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Disaggregation of Future Rainfalls to Generate IDF Curves

Abstract 

Heavy increase in urbanization, industrialization and population is causing an increase in 

emissions of greenhouse gases (GHG) and this causes variations in atmosphere. Climate 

change causes extreme rainfall events and these events are expected to be enhanced in the 

future. Since flooding is influencing urban areas, controlling and management of flooding is a

major necessity. Intensity-Duration-Frequency (IDF) curves play a huge role in representing 

rainfall characteristics by linking intensity, duration, and frequency of rainfall. 

Analysing short-duration rainfall is crucial for urban areas due to fast responses of drainage 

systems against heavy rainfall events. IDF curves were generated via the Gumbel method for 

rainfalls from 5-min to 24-h in this study. However, providing short-duration rainfall data is 

challenging due to the low capacity, costs and geographic conditions. Therefore, the 

HYETOS disaggregation model was applied to obtain sub-hourly data. 

IDF curves are stationary since they only consider historical events. However, IDF curves 

must be non-stationary and time varying based on preparation for upcoming extreme events. 

This study aims to generate IDF curves under climate change scenarios. The Regional 
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Climate Model (RCM) HadGEM2-ES generated under Representative Concentration 

Pathways (RCP) 4.5 and 8.5 scenarios and was used in the study to represent future rainfalls. 

Future daily rainfalls were disaggregated into sub-hourly using disaggregation parameters of 

corresponding station’s historical rainfall data since it is impossible to estimate parameters 

when hourly data is not available. With this new approach, future daily rainfall data is 

disaggregated into 5-min data by complying with historical rainfall patterns rather than 

complying with randomly selected rainfall characteristics. The study concluded that future 

rainfall intensities increases compared to historical IDF curves. RCP8.5 scenarios have higher

rainfall intensities for all return periods compared to RCP4.5 scenarios for all stations except 

a station. In addition, the accuracy of the selected disaggregation model was verified.

Keywords: IDF curves, disaggregation, climate change, RCM, RCP, flood
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1. INTRODUCTION

Irrepressible growth of industrial activities, urbanization and population enhance greenhouse 

gases (carbon dioxide, methane, aerosols etc.) emissions. This enhancement causes major 

variations in climate and leads to a necessity to deal with a serious challenge in the future: 

climate change (Mirhosseini, Srivastava, & Stefanova, 2013). Climate change causes global 

warming by increasing global temperatures, and this causes enhancement of 

evapotranspiration and water vapour in the atmosphere, hence, more extreme events such as 

extreme rainfall. Extreme rainfall events are one of the most serious consequences of these 

changes and they can cause floods. Floods damage to structures such as sewers, drainage 

systems, bridges, and infrastructures (Singh, Arya, Taxak, & Vojinovic, 2016). Dealing with 

heavy rainfall events that cause floods, loss of life, crops, and properties, is challenging for 

urban areas. High intensity rainfall events are considered a key factor in flooding events. 

Rainfall Intensity-Duration-Frequency (IDF) curves are necessary in designing hydraulic 

structures such as sewers, drainages, gutters, and culverts since an inappropriate design can 

lead to losses of life, economy and property (Burn, 2014). Using IDF curves to design water 

facilities allows engineers to be ready for extreme events. Thus, possible damages can be 

decreased. IDF curves are widely applied in many water related projects, flood forecasting 

and management and water management (Simonovic & Peck, 2009). 

IDF curves give a rainfall intensity for the selected duration and return period. These IDF 

curves demonstrate the possibility of occurrence of a rainfall event for a specific duration. 

Durations can vary between 5 minutes and 24 hours. Ordinarily, short-duration (high-

resolution) rainfalls (e.g., from 5 min to 30 min) are analysed for urban areas, whereas longer 

duration (low-resolution) rainfalls (e.g., from 1 hour to 24 hours) are applied for rural areas 

(Bougadis & Adamowski, 2006). Urban floods, especially flash floods, are the typical 

consequence of the fast responses by drainage systems (Forestieri et al., 2017). Therefore, 

analysing short-duration rainfalls is crucial for urban areas due to fast responses of drainage 

systems against heavy rainfall events (Nhat, Tachikawa, Sayama, & Takara, 2008). Even 

though long-duration data can be provided from rain gauge stations and climate models 

easily, providing short-duration rainfall data is challenging due to the limitations of a 

station’s capability, costs and geographic conditions. Even if short-duration rainfall data is 

obtained, they are usually scarce and not reliable. Hence, it is mandatory to apply a process 

called “disaggregation” to overcome these limitations. There is a large volume of 

disaggregation methods and studies describing disaggregation. K-nearest neighbour (KNN) 

developed by Prairie, Rajagopalan, Lall, and Fulp (2007), HYETOS developed by 
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Koutsoyiannis and Onof (2001), and Multivariate Rainfall Disaggregation (MuDRain) 

developed by Koutsoyiannis (2003) models have been used widely (Debele, Srinivas, & 

Parlange, 2007; Hanaish, Ibrahim, & Jemain, 2011; Lu & Qin, 2013). Rodriguez-Iturbe, Cox,

and Isham (1987) developed the Bartlett-Lewis disaggregation model to disaggregate daily 

and hourly rainfall into sub-hourly (e.g., 5-min). Afterwards, a disaggregation model 

HYETOS based on Bartlett-Lewis model was established by Koutsoyiannis and Onof (2001).

The HYETOS model allows users to obtain short-duration rainfalls from long-duration 

rainfalls by benefitting from four statistical values of 1, 6, 12 and 24-h rainfall data (mean, 

variance, auto-covariance lag 1 and proportion of dry days). 

To generate IDF curves, annual maxima for rainfalls are obtained for each duration. 

Afterwards, probability distribution functions such as Gumbel, Generalized Extreme Value 

(GEV), the Log-Normal and Log Pearson Type III are applied to annual maxima to obtain 

rainfalls for each return period. Computed rainfalls (mm) are converted to rainfall intensities 

(mm/h). Many researchers generated and studied on IDF curves since 1930s (Sherman, 1931;

Bernard, 1932; Hershfield, 1961; Bell, 1969; Chen, 1983; Burn & Taleghani, 2012; Van de 

Vyver, 2018; Nwaogazie & Sam, 2019). 

Although IDF curves based on historical rainfall events are used frequently, they are still not 

fully sufficient against a rapidly changing environment. Historical rainfall-based IDF curves 

are stationary, therefore they are ineffective in catching climate change conditions (Singh et 

al., 2016). Current IDF curves assume that extreme rainfall events will not change under 

future climate conditions. Hence, developing advanced IDF curves, which are successful at 

representation of both historical and future climate conditions, is a huge necessity. With this 

type of IDF curves, it is possible to deal with extreme rainfall events under non-stationary 

climate conditions. Many studies have been performed to update IDF curves considering 

future conditions (Mirhosseini et al., 2013; Liew, Raghavan, & Liong, 2014; Hajani, 2020). 

In the study of Zhu, Stone, and Forsee (2012), they investigated the generation of IDF curves 

that were affected by rainfall intensity changes under SRES-A2 greenhouse emission 

scenario. Rainfall intensities with 3-h intervals obtained from compounds of Regional 

Climate Models (RCMs) and Global Climate Models (GCMs) were used in the study. IDF 

curves were developed for single station locations and calculated annual maximum series for 

3, 6, 9, 12, 18, 24, 48 and 96 hours. De Souza Costa, Blanco, and de Oliveira-Junior (2020) 

performed a study on IDF curves under future climate conditions. They used three different 

Global Climate Models (GCMs) under Representative Concentration Pathway (RCP) 

scenarios RCP4.5 and RCP8.5. 
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This study generates historical IDF curves and updated IDF curves based on disaggregated 

rainfalls to assess climate change impact on rainfall intensities. (5, 10, 15, 30 minutes; 1, 2, 3,

4, 5, 6, 8, 12, 18 and 24 hours) for durations, (2, 10, 25, 50 and 100 years) for return periods 

were selected. Eight meteorological stations from Istanbul, Turkey were selected as study 

areas. Gumbel function was selected as a frequency analysis technique to generate IDF 

curves from annual maximum rainfalls. RCMs generated under RCP scenarios RCP4.5 and 

RCP8.5 were provided for the period of 2021-2099. to be used as daily future rainfall data. 

HadGEM2-ES developed by the Met Office Hadley Centre Institute (MOHC) was selected as

the RCM. Unfortunately, RCMs are not suitable to use directly due to biases between 

observed and simulated historical rainfall data. Therefore, the distribution mapping method 

was applied to correct these biases. Provided future rainfall events were in daily form, hence, 

the HYETOS model was applied for the disaggregation of daily future rainfall into sub-

hourly and hourly rainfall to generate IDF curves, which is generated by rainfalls in the range

of 5-min and 24-h. Observed rainfall data provided by the Turkish State Meteorological 

Service (TSMS) contains different 1-min and hourly rainfall data sets. The HYETOS model 

was also applied for the disaggregation of observed hourly rainfall data provided by the 

TSMS into sub-hourly rainfall to generate historical IDF curves. As mentioned before, 

HYETOS parameters are computed if hourly rainfall data exist. However, providing and 

dealing with future hourly data for long periods (e.g., 80 years for 2021-2099) is thorny due 

to huge amounts of data. If the aim is to generate short-duration future IDF curves, short-

duration future rainfall should be obtained. Therefore, this study focuses on the 

disaggregation of future daily rainfall data. Since the data are daily, it is impossible to 

compute the parameters for future data. Therefore, the monthly parameters of each station’s 

historical data were used for corresponding station’s future data. R Studio was employed 

from the beginning of the study for all computations, analyses and plottings. 

This study has three objectives: (i) generating more reliable and effective future IDF curves 

under various climate change scenarios for urban areas by evaluating short-duration future 

rainfall data for drainage and infrastructure systems, (ii) disaggregation of future daily 

rainfalls into sub-hourly rainfalls with a new approach to HYETOS disaggregation model, 

(iii) verifying the accuracy of the selected model by comparing IDF curves generated by 

disaggregated and observed rainfalls for the corresponding stations. This new approach 

includes applying historical monthly disaggregation parameters of each station to 

corresponding station’s future data. This process gives a chance for future data to capture 

historical patterns of rainfall as much as possible for each station during the disaggregation 
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process. Hence, the method is valid when hourly future data are scarce due to various 

reasons. The final objective is to assess the impact of climate change impact on rainfall 

intensities by comparing historical and future IDF curves and IDF curves under RCP4.5 and 

RCP8.5 scenarios with each other. 

2. DATA AND METHODS 

2.1 Study Area

The study area Istanbul is located in north-western Turkey (Figure 1). The city is located in 

the Marmara region with a total area of 5,343 km2 and a population of 15,519,267. The 

geographical location of the city is 41°00′49″N 28°57′18″E. One of the most important 

characteristics of this city is that it separates Europe and Asia. Thus, the city has lands in both

Europe and Asia. The Black Sea and the Marmara Sea are connected in Bosphorus. Istanbul 

has the highest population in Turkey and Europe. Camlica Hill is the highest point of the city 

with an altitude of 288 m. Rainfall and IDF curve data were provided for eight different 

meteorological stations managed by the TSMS in Istanbul. Thus, studies were performed for 

the selected stations, and future climate data obtained from RCM were generated for each 

station. Three stations are on the Asian side, and five stations are on the European side. The 

stations are listed as follows: Canta, Terkos, Olimpiyat, Omerli, Florya, Sariyer, Goztepe, and

Sile (Figure 2).

2.2 Data Types

2.2.1 Observed Data

To generate IDF curves with the effects of climate change in the future, both observed 

rainfall and future climate data simulated under climate change scenarios are needed. In this 

study, observed, simulated historical and simulated future rainfall data and historical IDF 

curve data were used. 14 years (2005-2018) observed rainfall data (mm) were provided by 

the TSMS for 8 different stations. Stations listed in the previous section were: Canta, Terkos, 

Olimpiyat, Florya, Sariyer, Goztepe, Omerli, and Sile. For Omerli, Terkos, Canta, and 

Olimpiyat stations, 1-minute rainfall data were provided. For other stations, hourly rainfall 

data were provided. These data were used for three reasons: (i) to verify that the 

disaggregation process was applied correctly, (ii) to obtain Hyetos disaggregation parameters 

6

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182



that will later be used in the disaggregation of simulated future rainfall, (iii) to generate 

historical IDF curves for all stations. IDF curves generated by observed rainfall provided by 

the TSMS were used to make a comparison of both future IDF curves and IDF curves 

generated from disaggregated historical rainfall. IDF curves were available for stations 

Florya, Goztepe and Sariyer.

2.2.2 Regional Climate Model (RCM)

Climate models are the representation of the climate system under climatic scenarios to 

understand climate change in the future. These models can be divided into GCMs and RCMs.

Both GCMs and RCMs are constructed under different RCP scenarios for various climate 

components such as rainfall, temperature, wind, etc.  High-resolution RCMs represent 

truthful simulations of heavy rainfall compared to GCMs. Therefore, RCMs are preferable for

water management projects. (Mailhot, Duchesne, Caya, & Talbot, 2007). Both simulated 

historical and simulated future data were obtained from the Earth System Grid Federation 

(ESGF) – Lawrence Livermore National Laboratory (LLNL) website. Simulated daily 

historical rainfall data for the period of 1949-2005 were provided. Simulated daily future 

rainfall data were provided for 2021-2099 under RCP4.5 and RCP8.5 scenarios.  

The Intergovernmental Panel on Climate Change (IPCC) published the Fifth Assessment 

Report (IPCC 2014) to assess climate change in the future using RCP scenarios. RCPs are 

used to define emissions of air pollutants, greenhouse gases, and atmospheric concentrations. 

Watts per square meter (W/m2) is the unit which represents energy imbalance in the 

atmosphere. Radiative forcing is 4.5 W/m2 for RCP4.5 and 8.5 W/m2 for RCP8.5 (Padhiary, 

Patra, Dash, & Kumar, 2020). In terms of rainfall intensities, the magnitudes are listed as 

follows from the lowest to the highest: RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (Singh et al., 

2016).

The selected RCM was from the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) Europe program. Model HadGEM2-ES with a 12.5 km resolution developed by 

the MOHC was preferred. Outputs from HadGEM2-ES were downscaled to each station. 

Distribution mapping was preferred as bias-correction methods to handle biases between 

observed and simulated historical data. 

2.2.3 Climate Forecast System Reanalysis (CFSR)

As mentioned in previous sections, RCMs are not available to use directly due to biases 

between observed and simulated historical data. To correct these biases, the Climate Model 
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Data for Hydrologic Modeling (CMhyd) tool was applied (Rathjens, Bieger, Srinivasan, 

Chaubey, & Arnold, 2016). Using the CMhyd tool, RCMs were downscaled to each 

meteorological station to study with finer-scale climate data. Simulated historical data, 

observed data, and simulated future data were used together for the bias-correction process. 

As observed data to be used in the bias-correction process, daily rainfall for the period of 

1979-2014 was obtained from the National Centers for Environmental Prediction (NCEP) 

Climate Forecast System Reanalysis (CFSR) for each station. The CFSR is a reanalysis 

service which combines observations made in the past by weather stations with today’s 

weather model to provide a complete picture of past rainfall events. Missing values are 

recreated by blending overlapping existing values from the observed data. CFSR data were 

preferred since the observed data provided by TSMS have some missing values. Simulated 

historical RCM data were provided for the period of 1949-2005, therefore, it was necessary to

overlap periods of historical RCM data and observed data as much as possible. Observed data

provided by the TSMS was insufficient to overlap RCM data since the data is from 2005 to 

2018 and the period of historical RCM data is 1949-2005. The study of El Afandi (2014) 

concluded that the CFSR can be used when there are lacks in observed data sets since the 

discrepancies between observed and CFSR data are too small. The CFSR rainfall data can be 

considered as an alternative for data-scarce regions (Cuceloglu & Ozturk, 2019). Used data 

types are demonstrated in Figure 3.

2.3 Bias-Correction of Simulated Data

The RCM has disadvantages to use directly as climate data in hydrological studies. RCM 

outputs are not suitable to be used directly without correcting their biases. These biases arise 

due to inconsistencies between observed and simulated historical rainfall (Rathjens et al, 

2016).  Observed high rainfall and the number of dry days is not well represented if biases 

exist. Seasonal alterations and extreme temperatures are predicted badly due to biases. RCMs

simulate low rainfall days instead of dry days (Teutschbein & Seibert, 2010).  The CMhyd 

software developed by Texas A&M University (TAMU) which is available online was 

preferred for the bias-correction process. The general framework of the bias-correction 

process was described by Rathjens et al. (2016) in Figure 4. First, biases between observed 

climate data and simulated historical climate data are identified and the bias-correction 

algorithm is then parameterized. This algorithm is then applied to simulated future climate 

data to correct biases. As a result, corrected historical and future climate data are obtained as 

output. Bias-correction helps users to use RCMs or GCMs in hydrological studies by 
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representing simulated data better. Several bias-correction methods, including distribution 

mapping, were developed in the study of Teutschbein and Seibert (2010). In this study, the 

distribution mapping method was employed as the bias-correction method.

2.3.1 Distribution Mapping

Teutschbein and Seibert (2010) applied this method in their studies. “Probability mapping”, 

“quantile matching”, “statistical downscaling”, and “histogram equalization” terms can be 

used for distribution mapping in the literature. With the distribution mapping, the distribution

function of simulated climate data is corrected to coordinate with the distribution function of 

observed data. To perform this, a transfer function is used to shift the distribution of 

simulated data. It is assumed that the biases are stationary under climate change for this 

method (Teutscbein & Seibert, 2010). Distribution mapping employs Gamma distribution to 

remove biases. Thom (1958) expressed the Gamma distribution with shape parameter k, and 

scale parameter β. Gamma distribution is applicable to the distribution of rainfall (Teutscbein 

& Seibert, 2010).

f y=
1

βk Γ (k )
xk−1e− x /β ; x≥ 0; β ,k>0                       (1)                                                                  

Where β is the scale parameter, k is the shape parameter, Γ is the gamma function, and x is 

normalized daily rainfall.  Each grid and month have its own scale and shape parameter. With

this method, mean, variance, skew, and frequency of rainfall events are corrected. The 

distribution profile is managed by shape parameter k. Three circumstances are considered by 

the value of k. When k < 1, it defines exponentially shaped Gamma distribution, k = 1 

describes exponential distribution, k > 1 indicates a skewed uni-modal distribution. The scale 

parameter β dictates dispersion of the Gamma distribution. k > 1 situation is commonly 

applied for observed daily rainfall. If the scale parameter β is small, it eventuates to a more 

compressed distribution, and this ends up with lower probabilities of extreme rainfall. If the β

is large, this causes a stretched distribution, and this is the reason for higher probabilities of 

extreme events (Teutscbein & Seibert, 2010). The study by Teutschbein and Seibert (2010) 

showed that gamma distribution parameters fitted to simulated climate data showed similar 

patterns for the selected catchments in the study area. They reported that the level of 

commitment of the distribution parameters (k/β) defines the skill for the RCM to reproduce 

rainfall. As mentioned before, Teutschbein and Seibert (2010) compared several bias-

correction methods including linear scaling, local intensity scaling, power transformation, 

variance scaling, and distribution mapping considering the skills of methods to arrange the 
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statistics of the respective observed climate data. The study concluded that distribution 

mapping is the best performing method for rainfall with the minimum MAE (minimum 

absolute error). They also concluded that the method is applicable to both current and future 

climate data.

2.4 Disaggregation of Daily and Hourly Rainfalls into Sub-Hourly Rainfall

Hydrological studies such as generating IDF curves require high-resolution rainfall data. This

need arises from the fact that maximum values of finer scales of observed rainfall (e.g., sub-

hourly and hourly) are necessary to develop an IDF curve. However, providing high-

resolution data is challenging due to the limitations of a station’s capability, costs and 

geographic conditions. To cope with this shortcoming of finer scale rainfall data, 

disaggregation methods which derive finer scale data (i.e. hourly and sub-hourly) from 

coarser-scales (i.e. daily data) are applied. 

As in past studies, high-resolution rainfall was needed in this study. IDF curves are generated

using maximum values of sub-hourly rainfall (in the range of 5 to 30 minutes) and hourly 

data (i.e., from 1 to 24 hours). Four stations with 1-minute rainfall data were provided, 

however there is still a lack of sub-hourly data for the stations of Florya, Goztepe, Sile, and 

Sariyer. Hourly rainfall data were provided for these four stations for 2005-2018. The 

disaggregation process was used for two purposes in this study (i) to disaggregate hourly 

historical rainfall data to sub-hourly data, (ii) to disaggregate daily future climate data 

simulated from RCMs to sub-hourly and hourly data. 

(Koutsoyiannis & Onof, 2001) developed a computer programme called Hyetos based on the 

Bartlett-Lewis model, and they implemented a disaggregation scheme in an R package called 

“HyetosMinute”. The Bartlett-Lewis model was constructed by Rodriguez-Iturbe et al. (1987)

to overcome the inefficiency of simple Poisson models. In this study, Hyetos disaggregation 

model was applied. 

The original Bartlett-Lewis model has 5 parameters (β, γ, μx, η, λ) for the disaggregation 

process. Storm origins are developed by λ, cell origins are developed by β, cell arrivals end 

after a specific time, and the time is exponentially distributed with γ. Each cell has a duration 

exponentially distributed with η. Uniform intensity for each cell is distributed exponentially 

with μx. Hanaish et al. (2011) explained the original Bartlett-Lewis rectangular pulses model 

in their study. 

Rodriguez-Iturbe, Cox, and Isham (1988) adjusted the original model to boost the flexibility 

of the model to generate larger diversity of rainfall. This modified model is called Modified 
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Modified Bartlett-Lewis Rectangular Pulse Model (MBLRPM). With Gamma distribution, η 

is changed for each storm.  

In this model, β and γ also altered, therefore ratios k=β/n and φ=γ/η stay constant. So that 

MBLRPM model has 6 parameters (α, φ, μx, k, λ, v). An enhanced version of the 

Evalutionary Annealing-Simplex Method is applied to estimate Bartlett-Lewis model 

parameters. 4 historical statistical values (mean, variance, auto-covariance lag-1, and the 

proportion of dry days) for 1-, 6-, 12- and 24-hour time scales of rainfall data are used to 

perform the estimation. MBLRPM parameters are used for single site disaggregation as 

inputs. Each month has its own parameters for the disaggregation process. Bartlett-Lewis 

parameters cannot be calculated for future data due to the absence of hourly future rainfall 

data. Therefore, parameters obtained for observed rainfall data were used for corresponding 

station’s future monthly data. For example, parameters were calculated for each month of 

observed rainfall data of Florya station. Afterwards, these parameters were used for the 

disaggregation process of future rainfall data of Florya station for the corresponding months. 

Thus, each station has its own parameters for future rainfalls. The aim in doing this was to 

adapt to historical patterns of rainfall as much as possible for each station.

For the assessment of accuracy of the selected disaggregation method Hyetos, a comparison 

was performed between the historical IDF curves provided by the TSMS and IDF curves 

generated using observed hourly and sub-hourly historical data that disaggregated from the 

observed hourly rainfall provided by the TSMS. Results showed that IDF curves were in 

close relationship, so that MBLRPM was successful for the disaggregation. As mentioned 

before, MBLRPM was applied to disaggregate observed hourly rainfall into sub-hourly 

rainfall and disaggregate simulated daily future rainfall into sub-hourly and hourly to 

generate future IDF curves

2.5 Generating Historical and Future IDF Curves

This study focuses on generating IDF curves for both historical and future rainfalls. Periods 

of 2, 5, 10, 25, 50 and 100-year were selected as return period and for the durations, 5-, 10-, 

15-, 30-min, and 1-, 2-, 3-, 4-, 5-, 6-, 8-, 12-, 18- and 24-h were selected. 

The RCMs generated under RCP4.5 and RCP8.5 climate change scenarios were used to 

generate future IDF curves. On the other hand, observed rainfall data were used for historical 

IDF curves. Generating IDF curves requires annual maximum rainfall value for each duration

(5-, 10-, 15-, 30-min, and 1-, 2-, 3-, 4-, 5-, 6-, 8-, 12-, 18- and 24-h) of both historical period 

(2005-2018) and future period (2021-2099). Historical 1-min data were aggregated to 5-, 10-,
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15-, 30-min, and 1-, 2-, 3-, 4-, 5-, 6-, 8-, 12-, 18- and 24-h for Terkos, Omerli, Canta and 

Olimpiyat stations. Hourly historical data were disaggregated into 5-min rainfalls for Florya, 

Goztepe, Sariyer and Sile stations. Afterwards, 5-min rainfalls were aggregated to durations 

from 5-min to 24-hours. Future Similarly, future daily rainfall data were disaggregated into 5-

min data and then aggregated. After rainfall data for all selected durations were obtained, 

annual maximum rainfall values were computed for each duration.

Probability distribution functions (PDF) are used to generate IDF curves. IDF curves were 

generated using the Gumbel distribution. The major advantage of the Gumbel distribution is 

its easy application and its use for only extreme events. Gumbel has two parameters: location 

and scale. The function of Gumbel is defined as:

F ( x )=
1
β
e
x−α
β e−e

x−α
β                                                 (2)

Where α is the location, and β is the scale parameter. In this study, Method of Moments 

(MoM) was applied for the estimation of the parameters. Calculating rainfall intensities 

requires a Gumbel frequency factor for each return period. The mean and standard deviation 

of annual maximum values for each duration are then calculated. The Gumbel frequency 

factor KT is calculated using the equation (Nwaogazie & Sam, 2019):

KT=
√6
π [0.5772+ ln [ ln [ T

T−1 ]] ]                    (3)

Where T is the return period. 

The value of random variable R, which is rainfall (mm) for this study, was found with the 

equation given by Chow (1951): 

RT=M+KT S             (4)

Where R is rainfall (mm), M and S are mean and standard deviation of observed maximum 

rainfall for the current duration, respectively, and KT is the Gumbel frequency factor for each 

return period. Hence, rainfall values are calculated for the current duration at different return 

periods. Rainfall intensity I (mm/h) can be calculated by dividing rainfall R by selected 

duration d (hours).

I=
RT
d

 (5)

Then, the process is performed for each duration and maximum rainfall intensities are 

obtained for each duration and for each return period.

Briefly, the steps to generate IDF curves are followed:
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1. Annual maximum values of rainfall data for each duration (5-, 10-, 15-, 30-min, and 1-, 2,

3-, 4-, 5-, 6-, 8-, 12-, 18- and 24-h) and year (2005-2018 and 2021-2099) are calculated.

2. MoM was applied to obtain Gumbel parameters.

3. Gumbel frequency factors are derived for each return period.

4. Mean and standard deviation values are calculated for observed maximum rainfall values 

for each duration.

5. Rainfall values are computed with Chow’s equation and rainfall intensity is calculated by 

dividing rainfall into durations.

6. The process is repeated for each duration.

7. IDF curves are plotted with calculated rainfall intensities for each duration and each 

return period.

3. RESULTS 

This chapter contains three sections to show results of analyses of IDF curves. Differences 

quantified by percentage between IDF curves were determined. The first section contains the 

comparisons of IDF curves generated by the disaggregated rainfalls and IDF curves provided 

directly by the TSMS. These comparisons were performed to verify the accuracy of the 

disaggregation process. The second section displays the generated IDF curves for singular 

data: historical and future rainfalls of RCP4.5 and RCP8.5. This section is created to exhibit 

differences between historical and future climate conditions. Accordingly, historical IDF 

curves and future IDF curves generated for both RCP4.5 and RCP8.5 scenarios were 

compared separately. Section 3, the final section of the results chapter displays the 

differences between future IDF curves RCP4.5 and RCP8.5 to prove the impacts of different 

climate scenarios on rainfall. 

3.1 Performance of the Disaggregation Model

IDF curves generated by observed rainfall for Florya, Sariyer and Goztepe stations were 

supplied by the TSMS to evaluate the performance of Hyetos disaggregation model. For the 

evaluation, the observed IDF curves were compared to the disaggregated IDF curves 

generated by the rainfall disaggregated from the hourly observed data. Initially, hourly 

observed rainfall data were disaggregated into sub-hourly data (5-, 10-, 15- and 30-min). 

Rainfall of hourly and greater time durations (1-, 2-, 3-, 4-, 5-, 6-, 8-, 12-, 18- and 24-h) were 
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obtained by the aggregation of disaggregated 5-min rainfall data rather than the aggregation 

of hourly rainfall data provided by the TSMS. After obtaining all disaggregated rainfall data 

for all durations, IDF curves were generated using the Gumbel distribution method. 

Both disaggregated and observed IDF curves were plotted together to exhibit the accuracy of 

disaggregation method and to prove that IDF values are in close relationship. Percentage 

difference between total values of observed and disaggregated IDF curves is 2.36% for 

Florya, 2.98% for Goztepe and 3.04% for Sariyer station. These comparisons revealed that 

there is a positive correlation between observed and disaggregated rainfall intensities by 2.8%

total average change when all stations considered. Since the selected disaggregation model 

shows a good performance to obtain sub-hourly data from hourly/daily data, the process was 

applied for the disaggregation of daily future rainfall data, as well. IDF curve trends for 

observed and disaggregated rainfall data for three stations are demonstrated in Figure 5. In 

addition, the percentage differences between IDF curves of disaggregated and observed 

rainfalls for each duration and return period are written in Table 1, Table 2, and Table 3 for 

Florya, Goztepe, and Sariyer stations, respectively. 

3.2 Changes in Rainfall Intensities under Future Climate Conditions

This section deals with the variations of future IDF curves (2021-2099) with respect to 

historical (2005-2018) IDF curves. Analyses showed that both RCP4.5 and RCP8.5 scenarios

have similar rainfall intensity trends. 588 rainfall intensity values exist for each RCP 

scenarios which are the multiply of 14 durations, 6 return periods, and 7 stations (RCP4.5 

analyses for Omerli and RCP8.5 analyses for Canta do not exist due to uncorrectable biases). 

Most of these rainfall intensities are increasing in terms of number of values for RCP4.5 and 

RCP8.5 scenarios with respect to historical rainfall intensities with a value of 95.4% (561 of 

588 is increasing) and 98.30% (578 of 588 is increasing), respectively. Rate of increase in 

terms of total value of rainfall intensities under RCP4.5 is 36.5%, and under RCP8.5 is 

42.3%. For the RCP4.5 scenario, the observed highest increase in terms of value of a specific 

rainfall intensity is 79.7% for Canta station for the duration of 24-h and a return period of 2-

y, and the highest decrease is -25% for Olimpiyat station for the duration of 2-h and a return 

period of 100-y. For the RCP8.5, the highest increase is %74 for Omerli station for the 

duration of 1-h and return period of 2-y, the highest decrease is -17% for Sariyer station for 

the duration of 5-min and return period of 2-year. Rainfall intensities are decreasing in 

Olimpiyat station more than other stations for both RCPs. Findings of analyses are 

summarized in Table 4 for both RCPs. Table 4 contains average increases by percentage for 
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each return period. When changes are considered from the point of return periods, average of 

percentage increase is the greatest for 2-y return period and it is the lowest for 100-y return 

period. This result reveals that, increase of rainfall intensities will be higher for shorter 

periods and lower for larger periods.  But the same trend is not valid in terms of durations. 

Even though 24-h durations have the greatest average value of percentage increase, this value

is not changing gradually, which means that rainfall intensities can increase more for shorter 

durations or longer durations. Analyses revealed that extreme rainfall intensities are 

increasing in the future with respect to historical (Figure 6 and Figure 7). Table 4 shows 

average percentage increase of IDF values under RCP4.5 and RCP8.5 scenarios with respect 

to historical IDF values in terms of return periods. 

3.3 IDF Curve Trends of RCP4.5 and RCP8.5

As revealed in the previous section, rainfall intensities are increasing substantially under 

RCP4.5 and RCP8.5 scenarios. While rainfall intensities under RCP4.5 are increasing by an 

average of 30 to 45 percent for return periods, and 30 to 51 for durations, they are increasing 

by an average of 38 to 47 for return periods, and 38 to 57 for durations under RCP8.5. It is 

clear that RCP8.5 scenarios cause more extreme events with respect to RCP4.5 scenarios 

(Figure 8). In this section, the impacts of RCP scenarios on rainfall intensities are evaluated. 

Table 5 exhibits average of percentage increases of RCP8.5 with respect to RCP4.5 for each 

station, return period and duration. also shows IDF curve trends for both scenarios for a 

selected station. What stands out in Table 5 is RCP8.5 scenarios have higher rainfall 

intensities in all stations except Terkos station. In Terkos station, rainfall intensities are 

increasing for both scenarios with respect to historical IDF, but RCP4.5 has 6.59% higher 

rainfall intensities than RCP8.5 in terms of total rainfall intensities of return periods and 

durations. Olimpiyat is the station most affected by RCP8.5 with 14.5% difference to 

RCP4.5. In Florya station, RCP4.5 and RCP8.5 scenarios have almost the same trends for 

rainfall intensities. In total of all stations, RCP8.5 scenarios have 2.67% higher rainfall 

intensities. Rainfall intensities are increasing more for higher durations under RCP8.5, but 

increasing trend is almost same for all return periods. Table 5 demonstrates the total average 

percentage increase (when all return periods and durations are selected) of IDF values under 

RCP8.5 with respect to RCP4.5 for each station. 

Table 6 shows the average total change of IDF values for RCP8.5 with respect to RCP4.5 

only for each return period. 
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4. DISCUSSION 

4.1 Applicability of the Disaggregation Model 

The first analysis was performed using observed hourly rainfall data from Florya, Goztepe 

and Sariyer. Since the observed IDF curves for these stations were provided by the TSMS, 

they were used to verify the performance of the disaggregation method. Hourly rainfall data 

were disaggregated into sub-hourly data. Afterwards, IDF curves for disaggregated rainfall 

data were generated and compared to observed IDF curves. These comparisons revealed that 

there is a positive correlation between observed rainfall and disaggregated rainfall data by 

2.8% total average change for three stations. Percentage differences between disaggregated 

and observed IDF curves were demonstrated in Table 1, Table 2, and Table 3. IDF curve 

trends for both disaggregated and observed IDF curves given in Figure 5 also show a close 

relationship between them. Therefore, the selected disaggregation method was applied to all 

data sets.

4.2 Behaviours of Rainfall Intensities in the Future 

The second analysis can be considered the main analysis since it shows the differences 

between historical and future IDF curves. Hence, the impact of climate change can be 

observed with these comparisons. Historical and future IDF curves (for both RCP4.5 and 

RCP8.5) were generated for all stations. Afterwards, the generated IDF curves were plotted 

and compared. Conclusions of this analysis are listed as follows. 

1. Most of rainfall intensities are increasing in terms of number of values for RCP4.5 and 

RCP8.5 rainfall intensities compared to historical rainfall intensities with a value of 95.4% 

(561 of 588 is increasing) and 98.30% (578 of 588 is increasing), respectively. Hence, rainfall

events will be more intensified in the future compared to historical events and as a result, 

rainfall events will be more destructive.

2. Rainfall intensities will increase for shorter return periods more than higher ones. The 

evidence of this result implies that rainfall intensities will be higher for more frequent events 

in the coming future. For example, rainfall intensities are expected to rise by average 45% 

and 47% for 2-y return period, while percentages are 30% and 38% for 100-y return period, 

for RCP4.5 and RCP8.5, respectively.
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3. There is no definite trend for increase in rainfall intensities in terms of durations, however 

24-h rainfall intensities are expected to increase at a greater rate when compared to other 

durations for each RCP scenarios.

4. Minimum average percentage increase for RCP4.5 is 30% (in 100-y return period) and 

maximum one is 44% (in 2-y). The values are 38% (in 100-y) and 47% (in 2-y) for RCP8.5 

compared to historical rainfall intensities. 

5. Rate of increase in terms of total value of rainfall intensities under RCP4.5 is 36.5%, and 

under RCP8.5 is 42.3%. This result shows that rainfall intensities will be higher under 

RCP8.5 scenarios compared to RCP4.5.

6. For RCP4.5, the observed highest increase in terms of value of a specific rainfall intensity 

is 79.7% for Canta station for the duration of 24-h and a return period of 2-y. For RCP8.5, the

highest increase is %74 for Omerli station for the duration of 1-h and return period of 2-y.

7. Most rainfall intensities increase for each duration and return period. However, rainfall 

intensities are decreasing in Olimpiyat station more than other stations for both RCPs. 

8. Some rainfall intensities tend to decrease in the future. The highest decrease is -25% for 

RCP4.5 (Olimpiyat station for the duration of 2-h and a return period of 100-y). For RCP8.5, 

the highest decrease is -17% for Sariyer station for the duration of 5-min and return period of 

2-year.

Briefly, the second analysis concludes that rainfall will be intensified in the future for both 

scenarios compared to historical events. Besides, it is possible to observe higher rainfall 

intensities for more frequent events compared to rare events in the coming future.

4.2 Which Climate Scenario is More Severe? 

In the last analysis, differences between RCP4.5 and RCP8.5 scenarios were evaluated. As 

mentioned before, rainfall intensities tend to increase predominantly in the future compared 

to historical conditions. The results of this analysis are listed as follows:

1. While rainfall intensities under RCP4.5 are increasing by an average of 30 to 45 percent in 

terms of return periods, they are increasing by an average of 38 to 47 under RCP8.5. It is 

clear that RCP8.5 scenarios cause more extreme events with respect to RCP4.5 scenarios.

2. RCP8.5 scenarios have a higher rainfall intensity in all stations except Terkos station 

compared to RCP4.5. Rainfall intensities are higher by an average of 6.59% under RCP4.5 

for Terkos. These results reflect those of (Xin, Zhang, Wu, & Fang, 2013; Pattnayak, Kar, 

Dalal, & Pattnayak, 2017; Camilo et al., 2018; Uraba, Gunawardhana, Al-Rawas, & Baawain,

2019; Vanli, Ustundag, Ahmad, Hernandez-Ochoa, & Hoogenboom, 2019) who also 
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concluded that RCP4.5 scenarios can have higher rainfall intensities for specific stations and 

seasons. The highest increase of rainfall intensities under RCP8.5 is 14.51% (for Olimpiyat 

station) compared to RCP4.5.

3. In total of all stations, RCP8.5 scenarios have 2.67% more rainfall intensities. Estimating 

higher rainfall intensities for RCP8.5 scenarios compared to RCP4.5 is expected according to 

the IPCC (2014). Rainfall intensities are increasing more for all return periods and durations 

under RCP8.5 more than that in RCP45 and this supports previous findings in the literature 

(Wang & Chen, 2014; Singh et al., 2016; Nilawar & Waikar, 2019). Rainfall intensities are 

increasing more for higher durations under RCP8.5, but increasing trend is almost same for 

all return periods. Rainfall intensities are increasing under RCP8.5 compared to RCP4.5 for 

all return periods, however the 100-y return period has the highest increase rate (2.84%). 

Briefly, RCP8.5 scenarios will give more extreme and destructive results in the future for 

most of the stations. When all stations are considered together, RCP8.5 scenarios have higher

rainfall intensities for all return periods and durations. 

5. CONCLUSIONS

The most serious cause of urban floods are short-duration heavy rainfall events. Therefore, 

the generation of IDF curves under all climate conditions requires the implication of short-

duration rainfalls (from 5-min to 30-min). Besides, most of the current applications of IDF 

curves are stationary based, in other words, only historical rainfall events are evaluated to 

show possible upcoming events rather than considering climate change in the future. 

Therefore, generating updated IDF curves includes short-duration rainfalls considering both 

historical and future climate conditions was necessary. This study was performed to achieve 

the goal of generating updated IDF. Eight meteorological stations from Istanbul city were 

selected as study areas. RCP4.5 and RCP8.5 were preferred to obtain RCMs to represent 

future daily rainfall data. With a new approach to existing HYETOS method, future daily 

rainfalls were disaggregated by applying parameters of historical data for future rainfalls to 

be coherent with historical rainfall patterns. The study revealed that there is a close 

relationship between observed and disaggregated IDF curves. Therefore, the selected 

disaggregation method was applied to all data sets. 

The results conclude that rainfall will be intensified in the future for both scenarios compared

to historical events. Besides, it is possible to observe higher rainfall intensities for more 

frequent events compared to rare events in the coming future. RCP8.5 scenarios will give 
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more extreme and destructive results in the future for all stations except Terkos. When all 

stations are evaluated as a whole, RCP8.5 scenarios have higher rainfall intensities compared 

to RCP4.5 for all return periods and durations.

The findings of this study support the idea that extreme events such as heavy rainfall will 

increase under climate change impacts in the future. On the other hand, the study revealed 

that selected disaggregation method HYETOS is a successful and reliable tool and it can be 

applied in hydrology studies.  

This study once again demonstrated the need to use an updated IDF curve, which is generated

under future climate conditions, for hydrology, hydraulic and other water related applications.

Each RCM has its own characteristics and hence, future rainfall intensities can vary for each 

of them. Likewise, different disaggregation methods can simulate sub-hourly rainfall data in 

different ways. Therefore, future studies can be performed for more stations to enrich the 

awareness of climate change by evaluating more RCMs, disaggregation methods and 

distribution functions. 
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TABLES

Table 1: Percentage differences between observed and disaggregated IDF curves for 

each duration and return period for Florya station.

Durations Return Periods (Years)

2 y 5 y 10 y 25 y 50 y 100 y

5 min 1.17 2.44 1.67 -0.27 -1.97 -3.88

10 min -0.94 1.91 3.03 3.59 3.72 3.60

15 min -0.64 2.05 2.74 2.88 2.59 2.13

30 min -2.08 1.14 3.01 5.05 6.36 7.56

1 h -1.58 0.84 2.55 4.59 6.06 7.51

2 h -1.96 -0.32 1.38 3.68 5.46 7.27

3 h -3.35 -2.13 0.39 4.37 7.69 11.28

4 h -3.20 -1.53 0.87 4.39 7.20 10.19

5 h -3.88 -2.46 0.34 4.71 8.32 12.22

6 h -4.19 -3.47 -0.52 4.56 9.04 13.93

8 h -4.38 -4.37 -1.57 3.47 8.03 13.06

12 h -4.80 -6.01 -3.11 2.72 8.21 14.52

18 h -5.20 -7.81 -4.90 1.64 8.08 15.68

24 h -4.99 -6.72 -3.98 1.94 7.68 14.41
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Table 2: Percentage differences between observed and disaggregated IDF curves for 

each duration and return period for Goztepe station.

Durations Return Periods (Years)

2 y 5 y 10 y 25 y 50 y 100 y

5 min 0.80 4.60 5.21 4.75 3.82 2.69

10 min 0.94 4.16 4.68 4.22 3.41 2.33

15 min 0.22 2.77 3.70 4.33 4.53 4.56

30 min 1.09 4.04 4.19 3.09 1.70 0.11

1 h -1.82 -0.34 2.06 5.64 8.57 11.70

2 h -0.53 0.22 1.58 3.63 5.28 7.03

3 h -0.80 0.36 2.03 4.42 6.35 8.36

4 h -0.75 0.00 1.55 3.91 5.83 7.85

5 h -0.55 0.36 1.84 4.01 5.75 7.54

6 h -0.21 1.00 2.29 3.99 5.24 6.46

8 h -1.34 -0.30 1.62 4.66 7.15 9.89

12 h -0.36 0.38 1.57 3.37 4.84 6.48

18 h -0.09 0.43 1.24 2.50 3.56 4.78

24 h 0.01 0.92 1.06 1.00 0.91 0.82
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Table 3: Percentage differences between observed and disaggregated IDF curves for 

each duration and return period for Sariyer station.

Durations Return Periods (Years)

2 y 5 y 10 y 25 y 50 y 100 y

5 min -0.18 1.48 1.42 0.85 0.19 -0.61

10 min -0.92 1.46 2.24 2.65 2.69 2.64

15 min -0.83 1.57 2.41 2.93 3.08 3.09

30 min -1.70 2.48 4.33 5.81 6.51 6.91

1 h -3.30 0.20 2.97 6.43 8.91 11.26

2 h -1.56 0.98 2.97 5.52 7.40 9.26

3 h -1.47 0.74 2.57 4.95 6.76 8.58

4 h -1.47 0.68 2.69 5.42 7.56 9.79

5 h -2.14 -0.16 2.32 5.98 8.92 12.09

6 h -2.15 0.00 2.64 6.49 9.61 12.95

8 h -1.50 -0.12 1.90 5.00 7.55 10.32

12 h 0.72 1.68 2.38 3.24 3.92 4.64

18 h 2.11 2.53 2.44 2.13 1.85 1.56

24 h -5.08 -4.64 -2.75 0.53 3.49 6.78
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Table 4: Average percentage increase of RCP4.5 and RCP8.5 IDF values compared to 

historical IDF values in terms of return period.

Scenarios Return Period (Years)

2 5 10 25 50 100

RCP4.5 44.87 39.96 37.29 34.34 32.33 30.39

RCP8.5 47.18 44.66 43.06 41.09 39.64 38.15
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Table 5: Total average percentage increase in IDF values under RCP8.5 compared to 

RCP4.5 for each station.

Olimpiyat Sariyer Sile Goztepe Florya Terkos

14.51 3.025 2.49 2.48 0.11 -6.59
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Table 6: Total average change in IDF values under RCP8.5 compared to RCP4.5 in 

terms of return periods.

Return Period (Year) 2 5 10 25 50 100

Average Change (%) 2.60 2.51 2.59 2.70 2.78 2.84

FIGURE LEGENDS 

Figure 1: Location of Istanbul city.

Figure 2: Eight meteorological stations selected as study areas. 

Figure 3: Used data types including historical 1-minute and hourly rainfalls (mm) from 

the Turkish State Meteorological Service (TSMS), historical simulated daily rainfall 

from the Regional Climate Model (RCM), historical daily rainfall from the Climate 

Forecast System Reanalysis, future daily rainfalls generated under Representative 

Concentration Pathways (RCP) 4.5 and 8.5 scenarios from the RCM, and historical IDF

curves generated with observed rainfalls from the TSMS.

Figure 4: Framework of bias-correction process developed by Rathjens et al. (2016).

Figure 5: Plottings of IDF curves generated with observed and disaggregated rainfalls 

for Sariyer, Florya, and Goztepe stations to show the performance of the disaggregation

model.

Figure 6: RCP4.5 and RCP 8.5 future IDF curve trends compared to historical IDF 

curves for stations Olimpiyat, Goztepe and Florya stations.

Figure 7: RCP4.5 and RCP 8.5 future IDF curve trends compared to historical IDF 

curves for stations Terkos, Sile, and Sariyer stations.

Figure 8: Comparison of IDF curve trends under RCP4.5 and RCP8.5 scenarios for 

stations Sile, Terkos, Olimpiyat, Sariyer, Florya, and Goztepe stations.
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