH, Visser DH, Benninga MA, et al. The influence of prenatal
and intrapartum antibiotics on intestinal microbiota colonisation in
infants: A systematic review. The Journal of infection.2020;81(2):190-204.
22. Jia J, Xun P, Wang X, et al. Impact of Postnatal Antibiotics and
Parenteral Nutrition on the Gut Microbiota in Preterm Infants During
Early Life. JPEN Journal of parenteral and enteral nutrition.2020;44(4):639-654.
23. Vareille-Delarbre M, Miquel S, Garcin S, et al. Immunomodulatory
Effects of Lactobacillus plantarum on Inflammatory Response Induced by
Klebsiella pneumoniae. Infect Immun. 2019;87(11):e00570-00519.
24. Novitsky A, Tuttle D, Locke RG, Saiman L, Mackley A, Paul DA.
Prolonged early antibiotic use and bronchopulmonary dysplasia in very
low birth weight infants. American journal of perinatology.2015;32(1):43-48.
25. Lange K, Buerger M, Stallmach A, Bruns T. Effects of Antibiotics on
Gut Microbiota. Digestive diseases (Basel, Switzerland).2016;34(3):260-268.
26. Yang K, Dong W. Perspectives on Probiotics and Bronchopulmonary
Dysplasia. Frontiers in pediatrics. 2020;8:570247.
27. Miao Z, Cheng R, Zhang Y, et al. Antibiotics can cause weight loss
by impairing gut microbiota in mice and the potent benefits of
lactobacilli. Bioscience, biotechnology, and biochemistry.2020;84(2):411-420.
28. Klevebro S, Westin V, Stoltz Sjostrom E, et al. Early energy and
protein intakes and associations with growth, BPD, and ROP in extremely
preterm infants. Clinical Nutrition. 2019;38(3):1289-1295.
29. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota
in nutrition and health. BMJ. 2018;361:k2179.
30. Lohmann P, Luna RA, Hollister EB, et al. The airway microbiome of
intubated premature infants: characteristics and changes that predict
the development of bronchopulmonary dysplasia. Pediatric
Research. 2014;76(3):294-301.
31. Lal CV, Travers C, Aghai ZH, et al. The Airway Microbiome at Birth.Scientific Reports. 2016;6:31023.
32. Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links
between microbiota and the gut-lung axis. Nat Rev Microbiol.2017;15(1):55-63.
33. Ryan FJ, Drew DP, Douglas C, et al. Changes in the Composition of
the Gut Microbiota and the Blood Transcriptome in Preterm Infants at
Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia.mSystems. 2019;4(5):e00484-00419.
34. Gallacher D, Mitchell E, Alber D, et al. Dissimilarity of the
gut-lung axis and dysbiosis of the lower airways in ventilated preterm
infants. European Respiratory Journal. 2020;55(5):1901909.
35. Chen S-M, Lin C-P, Jan M-S. Early Gut Microbiota Changes in Preterm
Infants with Bronchopulmonary Dysplasia: A Pilot Case-Control Study.American journal of perinatology. 2020.
36. Pintus MC, Lussu M, Dessì A, et al. Urinary H-NMR Metabolomics in
the First Week of Life Can Anticipate BPD Diagnosis. Oxid Med Cell
Longev. 2018;2018:7620671.
37. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of
phosphatidylcholine promotes cardiovascular disease. Nature.2011;472(7341):57-63.
38. Willis KA, Siefker DT, Aziz MM, et al. Perinatal maternal antibiotic
exposure augments lung injury in offspring in experimental
bronchopulmonary dysplasia. American Journal of Physiology-lung
Cellular and Molecular Physiology. 2020;318(2).
39. Chen C-M, Yang Y-CSH, Chou H-C. Maternal antibiotic exposure
disrupts microbiota and exacerbates hyperoxia-induced lung injury in
neonatal mice. Pediatric research. 2021.
40. Cantey JB, Huffman LW, Subramanian A, Marshall AS, Mallett LH.
Antibiotic Exposure and Risk for Death or Bronchopulmonary Dysplasia in
Very Low Birth Weight Infants. J Pediatr. 2016;181:289-293.
41. Althouse MH, Stewart C, Jiang W, Moorthy B, Lingappan K. Impact of
Early Life Antibiotic Exposure and Neonatal Hyperoxia on the Murine
Microbiome and Lung Injury. Scientific reports. 2019;9(1):14992.
42. Lauer T, Behnke J, Oehmke F, et al. Bacterial Colonization within
the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants
<1000 g. Journal of clinical medicine. 2020;9(7).
43. Wedgwood S, Gerard K, Halloran K, et al. Intestinal Dysbiosis and
the Developing Lung: The Role of Toll-Like Receptor 4 in the Gut-Lung
Axis. Front Immunol. 2020;11:357.
44. Lo Y-C, Chen K-Y, Chou H-C, Lin IH, Chen C-M. Neonatal hyperoxia
induces gut dysbiosis and behavioral changes in adolescent mice. J
Chin Med Assoc. 2021.
45. Xing Z, Li Y, Liu G, He Y, Tao Y, Chen M. Hyperoxia provokes gut
dysbiosis in rats. Critical care (London, England).2020;24(1):517.
46. Ashley SL, Sjoding MW, Popova AP, et al. Lung and gut microbiota are
altered by hyperoxia and contribute to oxygen-induced lung injury in
mice. Science translational medicine. 2020;12(556).
47. Dolma K, Freeman AE, Rezonzew G, et al. Effects of hyperoxia on
alveolar and pulmonary vascular development in germ-free mice.American journal of physiology Lung cellular and molecular
physiology. 2020;318(2):L421-L428.
48. Zhao M, Tang S, Xin J, Liu D. Influence of reactive oxygen species
on secretory component in the intestinal epithelium during hyperoxia.Exp Ther Med. 2017;14(5):4033-4040.
49. Liu DY, Lou WJ, Zhang DY, Sun SY. ROS Plays a Role in the Neonatal
Rat Intestinal Barrier Damages Induced by Hyperoxia. Biomed Res
Int. 2020;2020:8819195.
50. Chou H-C, Chen C-M. Neonatal hyperoxia disrupts the intestinal
barrier and impairs intestinal function in rats. Exp Mol Pathol.2017;102(3):415-421.
51. Chen C-M, Chou H-C, Yang Y-CSH, Su EC-Y, Liu Y-R. Predicting
Hyperoxia-Induced Lung Injury from Associated Intestinal and Lung
Dysbiosis in Neonatal Mice. Neonatology. 2021:106-116.
52. Zhao Q, Li Y, Chai X, et al. Interaction of inhalable volatile
organic compounds and pulmonary surfactant: Potential hazards of VOCs
exposure to lung. J Hazard Mater. 2019;369:512-520.
53. Fischäder G, Röder-Stolinski C, Wichmann G, Nieber K, Lehmann I.
Release of MCP-1 and IL-8 from lung epithelial cells exposed to volatile
organic compounds. Toxicol In Vitro. 2008;22(2):359-366.
54. Yoon HI, Hong YC, Cho SH, et al. Exposure to volatile organic
compounds and loss of pulmonary function in the elderly. The
European respiratory journal. 2010;36(6):1270-1276.
55. Wang F, Li C, Liu W, Jin Y. Modulation of microRNA expression by
volatile organic compounds in mouse lung. Environ Toxicol.2014;29(6):679-689.
56. Cronin WA, Forbes AS, Wagner KL, et al. Exhaled Volatile Organic
Compounds Precedes Pulmonary Injury in a Swine Pulmonary Oxygen Toxicity
Model. Front Physiol. 2019;10:1297.
57. Bos LDJ. Diagnosis of acute respiratory distress syndrome by exhaled
breath analysis. Ann Transl Med. 2018;6(2):33.
58. Wright H, Bannaga AS, Iriarte R, Mahmoud M, Arasaradnam RP. Utility
of volatile organic compounds as a diagnostic tool in preterm infants.Pediatric research. 2021;89(2):263-268.
59. Syzdykova M, Morenko M, Gatauova M, Temirkhnova R, Shnaider K. Role
of Fecal Volatile Organic Compounds in the Diagnosis of Bronchopulmonary
Dysplasia. Georgian Med News. 2020(308):80-84.
60. Berkhout DJC, Niemarkt HJ, Benninga MA, et al. Development of severe
bronchopulmonary dysplasia is associated with alterations in fecal
volatile organic compounds. Pediatric Research.2018;83(2):412-419.
61. El Manouni El Hassani S, Niemarkt HJ, Said H, et al. Fecal Volatile
Organic Compounds in Preterm Infants Are Influenced by Enteral Feeding
Composition. Sensors (Basel). 2018;18(9):3037.
62. Tan J-Y, Tang Y-C, Huang J. Gut Microbiota and Lung Injury.Advances in experimental medicine and biology. 2020;1238:55-72.
63. Brown RL, Sequeira RP, Clarke TB. The microbiota protects against
respiratory infection via GM-CSF signaling. Nature
communications. 2017;8(1):1512.
64. Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J, Deshmukh H.
Intestinal commensal bacteria mediate lung mucosal immunity and promote
resistance of newborn mice to infection. Science Translational
Medicine. 2017;9(376):eaaf9412.
65. Grayson MH, Camarda LE, Hussain S-RA, et al. Intestinal Microbiota
Disruption Reduces Regulatory T Cells and Increases Respiratory Viral
Infection Mortality Through Increased IFNγ Production. Front
Immunol. 2018;9:1587.
66. Lal CV, Kandasamy J, Dolma K, et al. Early airway microbial
metagenomic and metabolomic signatures are associated with development
of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol
Physiol. 2018;315(5):L810-l815.
67. Pammi M, Lal CV, Wagner BD, et al. Airway Microbiome and Development
of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review.The Journal of Pediatrics. 2019;204:126-133 e122.
68. Speer CP. Inflammation and bronchopulmonary dysplasia. Paper
presented at: Seminars in Neonatology2003.
69. Witkowski SM, de Castro EM, Nagashima S, et al. Analysis of
interleukins 6, 8, 10 and 17 in the lungs of premature neonates with
bronchopulmonary dysplasia. Cytokine. 2020;131:155118.
70. Mao X, Qiu J, Zhao L, et al. Vitamin D and IL-10 Deficiency in
Preterm Neonates With Bronchopulmonary Dysplasia. Frontiers in
pediatrics. 2018;6:246.
71. Rosser EC, Oleinika K, Tonon S, et al. Regulatory B cells are
induced by gut microbiota-driven interleukin-1β and interleukin-6
production. Nat Med. 2014;20(11):1334-1339.
72. Weiss GA, Hennet T. Mechanisms and consequences of intestinal
dysbiosis. Cell Mol Life Sci. 2017;74(16):2959-2977.
73. Jacobs MC, Lankelma JM, Wolff NS, et al. Effect of antibiotic gut
microbiota disruption on LPS-induced acute lung inflammation. PLoS
ONE. 2020;15(11):e0241748.
74. Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota
plays a protective role in the host defence against pneumococcal
pneumonia. Gut. 2016;65(4):575-583.
75. Zhang Q, Ran X, He Y, Ai Q, Shi Y. Acetate Downregulates the
Activation of NLRP3 Inflammasomes and Attenuates Lung Injury in Neonatal
Mice With Bronchopulmonary Dysplasia. Frontiers in pediatrics.2020;8:595157.
76. Li B, Yin G-F, Wang Y-L, Tan Y-M, Huang C-L, Fan X-M. Impact of
fecal microbiota transplantation on TGF-β1/Smads/ERK signaling pathway
of endotoxic acute lung injury in rats. 3 Biotech. 2020;10(2):52.
77. Nie X, Li L, Yi M, et al. The Intestinal Microbiota Plays as a
Protective Regulator Against Radiation Pneumonitis. Radiat Res.2020;194(1):52-60.
78. Gong G-C, Song S-R, Su J. Pulmonary fibrosis alters gut microbiota
and associated metabolites in mice: An integrated 16S and metabolomics
analysis. Life sciences. 2020:118616.
79. Bhattacharyya S, Wang W, Qin W, et al. TLR4-dependent fibroblast
activation drives persistent organ fibrosis in skin and lung. JCI
Insight. 2018;3(13).
80. Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung
microbiome with gut bacteria in sepsis and the acute respiratory
distress syndrome. Nat Microbiol. 2016;1(10):16113.
81. Uberos J, Jimenez-Montilla S, Molina-Oya M, Garcia-Serrano JL. Early
energy restriction in premature infants and bronchopulmonary dysplasia:
a cohort study. Br J Nutr. 2020:1-8.
82. Underwood MA, Lakshminrusimha S, Steinhorn RH, Wedgwood S.
Malnutrition, poor post-natal growth, intestinal dysbiosis and the
developing lung. J Perinatol. 2020.
83. Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that
prevent growth impairments transmitted by microbiota from malnourished
children. Science. 2016;351(6275).
84. Gehrig JL, Venkatesh S, Chang H-W, et al. Effects of
microbiota-directed foods in gnotobiotic animals and undernourished
children. Science (New York, NY). 2019;365(6449).
85. Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum
strain maintains growth of infant mice during chronic undernutrition.Science (New York, NY). 2016;351(6275):854-857.
86. Younge NE, Newgard CB, Cotten CM, et al. Disrupted Maturation of the
Microbiota and Metabolome among Extremely Preterm Infants with Postnatal
Growth Failure. Sci Rep. 2019;9(1):8167.
87. Groer M, Miller EM, Sarkar A, et al. Predicted Metabolic Pathway
Distributions in Stool Bacteria in Very-Low-Birth-Weight Infants:
Potential Relationships with NICU Faltered Growth. Nutrients.2020;12(5).
88. Yee AL, Miller E, Dishaw LJ, et al. Longitudinal Microbiome
Composition and Stability Correlate with Increased Weight and Length of
Very-Low-Birth-Weight Infants. mSystems. 2019;4(1).
89. Arboleya S, Martinez-Camblor P, Solís G, et al. Intestinal
Microbiota and Weight-Gain in Preterm Neonates. Front Microbiol.2017;8:183.
90. Kamng’ona AW, Young R, Arnold CD, et al. The association of gut
microbiota characteristics in Malawian infants with growth and
inflammation. Scientific reports. 2019;9(1):12893.
Figure 1 Factors affecting gut microbiota and dysbiosis of gut
microbiota impact certain diseases
Figure 2 Possible mechanisms of gut microbiota influencing BPD
Figure 3 Lung microbiota-gut
microbiota-BPD triangle