
Title:

A System Dynamics approach to model  photosynthesis  at  leaf level  under fluctuating

light 

Authors:

Nicole Salvatori1,2,Ϯ,*, Fabrizio Cartenì3,Ϯ, Francesco Giannino3, Giorgio Alberti1, Stefano

Mazzoleni3,4, Alessandro Peressotti1

1  DI4A, Department of Agri-Food, Environmental  and Animal Sciences,  University of

Udine, via delle Scienze 206, 33100 Udine, Italy.

2 Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.

3  Department of Agricultural Sciences, University of Naples Federico II, via Università

100, 80055 Portici, Italy. 

4 Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.

Ϯ These authors contributed equally

* Correspondence:

Nicole Salvatori

DI4A, Department of Agri-Food, Environmental and Animal Sciences

University of Udine 

via delle Scienze 206, 33100 Udine, Italy

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1
2



E-mail: nicole.salvatori@phd.units.it 

2

22

3
4



ABSTRACT

It  has  been  recognized  the  need  to  consider  some  photosynthetic  processes  in  their

transient  states  since  those  are  more  representative  of  the  natural  environment.  The

combination of mathematical models with the available data provides a tool to understand

the dynamic responses of plants to fluctuating environments and can be used to make

predictions on how photosynthesis would respond to unsteady state conditions. Here we

present  a  leaf  level  system dynamic  photosynthetic  model  based and validated  on an

experiment performed on two soybean varieties, the wildtype Eiko and the chlorophyll

deficient  mutant  Minngold,  grown  in  constant  and  fluctuating  light  conditions.  This

mutant  is  known  to  have  similar  steady-state  photosynthesis  compared  to  the  green

wildtype, but it is found to have less biomass at harvest. It has been hypothesized that this

might be due to an unoptimized response to non-steady state conditions, therefore this

mutant seems relevant to investigate dynamic photosynthesis. The model explained well

the  photosynthetic  responses  of  these  two  varieties  to  fluctuating  and  constant  light

conditions and allowed to make relevant conclusions on the different dynamic responses

of the two varieties. Furthermore, due to its simplicity, the model could provide the basis

of an upscaled dynamic model at plant level.
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INTRODUCTION

The continuous rising in population is requiring an increase in agricultural production of

at least a 60% (Alexandratos & Bruinsma, 2012). By being the source of food and the

responsible  of  the  survival  for  the  majority  of  life  on  Earth  (Stirbet,  Lazár,  Guo,  &

Govindjee, 2019), photosynthesis has recently become a target to improve global food

production,  since the increase in  genetic  yield potential  seems to be hindered  (Foyer,

Ruban,  & Nixon,  2017;  Taylor  &  Long,  2017).  Photosynthesis  has  been  intensively

studied in the laboratories but, due to its complex nature, it still provides some challenges

(Flexas, Loreto, & Medrano, 2013). Mathematical models can furnish a different tool to

better understand the dynamics of this process and can be used to make predictions on

how photosynthesis would respond to limiting situations (Stirbet et al., 2019).

Several modelling efforts have been done in order to describe the photosynthesis in its

whole. The models can be differentiated by considering the processes at steady state (T N

Buckley,  Mott,  &  Farquhar,  2003;  Farquhar,  von  Caemmerer,  &  Berry,  1980;  Ye,

Suggett, Robakowski, & Kang, 2013) or non-steady state  (Bellasio, 2019; Kirschbaum,

Küppers, Schneider, Giersch, & Noe, 1997; Morales et al., 2018); for their spatial scale,

leaf  scale  (Farquhar  et  al.,  1980;  Vialet-Chabrand,  Silvere  R.M.McAusland,  Blatt,

Lawson, Griffiths, & Matthews, 2017; Zhu, Wang, Ort, & Long, 2013) or canopy scale

(Song  &  Zhu,  2012);  and  for  the  different  modelling  approaches,  empirical  models

(Farquhar et al.,  1980; Vialet-Chabrand, Silvere R.M.McAusland et  al.,  2017), system

biology models  (Kannan et al., 2019; Petterssons & Ryde Petterson, 1988; Zhu et al.,‐

2013) and process-based models  (Bellasio, 2019; Kaiser, Morales, & Harbinson, 2018;

Kirschbaum et al., 1997).
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The processes  of  photosynthesis  have been initially  tackled  in  steady-state  conditions

(Farquhar  et  al.,  1980;  Von  Caemmerer,  2013).  These  models  are  fundamental  in

understanding physiological  characteristics  and to  answer  very specific  questions,  but

usually overestimate total photosynthesis in fluctuating environmental conditions (Timm,

Küppers, & Stegemann, 2004). In fact,  rarely external conditions are stable in natural

environments, so that plants need to continuously adjust to optimize the carbon uptake in

these dynamic conditions (Kaiser et al., 2018). Different adjustments can be operated by

plants depending on the time scale considered  (Kono & Terashima, 2014): in the fast

temporal  scale  plants  respond by regulating  the  processes  involved  in  photochemical

(Kaiser  et  al.,  2018;  Kono  &  Terashima,  2014) and  non-photochemical  processes

(Acebron et al.,  2020), by activating the Calvin Cycle enzymes  (Porcar-Castell,  Bäck,

Juurola, & Hari, 2006) and by moving their chloroplasts within the leaves (Kaiser et al.,

2014); slower adjustments can then be due to the regulation of the stomata  (Thomas N

Buckley, 2017; Matthews, Vialet-Chabrand, & Lawson, 2018; Silvere Vialet-Chabrand,

Matthews, Simkin, Raines, & Lawson, 2017), to the movements of the leaves within the

canopy and to the adaptative adjustments in nitrogen and chlorophyll content  (Posada,

Lechowicz, & Kitajima, 2009; Zhang, Zhong, Wang, Sui, & Xu, 2016) .

One of the main variable conditions is light. Light intensity is continuously changing due

to the movements of the clouds and to the wind moving the leaves (Pearcy, 1990; Retkute

et al., 2015). Plants need to adapt to these changing in light conditions and some species

may be more efficient than others in doing it  (Kromdijk et al., 2016; Matsubara, 2018;

Urban,  Ingwers,  McGuire,  & Teskey,  2017).  One rising question  is  if  a  reduction  in

chlorophyll content might be detrimental or beneficial when dealing with fluctuating light

conditions. At canopy level, the role of chlorophyll content has been investigated (Gu et

al., 2017; Ort et al., 2015; Slattery, Grennan, Sivaguru, Sozzani, & Ort, 2016; Walker et
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al.,  2018) and it  has been proposed that a reduced chlorophyll  content would entail  a

better distribution of the light in the lower layers of the canopy, therefore increasing the

overall photosynthesis. Nevertheless, few have studied the effect of chlorophyll reduction

in fluctuating environments (Ferroni et al., 2020). 

In this study we focus on the effect of fluctuating light on two soybean varieties:  the

green wildtype soybean (Eiko) and a chlorophyll deficient mutant (Minngold) which has

been firstly described by  Campbell  et al.  (2015). It has been shown  (Sakowska et al.,

2018) that  MinnGold  has  comparable  light  curves  and  A/Ci  curves  (steady  state

measurements) at leaf level compared to Eiko but lower biomass was found at harvest. It

was hypothesised  (Genesio  et  al.,  2020) that  a  slower adjustment  to  fluctuating  light

might  cause  a  lower  carbon  accumulation  at  canopy  level,  and  that  steady  state

measurements at leaf level would not be able to capture this difference. 

Therefore, in this paper we investigate the role of the chlorophyll content in adjusting to

fluctuations in light, combing experimental observations with a modelling framework. To

begin with,  we implemented  a model  at  leaf  level  to  be a basis  in understanding the

response of these two varieties to highly fluctuating light environments. We decided to

use a process-based approach, based on the principles of system dynamics, according to

which  a  complex  system  can  be  represented  by  flows,  compartments  (stocks)  and

feedback loops (Forrester, J. W., 1997).

MATERIAL AND METHODS

Experimental setup

Two soybean varieties have been used in this study with different chlorophyll content:

Eiko, the green cultivar used as the wildtype and MinnGold, the chlorophyll deficient

mutant  (Campbell et al., 2015; Slattery, Vanloocke, Bernacchi, Zhu, & Ort, 2017). The
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plants were sown in 3 litres pots and grown inside a controlled growth chamber system

(Salvatori et al., submitted) for five weeks with either non-fluctuating light or fluctuating

light conditions. The light was turned on from 5:00 to 19:00 and the intensity was set to

simulate the daily profile of the sun reaching a maximum of 650 μmol m-2 s-1 for the non-

fluctuating light protocol or fluctuating every minute (with a duty cycle of 0.5) with an

amplitude of ±20% around the non-fluctuating light intensity value. By doing this, all

plants received the same amount of light throughout the day. 

Then, three plants from each variety and each light protocol were randomly chosen as

replicates,  from  which  we  selected  a  young  and  fully  expanded  leaf  to  perform

fluorescence analysis combined with gas-exchange using the LI-6800 (Licor Biosciences,

Nebraska,  USA)  equipped  with  infra-red  gas  analysers  (IRGA)  coupled  with  pulse-

amplitude modulation (PAM) fluorometer. In particular, we were interested in recording

the carbon assimilation (A), the electron transport rate (ETR) and the non-photochemical

quenching (NPQ).

We used the following protocol: all plants were dark-adapted overnight, then the light

was turned on following either a constant light protocol for 60 minutes at 650 μmol m -2 s-1

or a fluctuating light protocol with light intensity changing from 780 μmol m -2 s-1 to 520

μmol m-2 s-1 every minute by simulating  the growth conditions.  The CO2 levels  were

maintained at  400 ppm,  vapour  pressure deficit  (VPD) was kept  at  1.8 kPa and leaf

temperature at 25°C.  

The carbon assimilation (A in µmol CO2 s-1) was calculated as follows:

A=

μ0[c0−ca(
1−w0

1−wa
)]

s

7

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

13
14



Where μ0 is the flow rate (µmol air s-1) entering the leaf chamber,  s is the leaf area (m)

and  c0 and  w0 are  the  CO2 and  H2O  concentrations  (in  µmol  CO2  and  mmol  H2O

respectively)  entering  the  leaf  chamber  and  ca and  wa the  concentration  existing  the

chamber.

Throughout the protocol, a saturating light pulse of > 5,000 µmol m-2 s-1 was given to the

leaf sample for 800 ms every 30 s, to quantify maximal fluorescence in the light (Fm
' ) and

dark (Fm). The operating efficiency of the PSII (ΦPSII) was calculated as follows (Genty,

Briantais, & Baker, 1989):

ΦPSII=
(Fm

'
−F s)

Fm
'

where F s is the steady-state fluorescence.

NPQ was calculated using the equation from Bilger & Björkman (1990) based on Stern-

Volmer method, as follows:

NPQ=
(Fm−Fm

'
)

Fm
'

Finally, the electron transport rate was calculated based on Krall & Edwards (1992), as

follows:

ETR=I∗α∗fractionPSII∗ΦPSII

Where I is the incident light, fractionPSII is the fraction of absorbed light that is received

by the PSII and is normally set to 0.5 (Baker, 2008), α is the absorbance coefficient which

was set to 0.55 for MinnGold and 0.78 for Eiko as calculated in the growth chambers

(Salvatori et al., submitted). 
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Model description

Here  we  present  a  model  of  the  main  processes  involved  in  the  regulation  of  the

photosynthesis of leaves of C3 plants exposed to fast changes of light intensity. Figure 1

shows  a  schematic  diagram  of  the  implemented  processes,  providing  a  simplified

representation of the complex phenomena occurring in photosynthesis. For the sake of

simplicity, the presented model essentially considers the main dynamics of a chloroplast

as  representative  of  a  whole  leaf,  in  a  sort  of  “big  chloroplast”  approach.  Since  the

modelled leaf is exposed to  optimal conditions of CO2  and average light intensity,  we

assumed no limitation due to stomatal conductance since this dynamic generally becomes

relevant during the induction phase (dark-light transition), nevertheless it is known that in

soybean this limitation can be mainly attributed to Rubisco activation (Soleh et al., 2016;

Taylor & Long, 2017).

Due to the nature of the experiment conducted, we focused on the limitations imposed by

the  light  reactions.  When the  light  excites  the  Photosystem 2 (PSII),  many pigments

(chlorophyll a and b antenna proteins) collect this energy and transfer it to the reaction

centre. This number of pigments can be variable from plant to plant and determine the

ability  of the photosystem to transfer this energy. PSII oxidizes water to O2 releasing

protons into the lumen and thus determining a change in the pH (ΔpH). The electrons are

then passed on to the Cytochrome b6f (cytb6f) which delivers them to photosystem 1

(PSI) transporting additional protons into the lumen. For simplicity these last processes

involving cytb6f and PSI are not included in the model and therefore not represented in

Figure 1. 

The energy transported is used to reduce the final acceptor NADP+ to NADPH. The ΔpH

generated is then used by the ATP synthase to produce ATP as protons diffuse back from
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the lumen to the stroma. This process is generally called linear electron flow (LEF, in

Figure 1 defined as ETR, electron transport  rate)  and the energy produced (ATP and

NADPH) is used in the Calvin Cycle to fix CO2. 

The Calvin Cycle is regulated by the enzyme Rubisco, that is itself activated by the ΔpH

generated by the electron transport. When there is excess of energy, this can be dissipated

as non-photochemical quenching (NPQ). We focused on the energy-dependent quenching

(i.e.  ΔpH-dependent quenching qE) since it  is the most important  component of NPQ

when regarding fluctuating irradiance, as responds most quickly to its changes (Kaiser et

al.,  2014),  operating  in  the  scale  of  minutes  (Ebenhöh,  Fucile,  Finazzi,  Rochaix,  &

Goldschmidt-Clermont, 2014). qE is regulated by luminal pH and the xanthophyll cycle

pigments.  The  saturation  of  the  dark  reactions  causes  a  decrease  in  the  luminal  pH

causing the protonation of some PSII proteins (PsbS proteins)  (Matuszyńska,  Heidari,

Jahns, & Ebenhöh, 2016), the release of violaxanthin molecules and their de-epoxidation

to  antheraxanthin  and zeaxanthin.  Zeaxanthin  then  binds  to  PSII  proteins,  forming  a

quenching complex favouring the dissipation of the excitation energy as heat  (Porcar-

Castell et al., 2006). 

Furthermore,  the  generation  of  a  ΔpH  is  necessary  under  environmental  stressful

conditions, when the dark reactions are saturated, allowing the production of ATP without

the  reduction  of  NADP+  (Roach  & Krieger-Liszkay,  2014).  In  such  cases  the  cyclic

electron  flow (CEF) around the  Photosystem 1 (PSI)  is  activated,  increasing  electron

transfer from PSI to the plastoquinone pool, and again to PSI via the Cytochrome b6/f

complex  (Yamori,  2016).  In  C3  plants,  CEF is  considered  negligible  at  steady  state

conditions, thus becoming relevant under specific stressful conditions such as low CO2,

high light, drought, or during dark to light transitions (Rochaix, 2011). CEF then becomes
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a regulator of NPQ and ETR at non-steady state conditions  (Roach & Krieger-Liszkay,

2014; Yamori, 2016). 

Mathematical formulation of the model

Using a  process-based approach, we represent the described processes by the following

equations:

d EnPSII

dt
=α ∙ c¿ ∙PAR∙(1−

EPSII

EPSII
¿ )

⏞
Energy input

−v ETR ∙ EPSII ∙NADP
+¿⏞

ETR

−vd ∙EPSII ∙ Z ∙(1−
E z

EZ
¿ )

⏞
Energydissipation

¿

Equation 1

which represents the excitation energy in PSII and the transfer of this energy either as

linear electron transport (ETR), regulated by the amount of final acceptor NADP+, or as

dissipation of energy, regulated by zeaxanthin. In fact, the excess energy in PSII can be

dissipated  only  if  zeaxanthin  has  formed the  quenching complex  with the  PSII.  This

complex  is  then  able  to  release  energy  as  heat  (NPQ).  The  dynamic  of  the  PSII-

zeaxanthin complex is described as follows:

dE z

dt
=v d∙ EPSII ∙ Z ∙(1−

E z

EZ
¿ )

⏞
Energy dissipation

−vNPQ ∙ E z⏞
NPQ

        Equation 2

Whereas the dynamic of the enzyme is modelled with a saturating curve whose formation

depends on the cyclic electron transport (CEF):

dZ
dt

={ v za ∙ (1−Z )⏞
Zeaxanthinactivation

if CEF>c y

0 ifCEF ≤c y

        Equation 3

with 
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CEF=α ∙c¿ ∙PAR∙(1−
EPSII

EPSII
¿ )

⏞
Energy input

−v ETR ∙EPSII ∙NADP
+¿⏞

ETR

¿
        Equation 4

As previously described, zeaxanthin formation is triggered by a change in ΔpH which

occurs  when a  decoupling  of  the light  reactions  with  the dark  reactions  generates  an

excess in energy which is exploited by the cyclic electron transport (CEF) to produce an

increase in the ΔpH as well as a production of ATP.  

Finally, the energy flowing from PSII to PSI is used to reduce NADP+ (ETR) to become

NADPH whose dynamic is described as follows:

dNADPH
dt

=v ETR ∙EPSII ∙ NADP
+¿⏞

ETR

∙ η
NADP+¿

−vC ∙ R ∙ NADPH⏞
A

∙ηNADPH ¿

¿                        Equation 5

Whereas the counterpart dynamic of NADP+ is simply described as follows:

d
NADP+¿

dt
=

−dNADPH
dt

¿

Equation 6

Carbon assimilation (A) is therefore regulated by the rate of carboxylation mediated by

Rubisco  whose  activation  indirectly  depends  on  the  ΔpH generated,  and is  generally

accounted as 
NADPH
NADP+¿

¿
 (Morales et al., 2018). Therefore equation 5 reads as follows:

dR
dt

= vR ∙ (1−R )⏞
Rubiscoactivation

∙min ⁡¿ with ΔpH=
NADPH
NADP+¿

¿
        Equation 7

The description of the six state variables and the parameters with the relative units can be

found in Table 1. The model allows the characterization of three quantities measured in

gas exchange and fluorescence analysis:  ETR,  A and  NPQ.  These three quantities  are
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fluxes (µmol m-2 s-1) and can be derived from the described equations: ETR from equation

1, NPQ from equation 2 and A from equation 5. 

Sensitivity analysis

A local sensitivity analysis (Norton, 2015) was performed to analyse the model behaviour

under parameter perturbation. The normalized sensitivity index is calculated by changing

each  parameter  of  ±5%  while  keeping  all  the  other  constant.  The  equation  for  the

sensitivity index is the following: 

SSEi ,∆=√ 1
3∗n

∑
j=1

3

∑
i=1

n

(
X j

( p1, p2 ,…, pi+∆ ,…, pk )−X j
(p)

max (X j ( p ) )−min (X j (p ) ) )
2

                    Equation 8

Where  SSEi ,∆ is  the standardized  elementary  effect  of the parameter  pi with Δ (±5%)

perturbation on model outputs and k number of parameters (equal to 13);  X j
( p) are the

simulated  values  of  the  j-th  quantity  considered  (i.e.  NPQ,  ETR and  A)  without  any

parameter perturbation (as in Table 1); nis the number of samples per observed quantity

(equal for three quantities considered).

RESULTS

Experimental data 

The model has been tested on fluorescence data coupled with gas exchange data in the

fluctuating light regime for the two varieties Eiko and MinnGold. As described in the

methods, the leaf was kept in the dark and then illuminated with fluctuating light at 520

µmol m-2 s-1 and 780 µmol m-2 s-1  for 60 minutes. In particular, the changes in electron

transport (ETR), carbon assimilation (A) and non-photochemical quenching (NPQ) were

recorded (Figure 2). After illumination, ETR and A show an initial slow photosynthetic

induction (slower for MinnGold) mainly caused by the activation of the enzyme Rubisco
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(Soleh  et  al.,  2016;  Taylor  & Long,  2017) in  which  the  fluctuations  in  light  are  not

causing, initially, corresponding fluctuations in these quantities. When Rubisco is fully

activated, steady state is reached, and the fluctuations become more evident and constant

throughout the experimental period (the last 30 minutes). Regarding NPQ, a faster rise of

this quantity is evident with an increase in the amplitude of fluctuations in time connected

to the increased level of zeaxanthin. Figure 2B makes a focus on a smaller experimental

period, when steady state is already being reached (from minute 45 to 55th). MinnGold

results more responsive to fluctuations of light, in the sense that the changing in light

intensity is causing higher amplitudes of oscillations in ETR and, to a lesser extent, to A.

In NPQ instead  it  can be observed the  opposite  behaviour,  with fluctuations  of  light

causing smaller amplitudes of oscillations.  

Model fitting

For the wildtype Eiko (Figure 3) the model accurately represented the measured dynamics

with an R2 of 0.98 for ETR and A and of 0.94 for NPQ. In this case the model captured

both the slow induction dynamic and the fast fluctuating dynamic. 

In the case of MinnGold (Figure 4), the model performed well for both ETR and NPQ

(R2=0.93 and 0.91 respectively) whereas it did not capture the slow induction found in A,

still having a good R2=0.84. 

Validation

The model has been then validated on gas exchange data in the constant light regime. To

validate it, the model has been tested over the data using the parameters found for the

fluctuating light  protocol  in Eiko (Figure 5) and MinnGold (Figure 6) (Table 1).  The

model performed well also in these conditions, in particular for ETR (R2=0.96 and 0.98
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for  Eiko  and  MinnGold  respectively)  and  A  (R2=0.94  and  0.78),  with  a  slight

underperformance for NPQ (R2=0.65 and 0.76).

Sensitivity

The  local  sensitivity  analysis  (Equation  8)  allowed  to  identify  the  parameters  whose

change mainly affected the three quantities considered (A, ETR and NPQ). By changing

the parameters by a 5% the outcome of the model never deviates more than 4% from the

baseline  simulation  (Figure  7).  This  means  that  the  model  is  robust  and  not  much

dependent on the changing in the parameters; furthermore, no matters if the percentage

change is positive or negative, the outcome is the same.

The  sensitivity  also  showed  differences  in  MinnGold  and  Eiko.  In  both  cases,  the

parameter more sensible to changes is  c¿, the parameter identifying the energy input in

PSII  and  therefore  (with  α,  the  absorbance  coefficient),  the  energy  entering  the

photosystem. Differences among MinnGold and Eiko can be found for EPSII
¿ , the carrying

capacity of the photosystem 2. A small difference for the two species can also be found

for the parameters vNPQ, EZ
¿  and vd.

Theoretical evaluation of the model

The  model  was  further  validated  by  performing  some  theoretical  simulations  by

considering Eiko parameters (Table1). We evaluated how the three quantities (ETR, A

and NPQ) would behave when changing the period of the fluctuating light. Figure 8A

shows an  example  of  the  effect  of  three  different  fluctuating  periods  (30  seconds,  1

minute and 4 minutes fluctuating period with duty cycle equal to 0.5) when compared to

the constant light regime. When calculating the cumulative values at steady state (after 40
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minutes),  A and ETR resulted higher than those for constant  light  (fluctuating  period

equal to zero) when light fluctuates with a period higher than 30 seconds and lower than

20 minutes (Figure 8B). Nevertheless, we have an opposite behaviour for NPQ. We also

calculated modelled cumulative steady state values with MinnGold parameters (Figure

S1).  Steady state values of ETR and A decreased as the fluctuation period increased,

except for short fluctuating periods in which they increase (of the same order of Eiko,

Figure  8B).  Nevertheless,  in  this  case  we found fluctuations  causing  a  much smaller

change in NPQ steady state.

We  finally  performed  simulations  with  higher  fluctuations  intensity,  with  same

fluctuating period (1-minute period) (Figure S2). In this case the constant regime results

always higher  than  the fluctuating  regime,  therefore  higher  the fluctuation  amplitude,

lower would be the steady state value. 

DISCUSSION

Model assumptions

The model reflects the assumptions of the experimental conditions. Leaves were exposed

to optimal CO2 conditions and average light intensity, therefore we assumed no limitation

due to stomatal conductance. Two main conditions are investigated, 1) the photosynthetic

induction during the dark-light transition, and 2) the fluctuations of light maintaining the

system in a continuous non-steady state condition. One of the main contributions of this

paper is found in the modelling of the cyclic electron transport which is thought to be

fundamental  in  the  triggering  of  NPQ when  ETR is  still  limited  by  the  downstream

reactions of the Calvin Cycle (Cornic & Baker, 2012; Yamori & Shikanai, 2016). In fact,

the  dissipation  of  energy  through  non-photochemical  quenching  is  possible  when

zeaxanthin  forms  a  quenching  complex  with  PSII.  Zeaxanthin  formation  is  in  turn
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triggered  by a  change in  ΔpH which,  when ETR is  limiting,  is  caused by the cyclic

electron transport. The fact that NPQ activation is possible also when ETR is not fully

active, is evident from the data, both in the long term and in the short term. Figure 2A in

fact shows that NPQ reaches steady state much faster than ETR and A during the dark-

light transition. This is also evident in the short term: in fact, during the fluctuations of

light (Figure 2B) at steady state, NPQ is still found to be faster than the other quantities in

reaching the steady state associated with the specific light intensity. 

Model performance

The  model  performed  well  in  simulating  the  experimental  data  both  in  constant  and

fluctuating light conditions and in both soybean varieties with R2s ranging from 0.65 to

0.98 (Figures 3-6). Only two observations were not well fitted by the model (with the

lowest R2s). First, in MinnGold it is found a decoupling of A and ETR in the velocity of

induction in both fluctuating (Figure 4) and constant (Figure 6) light conditions. At steady

state, the two processes are known to be coupled, since the electron chain starts when

electrons are reducing NADP+ which are in turn mainly produced by the Calvin Cycle.

Nevertheless, it is known that electrons can also be transferred to other enzymes involved

in the regulation of carbon metabolism as well as in the nitrogen and sulfur metabolism

(Cornic & Baker, 2012). Since this would need a further discussion and a focus on the

nature of this result, we did not aim to capture this dynamic.

The second observation differing from the model is  found in NPQ steady state when

calculated in constant light. The model in fact overestimated the steady state values in

both Eiko and MinnGold (Figure 5 and 6). This might be an adaptation strategy. Since the

constant regime is less stressful for the plants, it might be that less energy needs to be

dissipated as heat. Since the model was calibrated to the fluctuating light data, a stressful

17

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

33
34



condition, it might be that the parameters regulating NPQ are set higher than necessary

for the constant regime. To capture this difference, it  would be probably necessary to

introduce  a  framework regarding the  adaptation  of  the  plants  based  on their  growing

conditions. 

Finally, the theoretical analysis of the model allowed to make some relevant conclusions.

When calculating the cumulative values at steady state using Eiko’s parameters in respect

to different fluctuating light periods (Figure 8B), we found A and ETR steady state values

to increase by reaching a maximum at 5 minutes fluctuating period, and then to decrease

for fluctuating periods longer than 20 minutes. Therefore, it seems that a certain range of

fluctuations of light is  favourable for the cumulative steady state carbon assimilation,

coherent to Graham, Nguyen, Burdyny, & Sinton (2017). This behaviour is confirmed

with MinnGold parameters (Figure S1), but in this case we found much smaller changes

in NPQ steady state, meaning probably that NPQ relaxation dynamics in MinnGold are

faster than those in Eiko, this being opposed to what proposed by Sakowska et al. (2018).

More  in  general,  the  understanding  of  the  NPQ  influence  in  regulating  dynamic

photosynthesis is still controversial. Two recent articles have in fact found an opposite

trend in biomass accumulation when accelerating NPQ relaxation time (Garcia-Molina &

Leister, 2020; Kromdijk et al., 2016).

Differences in the parameters 

Since the model is a theoretical mathematical model, when referring to the values of the

parameters it is relevant to look at the relative differences among varieties, whereas the

absolute values might be not always coherent with the biology. This is though due to the

calibration procedure in finding local minima, therefore other combinations of parameters

are possible. Nevertheless, when looking at Table 1, almost all parameters are found to be

18

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

35
36



comparable among the two varieties, confirming the robustness of the model. Only three

parameters differ, EPSII
¿ , vETR and vd. EPSII

¿  identifies how much energy can be hold by the

photosystem 2 and it represents the number of chlorophyll molecules in the chloroplast,

which is known to be different for Eiko and MinnGold (Sakowska et al., 2018; Slattery,

Vanloocke, Bernacchi, Zhu, & Ort, 2017). This parameter value therefore is reasonably

much higher in Eiko than in MinnGold. Nevertheless,  vETR and  vd are the velocity  of

activation of ETR and NPQ and are higher in MinnGold. This can be explained by the

fact  that  even if  MinnGold has  a  much lower number  of  chlorophyll  molecules,  this

number is sufficient to have a responsive ETR and NPQ which can sustain a comparable

carbon  assimilation.  In  particular,  both  the  model  and  the  experimental  data  show

MinnGold to be even more responsive to fluctuations of light, in fact the fluctuating light

causes higher oscillations in ETR and A (Figure 2).

Comparison with other models

The model presented focuses on the limitations imposed by light reactions, due to the

nature  of  the  experiment  conducted,  therefore  the  downstream  regulation  is  much

simplified.  The model therefore is not as comprehensive as preceding models  (Bellasio,

2019;  Morales  et  al.,  2018) but  it  demonstrated  that  a  macro  representation  of  the

processes is still able to capture well the dynamics found in photosynthesis and helps in

unravelling gas exchange and fluorescence data. Furthermore, since the limited number of

equations and related parameters, this model could become one of the building blocks of

a photosynthesis model at higher scales, both leaf and canopy. Since there are already

other  system  dynamics  models,  following  the  same  procedure,  focused  on  the  dark

reactions (Kirschbaum et al., 1997) and on stomatal conductance (S. Vialet-Chabrand et

al., 2016), it would be interesting to combine our model with these existing models to
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simulate the most dynamic environmental conditions thus allowing an upscaling. In fact,

even if relevant canopy level photosynthesis models exist  (Song & Zhu, 2012; Van Der

Tol, Verhoef, Timmermans, Verhoef, & Su, 2009) none to our knowledge aims to capture

the responses of photosynthesis to dynamic environmental conditions, since it would be

too complicated with the available models. 

Conclusions

We  presented  here  and  validated  a  new  system  dynamic  model  based  on  the  light

reactions  of  photosynthesis.  Since  plants  are  normally  dealing  with  dynamic

environmental conditions, it should be considered to introduce into models such processes

in photosynthesis that are usually discarded in steady state models, such as the cyclic

electron transport (that we represented in this model) and many other processes - as the

water-water cycle, the malate shuttle and the other components of NPQ (Yamori, 2016) -

which become limiting when conditions are unsteady.

Furthermore, even if proposed a model at leaf level, due to its simplicity,  we aim the

model to be one of the building blocks of a photosynthetic model at plant or even canopy

scale. Upscaling both the models and the experiments is fundamental since translating

these short term leaf scale results into the field is not straightforward (Kaiser et al., 2018;

Matsubara, 2018). In particular, in this case we found fluctuations of light to not interfere

in the performance of MinnGold in such a short-term analysis even if it is hypothesised

that they might have an effect in the long term. Therefore, canopy level data and models

become fundamental in unravelling the dynamic photosynthetic processes. 

DECLARATIONS

Data availability

20

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

39
40



The  datasets  and  the  Matlab  codes  used  during  the  current  study  are  available  from  the

corresponding author on reasonable request.

Conflict of interest  

The authors have no conflict of interest. 

REFERENCES

Acebron, K., Matsubara, S., Jedmowski, C., Emin, D., Muller, O., & Rascher, U. (2020).  

Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants 

assessed by solar induced fluorescence and reflectance measurements in the field . ‐

New Phytologist. https://doi.org/10.1111/nph.16984

Alexandratos, N., & Bruinsma, J. (2012). WORLD AGRICULTURE TOWARDS 

2030/2050 - The 2012 Revision. 30(1), 46–51. 

https://doi.org/10.1002/jso.2930300113

Baker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. 

Annual Review of Plant Biology, 59(1), 89–113. 

https://doi.org/10.1146/annurev.arplant.59.032607.092759

Bellasio, C. (2019). A generalised dynamic model of leaf-level C3 photosynthesis 

combining light and dark reactions with stomatal behaviour. Photosynthesis 

Research, 141(1), 99–118. https://doi.org/10.1007/s11120-018-0601-1

Bilger, W., & Björkman, O. (1990). Role of the xanthophyll cycle in photoprotection 

elucidated by measurements of light-induced absorbance changes, fluorescence and 

photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25(3), 

173–185. https://doi.org/10.1007/BF00033159

Buckley, T N, Mott, K. A., & Farquhar, G. D. (2003). A hydromechanical and 

biochemical model of stomatal conductance. Plant Cell and Environment, (26), 

1767–1785.

Buckley, Thomas N. (2017). Modeling Stomatal Conductance. Plant Physiology, 174(2), 

572–582. https://doi.org/10.1104/pp.16.01772

21

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

41
42



Campbell, B. W., Mani, D., Curtin, S. J., Slattery, R. A., Michno, J. M., Ort, D. R., … 

Stupar, R. M. (2015). Identical substitutions in nagnesium chelatase paralogs result 

in chlorophyll-deficient soybean mutants. G3: Genes, Genomes, Genetics, 5(1), 123–

131. https://doi.org/10.1534/g3.114.015255

Cornic, G., & Baker, N. R. (2012). Electron Transport in Leaves: A Physiological 

Perspective. In Photosynthesis. Springer, Dordrecht (Vol. 34, pp. 591-605.). https://

doi.org/10.1007/978-94-007-1579-0

Ebenhöh, O., Fucile, G., Finazzi, G., Rochaix, J. D., & Goldschmidt-Clermont, M. 

(2014). Short-term acclimation of the photosynthetic electron transfer chain to 

changing light: A mathematical model. Philosophical Transactions of the Royal 

Society B: Biological Sciences, 369(1640). https://doi.org/10.1098/rstb.2013.0223

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90. 

https://doi.org/10.1007/BF00386231

Ferroni, L., Živčak, M., Sytar, O., Kovár, M., Watanabe, N., Pancaldi, S., … Brestič, M. 

(2020). Chlorophyll-depleted wheat mutants are disturbed in photosynthetic electron 

flow regulation but can retain an acclimation ability to a fluctuating light regime. 

Environmental and Experimental Botany, 178. 

https://doi.org/10.1016/j.envexpbot.2020.104156

Flexas, J., Loreto, F., & Medrano, H. (2013). Terrestrial photosynthesis in a changing 

environment. In Journal of Chemical Information and Modeling (Vol. 53). 

https://doi.org/10.1017/CBO9781107415324.004

Foyer, C. H., Ruban, A. V., & Nixon, P. J. (2017). Photosynthesis solutions to enhance 

productivity. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 372(1730), 3–6. https://doi.org/10.1098/rstb.2016.0374

Garcia-Molina, A., & Leister, D. (2020). Accelerated relaxation of photoprotection 

impairs biomass accumulation in Arabidopsis. Nature Plants, 6(1), 9–12. 

https://doi.org/10.1038/s41477-019-0572-z

Genesio, L., Bright, R. M., Alberti, G., Peressotti, A., Delle Vedove, G., Incerti, G., … 

Miglietta, F. (2020). A chlorophyll-deficient, highly reflective soybean mutant: 

22

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

43
44



radiative forcing and yield gaps. Environmental Research Letters, 15(7). 

https://doi.org/10.1088/1748-9326/ab865e

Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum 

yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.

Biochimica et Biophysica Acta - General Subjects, 990(1), 87–92. 

https://doi.org/10.1016/S0304-4165(89)80016-9

Gu, J., Zhou, Z., Li, Z., Chen, Y., Wang, Z., & Zhang, H. (2017). Rice (Oryza sativa L.) 

with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, 

improved canopy light distribution, and greater yields than normally pigmented 

plants. Field Crops Research, 200, 58–70. https://doi.org/10.1016/j.fcr.2016.10.008

Kaiser, E., Morales, A., & Harbinson, J. (2018). Fluctuating light takes crop 

photosynthesis on a rollercoaster ride. Plant Physiology, 176(2), 977–989. 

https://doi.org/10.1104/pp.17.01250

Kaiser, E., Morales, A., Harbinson, J., Heuvelink, E., Kromdijk, J., & Marcelis, L. F. M. 

(2014). Dynamic photosynthesis in different environmental conditions. Journal of 

Experimental Botany, 66(9), 2415–2426. https://doi.org/10.1093/jxb/eru406

Kannan, K., Wang, Y., Lang, M., Challa, G. S., Long, S. P., & Marshall-Colon, A. 

(2019). Combining gene network, metabolic and leaf-level models shows means to 

future-proof soybean photosynthesis under rising CO2. In Silico Plants, 1(1), 1–18. 

https://doi.org/10.1093/insilicoplants/diz008

Kirschbaum, M. U. F., Küppers, M., Schneider, H., Giersch, C., & Noe, S. (1997). 

Modelling photosynthesis in fluctuating light with inclusion of stomatal 

conductance, biochemical activation and pools of key photosynthetic intermediates. 

Planta, 204(1), 16–26. https://doi.org/10.1007/s004250050225

Kono, M., & Terashima, I. (2014). Long-term and short-term responses of the 

photosynthetic electron transport to fluctuating light. Journal of Photochemistry and 

Photobiology B: Biology, 137, 89–99. 

https://doi.org/10.1016/j.jphotobiol.2014.02.016

Krall, J. P., & Edwards, G. E. (1992). Relationship between photosystem II activity and 

CO2 fixation in leaves. Physiologia Plantarum, 86(1), 180–187. 

23

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

45
46



https://doi.org/10.1111/j.1399-3054.1992.tb01328.x

Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long,

S. P. (2016). Improving photosynthesis and crop productivity by accelerating 

recovery from photoprotection. Science, 354(6314), 857–862.

Matsubara, S. (2018). Growing plants in fluctuating environments: Why bother? Journal 

of Experimental Botany, 69(20), 4651–4654. https://doi.org/10.1093/jxb/ery312

Matthews, J. S. A., Vialet-Chabrand, S., & Lawson, T. (2018). Acclimation to fluctuating 

light impacts the rapidity of response and diurnal rhythm of stomatal conductance. 

Plant Physiology, 176(3), 1939–1951. https://doi.org/10.1104/pp.17.01809

Matuszyńska, A., Heidari, S., Jahns, P., & Ebenhöh, O. (2016). A mathematical model of 

non-photochemical quenching to study short-term light memory in plants. 

Biochimica et Biophysica Acta - Bioenergetics, 1857(12), 1860–1869. 

https://doi.org/10.1016/j.bbabio.2016.09.003

Morales, A., Kaiser, E., Yin, X., Harbinson, J., Molenaar, J., Driever, S. M., & Struik, P. 

C. (2018). Dynamic modelling of limitations on improving leaf CO2 assimilation 

under fluctuating irradiance. Plant Cell and Environment, 41(3), 589–604. 

https://doi.org/10.1111/pce.13119

Norton, J. (2015). An introduction to sensitivity assessment of simulation models. 

Environmental Modelling and Software, 69, 166–174. 

https://doi.org/10.1016/j.envsoft.2015.03.020

Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., … Zhu, X.

G. (2015). Redesigning photosynthesis to sustainably meet global food and 

bioenergy demand. Proceedings of the National Academy of Sciences, 112(28), 

8529–8536. https://doi.org/10.1073/pnas.1424031112

Pearcy, R. W. (1990). Sunflecks and photosynthesis in plant canopies. Annual Review of 

Plant Biology, 41(1), 421–453. https://doi.org/10.1016/0016-0032(53)91189-2

Petterssons, G., & Ryde Petterson, U. (1988). A mathematical model of the Calvin ‐

photosynthesis cycle. European Journal of Biochemistry, 175(3), 661–672. 

https://doi.org/10.1111/j.1432-1033.1988.tb14242.x

Porcar-Castell, A., Bäck, J., Juurola, E., & Hari, P. (2006). Dynamics of the energy flow 

24

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

47
48



through photosystem II under changing light conditions: A model approach. 

Functional Plant Biology, 33(3), 229–239. https://doi.org/10.1071/FP05133

Posada, J. M., Lechowicz, M. J., & Kitajima, K. (2009). Optimal photosynthetic use of 

light by tropical tree crowns achieved by adjustment of individual leaf angles and 

nitrogen content. Annals of Botany, 103(5), 795–805. 

https://doi.org/10.1093/aob/mcn265

Retkute, R., Preston, S. P., Murchie, E. H., Johnson, G. N., Burgess, A. J., Smith-Unna, 

S. E., … Jensen, O. E. (2015). Exploiting heterogeneous environments: does 

photosynthetic acclimation optimize carbon gain in fluctuating light? Journal of 

Experimental Botany, 66(9), 2437–2447. https://doi.org/10.1093/jxb/erv055

Roach, T., & Krieger-Liszkay, A. (2014). Regulation of Photosynthetic Electron 

Transport and Photoinhibition. Current Protein & Peptide Science, 15(4), 351–362. 

https://doi.org/10.2174/1389203715666140327105143

Rochaix, J. D. (2011). Regulation of photosynthetic electron transport. Biochimica et 

Biophysica Acta - Bioenergetics, 1807(3), 375–383. 

https://doi.org/10.1016/j.bbabio.2010.11.010

Sakowska, K., Alberti, G., Genesio, L., Peressotti, A., Delle Vedove, G., Gianelle, D., … 

Miglietta, F. (2018). Leaf and canopy photosynthesis of a chlorophyll deficient 

soybean mutant. Plant Cell and Environment, 41(6), 1427–1437. 

https://doi.org/10.1111/pce.13180

Slattery, R. A., Grennan, A. K., Sivaguru, M., Sozzani, R., & Ort, D. R. (2016). Light 

sheet microscopy reveals more gradual light attenuation in light-green versus dark-

green soybean leaves. Journal of Experimental Botany, 67(15), 4697–4709. 

https://doi.org/10.1093/jxb/erw246

Slattery, R. A., Vanloocke, A., Bernacchi, C. J., Zhu, X. G., & Ort, D. R. (2017). 

Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean 

mutants in field conditions. Frontiers in Plant Science, 8(April), 1–19. 

https://doi.org/10.3389/fpls.2017.00549

Soleh, M. A., Tanaka, Y., Nomoto, Y., Iwahashi, Y., Nakashima, K., Fukuda, Y., … 

Shiraiwa, T. (2016). Factors underlying genotypic differences in the induction of 

25

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

49
50



photosynthesis in soybean [Glycine max (L.) Merr.]. Plant Cell and Environment, 

39(3), 685–693. https://doi.org/10.1111/pce.12674

Song, Q., & Zhu, X. G. (2012). A model of canopy photosynthesis in rice that combines 

sub-models of 3D plant architecture, radiation transfer, leaf energy balance and C3 

photosynthesis. Proceedings - 2012 IEEE 4th International Symposium on Plant 

Growth Modeling, Simulation, Visualization and Applications, PMA 2012, 360–366. 

https://doi.org/10.1109/PMA.2012.6524858

Stirbet, A., Lazár, D., Guo, Y., & Govindjee. (2019). Photosynthesis: Basics, History, and

Modeling. Annals of Botany, 1–27. https://doi.org/10.1093/aob/mcz171

Taylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun 

transitions in wheat may cost at least 21% of productivity. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 372(1730), 20160543. 

https://doi.org/10.1098/rstb.2016.0543

Timm, H. C., Küppers, M., & Stegemann, J. (2004). Non-destructive analysis of 

architectural expansion and assimilate allocation in different tropical tree saplings: 

consequences of using steady-state and dynamic photosynthesis models. Ecotropica,

10(December), 101–121.

Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017). Stomatal conductance 

increases with rising temperature. Plant Signaling and Behavior, 12(8). 

https://doi.org/10.1080/15592324.2017.1356534

Van Der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An 

integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, 

temperature and energy balance. Biogeosciences, 6(12), 3109–3129. 

https://doi.org/10.5194/bg-6-3109-2009

Vialet-Chabrand, Silvere R.M.McAusland, L., Blatt, M. R., Lawson, T., Griffiths, H., & 

Matthews, J. S. A. (2017). Temporal Dynamics of Stomatal Behavior: Modeling and

Implications for Photosynthesis and Water Use. Plant Physiology, 174(2), 603–613. 

https://doi.org/10.1104/pp.17.00125

Vialet-Chabrand, S., Matthews, J. S. A., Brendel, O., Blatt, M. R., Wang, Y., Hills, A., …

Lawson, T. (2016). Modelling water use efficiency in a dynamic environment: An 

26

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

51
52



example using Arabidopsis thaliana. Plant Science. 

https://doi.org/10.1016/j.plantsci.2016.06.016

Vialet-Chabrand, Silvere, Matthews, J. S. A., Simkin, A. J., Raines, C. A., & Lawson, T. 

(2017). Importance of fluctuations in light on plant photosynthetic acclimation. Plant

Physiology, 173(4), 2163–2179. https://doi.org/10.1104/pp.16.01767

Von Caemmerer, S. (2013). Steady-state models of photosynthesis. Plant, Cell and 

Environment, 36(9), 1617–1630. https://doi.org/10.1111/pce.12098

Walker, B. J., Drewry, D. T., Slattery, R. A., Vanloocke, A., Cho, Y. B., & Ort, D. R. 

(2018). Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to 

Photosynthesis. Plant Physiology. https://doi.org/10.1104/pp.17.01401

Yamori, W. (2016). Photosynthetic response to fluctuating environments and 

photoprotective strategies under abiotic stress. Journal of Plant Research, 129(3), 

379–395. https://doi.org/10.1007/s10265-016-0816-1

Yamori, W., & Shikanai, T. (2016). Physiological Functions of Cyclic Electron Transport

Around Photosystem I in Sustaining Photosynthesis and Plant Growth. Annual 

Review of Plant Biology, 67(1), 81–106. https://doi.org/10.1146/annurev-arplant-

043015-112002

Ye, Z. P., Suggett, D. J., Robakowski, P., & Kang, H. J. (2013). A mechanistic model for 

the photosynthesis-light response based on the photosynthetic electron transport of 

photosystem II in C3 and C4 species. New Phytologist, 199(1), 110–120. 

https://doi.org/10.1111/nph.12242

Zhang, H., Zhong, H., Wang, J., Sui, X., & Xu, N. (2016). Adaptive changes in 

chlorophyll content and photosynthetic features to low light in Physocarpus 

amurensis Maxim and Physocarpus opulifolius “Diabolo.” PeerJ, 2016(6), 1–23. 

https://doi.org/10.7717/peerj.2125

Zhu, X. G., Wang, Y., Ort, D. R., & Long, S. P. (2013). e-photosynthesis: A 

comprehensive dynamic mechanistic model of C3 photosynthesis: From light 

capture to sucrose synthesis. Plant, Cell and Environment, 36(9), 1711–1727. https://

doi.org/10.1111/pce.12025

27

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

53
54



List of Tables

Table 1. State variables, fixed parameters and calibrated parameters of the model

Symbol Description Units
Value

Eiko MinnGold

S
ta

te

EnPSII Energy in photosystem II (t=0) µmol m-2 0

E z

Energy in PSII-zeax complex 

(t=0)
µmol m-2 0

Z Zeaxanthin activation level (t=0) - 0
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NADP+¿¿
NADP+ in chloroplast stroma 

(t=0)
- 5

NADPH
NADPH in chloroplast stroma 

(t=0)
- 5

R Rubisco activation level (t=0) - 0.001

F
ix

ed
p

ar
am

et
er

s

PAR
Photosynthetically active 

radiation

µmol m-

2s-1
520 or 780

α Absorption coefficient - 0.78 0.54

C
al

ib
ra

te
d

 p
ar

am
et

er
s

c¿ Energy input coefficient - 0.23 0.25

EPSII
¿ PSII energy carrying capacity µmol m-2 157.56 9.98

vETR Velocity of ETR s-1 0.78 11.56

vd Velocity of energy dissipation s-1 0.08 7.00

EZ
¿

PSII-zeax complex energy 

carrying capacity
µmol m-2 0.07 0.03

vNPQ Velocity of NPQ s-1 70.58 53.87

vza

Maximum velocity of zeaxanthin

activation
s-1 0.07 0.01

vC

Maximum velocity of Calvin 

Cycle reactions
s-1 11.75 13.04

ηNADPH Efficiency of NADPH - 5.07 4.10

ηNADP+¿¿ Efficiency of NADP+ - 0.89 0.75

vR
Maximum velocity of Rubisco 

activation
s-1 8.9∙10-4 14∙10-4

d Maximum H+ balance value - 8.40 3.69

c y

Minimum necessary cyclic 

electron flow
- -4 0

Figure Legends

Figure 1. Conceptual diagram of the model. The model describes the phenomena occurring in a

chloroplast.  The  six  state  variables  are  depicted  by  the  white  boxes.  The  three  quantities

considered in the simulations are non-photochemical quenching (NPQ), electron transport rate

(ETR) and carbon assimilation (A). The dashed arrows describe influences. CEF is the cyclic

electron flow transporting back electrons from photosystem I (PSI, not explicitly included in the

model, represented in the small grey box) into the linear electron transport (ETR), whose energy

29

663

664

665

666

667

668

669

670

57
58



is exploited to generate ATP (not represented) and influencing thylakoid pH and therefore the

activation of Zeaxanthin. The cytoplasmic ΔpH is influenced by the ratio NADPH/NADP+, which

activates Rubisco. 

Figure 2. Fluorescence data coupled with gas exchange data in the fluctuating light regime for

the two varieties Eiko (in dark green) and MinnGold (in light green) A. Data taken from all the

experimental period (60 minutes) B. Focus on the fluctuations from the minute 45 to the 55th.  

Figure 3. Top. Eiko data (in red) compared to model results (in black). The data are shown as

means of three replicates (red continuous line) and their standard error (red shaded area around

the mean value). Bottom. Parity plots for ETR, A and NPQ with related R2.

Figure 4. Top. MinnGold data (in red) compared to model results (in black). The data are shown

as means of three replicates (red continuous line) and their standard error (red shaded area

around the mean value). Bottom. Parity plots for ETR, A and NPQ with related R2.

Figure 5. Top. Eiko data (in red) compared to model results (in black) in constant light. The data

are shown as means of three replicates (red continuous line) and their standard error (red shaded

area around the mean value). Bottom. Parity plots for ETR, A and NPQ with related R2.

Figure 6. Top. MinnGold data (in red) compared to model results (in black) in constant light. The

data are shown as means of three replicates (red continuous line) and their standard error (red

shaded area around the mean value). Bottom. Parity plots for ETR, A and NPQ with related R2.

Figure  7.  Sensibility  analysis  of  the  model  parameters  for  both  MinnGold  and  Eiko.  The

parameters have been perturbed of ±5% around the value in Table 1 and the relative deviation

from baseline simulation of the model output was calculated.

Figure 8. A. Varying fluctuating period of light in Eiko. Light is fluctuating every 30 seconds, 1

minutes (as in the experiment), and 4 minutes. B. Effect of varying fluctuating light on the steady

state variable (cumulative value after 40 minutes). 0 fluctuating period means constant light.

Supporting Information

Figure S1. Effect of varying fluctuating light on the steady state variable (cumulative value after

40 minutes) in MinnGold. 

Figure S2. Varying fluctuating intensity of light in Eiko. Light was either kept constant at 650

PPFD or fluctuating every minute at two different intensities: 650 ± 30% and 650 ± 50%  
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