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RD-SYSTEMS WITH CHEMOTAXIS: GLOBAL EXISTENCE, BOUNDEDNESS

AND BLOW-UP OF SOLUTIONS

XU XUE, SEN-ZHONG HUANG

Abstract. We study the finite time blow-up of solutions to general RD-systems with chemotaxis for

multi-species. Our result shows that the blow-up is equivalent to the blow-up of the Lr−norms of the
solutions for r exceeding some critical value rc. Under very loose conditions we give the estimation of
rc, relying on a variant of Gagliardo-Nirenberg inequality, and a kind of bootstrap method which is very
similar to the Alikakos-Moser iteration procedure.

1. The chemotaxis RD-model and results

Our model has the form:

(1)


Ut = D1∆U + g(U, V ), x ∈ Ω, t > 0,

Vt = D2∆V + h(U, V )− CT (U, V ), x ∈ Ω, t > 0,
∂U
∂n = 0 = ∂V

∂n , x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x) ≥ 0, V (x, 0) = V0(x) ≥ 0, x ∈ Ω,

where U = (u1, ..., um) (resp., V = (v1, v2, ..., vn)) are the population densities of m prey (resp., n
predator) species; Ω is a bounded domain in RN (N ≥ 1) with a smooth boundary ∂Ω; n is the unit outer
normal, and no flux boundary condition (homogeneous Neumann boundary condition) is imposed. The
diffusion matrices

(2) D1 = diag(d1, ..., dm), D2 = diag(d′1, ..., d
′
n)

are assumed to be strictly positive, i.e., di > 0 and d′j > 0 for all i, j. Finally, the chemotaxis term
CT (U, V ) has the form

(3) CT (U, V )i := ∇
( m∑

j=1

qij(U, V )∇uj

)
(i = 1, ..., n).

Biologically, g(U, V ) (resp., h(U, V )) represents the growth rates of the preys (resp., predators). It is
assumed that the predators V are attracted/repulsed by the preys U, so that they move in the direction
proportional to the negative/positive gradients (qij > 0 or qij < 0) of the prey populations, and the
movement is decided also by the predator’s density. We model such chemotaxis effects by the terms
−CT (U, V ) given as above, cf. [9, 8, 10]. It is valuable to mention that we do not assume that each of the
function qij(U, V ) should keep only one sign. In fact, they are allowed to change their signs according to
some realistic rules, for instance, they can change their signs if the densities of the preys/predators have
been above some levels, cf. [10].

We impose the following conditions (H1)-(H3):
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(H1) Both mappings g : Rm
+ × Rn

+ → Rm
+ and h : Rm

+ × Rn
+ → Rn

+ are of C1 class, and satisfy

g(U, V )i ≥ 0 ∀U, V ≥ 0 with ui = 0 (i = 1, ...,m),

h(U, V )j ≥ 0 ∀U, V ≥ 0 with vj = 0 (j = 1, ..., n).
(4)

Moreover, there exists a strictly positive constant vector K0 ∈ Rm
+ ,K0 > 0 with the following

property: For all (U, V ) ∈ Rm
+ × Rn

+ there holds

(5) g(U, V )i ≤ 0 if ui ≥ (K0)i (i = 1, ...,m).

(H2) Each qij : Rm
+ × Rn

+ → R is a C1 function satisfying qij(U, 0) = 0 for all 0 ≤ U ∈ Rm
+ , and there

exist a positive constant Cq > 0 and non-negative constants {αi, 1 ≤ i ≤ n} such that

(6)
m∑
j=1

|qij(U, V )| ≤ Cq(1 + vαi
i ) ∀(U, V ) ∈ Rm

+ × Rn
+ (i = 1, ..., n).

Moreover, there exist non-negative constants {βi, 1 ≤ i ≤ n} and a continuous positive function
ϱ0 : Rm

+ → R+ such that

(7)

m∑
i=1

|g(U, V )i| ≤ ϱ0(U)× (1 +

n∑
j=1

v
βj

j ) ∀(U, V ) ∈ Rm
+ × Rn

+.

(H3) There exist constants {γi, i = 1, ..., n} and a continuous positive function ϱ1 : Rm
+ → R+ such

that for all (U, V ) ≥ 0 and each i, 1 ≤ i ≤ n, there holds

(8) γi ≥ 1, h(U, V )i ≤ ϱ1(U)(1 + vγi

i ).

Note that we need for the components of h in (8) only the control of growth from above, and the
control of growth from below is not required. Roughly speaking, conditions (H2)-(H3) are concerned
with the control of the growth of the predators given by the constants {(αi, βi, γi), 1 ≤ i ≤ n}:

(1) The αi values control the chemotaxis effects of the predators.
(2) The βi values control of the predator growths within the preys.
(3) The γi values control the intrinsic growth of the predators.
(4) All growths are at most power type.

We will consider the following condition (H4) which ensures the L1−boundedness of the solutions.
(H4) There exist a strictly positive vector B ∈ Rm

+ ×Rn
+ and positive constants b1, b2, α < 1 such that

(9) ⟨B, (g, h)(U, V )⟩ ≤ b1 + b1⟨B, (U, V )⟩α − b2⟨B, (U, V )⟩ ∀(U, V ) ∈ Rm
+ × Rn

+.

Equivalently, (H4) says that the function 0 ≤ (U, V ) 7→ ⟨B, (g, h)(U, V )⟩ grows at most sublinearly .
Our main result goes as follows.

Theorem 1.1. Assume (H1)-(H3). Let

(10) rc := N × max
1≤i≤n

max{βi + αi − 1, (γi − 1)/2}.

Let 0 ≤ (U0, V0) ∈ W 1,p(Ω)m+n for p > N . Then there exists Tmax > 0 (maximal existence time) such
that (1) has a unique non-negative classical solution (U, V ) satisfying

(11) 0 ≤ U ∈ Gm, 0 ≤ V ∈ Gn; G := C([0, Tmax);W
1,p(Ω)) ∩ C2,1(Ω̄× (0, Tmax)),

and for each i, 1 ≤ i ≤ m,

(12) 0 ≤ U(t)i ≤ max{(K0)i, ∥Ui0∥∞} ∀0 ≤ t < Tmax.

Furthermore, we have the following assertions (i)-(ii).
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(i) (Global existence and boundedness) Assume that there exists r > rc such that If there holds

(13) L(T ) := sup
0≤t≤T

∥V (t)∥r < ∞ ∀T < Tmax,

then Tmax = ∞ and

(14) sup
0≤t≤T

(∥U(t)∥1,∞ + ∥V (t)∥∞) < ∞ ∀T < ∞.

Moreover, if L(T ) is uniformly bounded for T > 0, then

(15) lim sup
t→∞

(∥U(t)∥1,∞ + ∥V (t)∥∞) < ∞.

(ii) (L1−boundedness and global existence) Assume (H4). If rc < 1, then Tmax = ∞, and (14)
holds true. Moreover, if either b2 > 0 or b1 = 0, then (15) is valid.

Remark 1.2. (a) Our result in Theorem 1.1 covers the most part of known results, cf. [10, 11] and
references therein. It shows that the finite time blow-up of solutions to (1) is equivalent to the blow-up
of the Lr−norms of the solutions for r > rc. Certainly, the weakest norm condition for avoiding blow-up
is the L1−boundedness. The condition (H4) gives a such simple condition ensuring the L1−boundeness
of the solutions. (b) The asymptotic behavior of solutions to (1) remains unknown. We would like to
tackle it in the future.

We organize the present article as follows. In §2 we give an application of our Theorem 1.1 to improve
previous results concerning simple chemotaxis prey-predator systems, which has been studied by several
authors, cf. [10, 11]. We will prove in §4 the global existence and boundedness of non-negative solutions
of (1) under conditions (H1)-(H3), by a bootstrap method. Our estimations are subtle and based on
an inequality given in §3 which is itself interesting. It is valuable to mention that we do not need the
boundedness of the density functions qij . This point is certainly useful for the practical applications.

2. An application to simple chemotaxis prey-predator systems

We consider the model:

(16)


ut = d1∆u+ g(u, v), x ∈ Ω, t > 0,

vt = d2∆v + h(u, v)−∇(ρ(u)q(v)∇u), x ∈ Ω, t > 0,
∂u
∂n = 0 = ∂v

∂n , x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

where the density of prey and predator is given by u and v, respectively. As before, Ω is a bounded
domain in RN (N ≥ 1) with a smooth boundary ∂Ω, and n is the unit outer normal; d1, d2, c are positive
constants. Moreover, the prey-taxis effect, given by −∇(q(v)∇u), shows the tendency of predator moving
toward the increasing prey gradient direction.

We assume that all functions g, h and ρ, q are continuously differentiable, and there exist positive
constants cg, cq, α, β, γ and a continuous function ρ0 : R+ → R+ such that

(17) g(u, 0) ≥ 0, h(0, v) ≥ 0, |q(v)| ≤ cq(1 + vα),

(18) |g(u, v)| ≤ ρ0(u)(1 + vβ), h(u, v) ≤ ρ0(u)(1 + vγ)

for all u, v ≥ 0, and

(19) g(u, v) ≤ 0 ∀u ≥ cg, v ≥ 0.

Under conditions (17)-(19), we see that assumptions (H2)-(H3) in §1 are satisfied with the following
choices:

m = 1 = n, α1 = α, β1 = β, γ1 = γ.
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The corresponding exponent rc is give by

(20) rc := N ×max{α+ β − 1, (γ − 1)/2}.
Therefore, an application of Theorem 1.1 yields that a solution (u, v) of (16) exists globally, if the norms
∥v(t)∥r for some r > rc do not blow up in finite time.

A special case of (16) is the following system

(21)


ut = d1∆u+ f1(u)− ϕ1(u, v), x ∈ Ω, t > 0,

vt = d2∆v + f2(v) + ϕ2(u, v)−∇(ρ(u)q(v)∇u), x ∈ Ω, t > 0,
∂u
∂n = 0 = ∂v

∂n , x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

corresponding to the choice of g and h in (16):

(22) g(u, v) = f1(u)− ϕ1(u, v), h(u, v) = f2(v) + ϕ2(u, v).

Here, the term ϕ(u, v) represents the moving rate of prey to the predator.
We assume that all of the functions {f1, f2, ρ, q} are continuously differentiable functions on R+, and

f1(0) = 0, f2(0) = 0. Moreover, there exist positive constants c1, c2, cq and α such that

(23) f1(u) ≤ 0 ∀u ≥ c1, f2(v) ≤ 0 ∀v ≥ c2,

(24) |q(v)| ≤ cq(1 + vα) ∀v ≥ 0.

We assume that both functions ϕ,ϕ2 is continuously differentiable on R+ ×R+ and there exist constants
γ > 0, 0 < δ < 1, c and non-negative constants b1, b2, and a continuous positive function ρ0 such that

(25) ϕ1(0, v) = 0 ≤ ϕ1(u, v) ≤ ρ0(u)(1 + vγ) ∀u, v ≥ 0,

(26) 0 ≤ ϕ2(u, v) ≤ cϕ1(u, v) + b1(1 + u+ v)δ − b2(u+ v) ∀u, v ≥ 0.

Under (23)-(25), we see that the conditions (17)-(19) are satisfied with the choices β = γ. Hence, rc is
given by

(27) rc := N × (α+ γ − 1).

Set B := (1, c). We have for all u, v ≥ 0 that

(28) ⟨B, (g, h)(u, v)⟩ = [f1(u)−ϕ1(u, v)]+c[f2(v)+ϕ2(u, v)] ≤ f1(u)+cf2(v)+b1(1+u+v)δ−b2(u+v)

by (26). It is routine to use condition (23) to establish that both functions f1 and f2 are uniformly
bounded from above. Hence, condition (H4) is satisfied, and Theorem 1.1 is applicable. In particular, if

(29) α+ γ < 1 + 1/N,

then rc < 1 and thus all non-negative solutions of (21) exists globally.
The system (21) is a very general prey-predator model for studying prey-taxis and has been studied

by a lot of authors, cf. [11] and references therein. In particular, the result in [11] states that a solution
to (21) exists globally if the term q is sufficiently small by comparing to certain constants as well as the
L∞−norm of the initial values u0. However, our requirements (23)-(25) and (29) involve only the growth
conditions on the functions f1, f2, ϕ and q, which will be satisfied by many known models, see [11, 10]
for more details. In fact, the crucial condition for the global existence of solutions is α + γ < 1 + 1/N,
which yields a balance between the growth for prey-taxis (giving by q) and the moving rate of prey to
predator (giving by ϕ1, ϕ2). For the usual case where ρ ≡ 1, q(v) = χv, we have that α = 1, and thus
the corresponding growth restriction on ϕ1 reads as γ < 1/N. Such a condition can be considered as the
case that the moving of prey to predator is restricted by the dimension N of the underlying space Ω, a
requirement coinciding very well with the practical uses [10].
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3. An inequality

We recall the following result as a consequence of applying the classical inequality of Gagliardo-
Nirenberg combined with Poincare’s inequality, cf. [6, 7, 8, 4].

Lemma 3.1. (Gagliardo-Nirenberg inequality) Let N be the dimension of Ω. There holds

(30) ∥u∥p ≤ C · (∥∇u∥q + ∥u∥r)λ · ∥u∥1−λ
r ∀u ∈ Lp(Ω) ∩W 1,q(Ω)

for all p > 1, q ≥ 1 satisfying (p− q)N < pq and all r ∈ (0, p), where

(31) λ =

1
r − 1

p
1
r − 1

q + 1
N

∈ (0, 1).

The following lemma, as a consequence of the above Gagliardo-Nirenberg inequality, is crucial for our
proof of the main result (Theorem 1.1), and itself also interesting.

Lemma 3.2. For each k > 1, and (r, p) > 0 satisfying

(32) p(1− 2/N) < 1 < 2p, r < pk,

there exists a constant c1 > 0, depending on k, p and Ω, such that

(33) ∥∇uk/2∥22 ≥ c1 · ∥u∥−c0
r · ∥upk∥δ1 − ∥u∥kr ∀u ∈ W 1,2pk(Ω), u ≥ 0,

where

(34) δ := (k/r − 1 + 2/N)/(pk/r − 1), c0 := (pδ − 1)k.

Proof. We see that the pair (2p, 2) satisfies the condition (2p − 2)N < 4p in Lemma 3.1 and r/k < p
whenever p(N − 2) < N. Hence, we are in the position to apply Lemma 3.1 to the triplet (2p, 2, 2r/k). It
yields for any u ∈ W 1,2pk(Ω), u ≥ 0, that

(35) ∥uk/2∥2p ≤ C · (∥∇uk/2∥2 + ∥uk/2∥2r/k)λ · ∥uk/2∥1−λ
2r/k,

where

(36) λ := (k/r − 1/p)/(k/r − 1 + 2/N) ∈ (0, 1).

Equivalently,

(37) ∥∇uk/2∥22 ≥ C · ∥u∥k(1−1/λ)
r · ∥upk∥δ1 − ∥u∥kr ,

where δ := 1/(pλ) is given by (34). This completes the proof. �

4. The proof of Theorem 1.1

We begin some more preparations.

Lemma 4.1. (Divergence Theorem and Green’s First Identity)
1. (Divergence Theorem) For any C1(Ω̄) vector field w there holds

(38)

∫
Ω

∇ ·w dx =

∫
∂Ω

w · n dx.

2. (Green’s First Identity) Let u ∈ W 1,2(Ω), v ∈ W 2,2(Ω). Then

(39)

∫
Ω

u∆v dx = −
∫
Ω

∇u · ∇v dx+

∫
∂Ω

v
∂u

∂n
dx.

Particularly, if ∂u
∂n

∣∣
∂Ω

= 0, then

(40)

∫
Ω

u∆v dx = −
∫
Ω

∇u · ∇v dx.
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3. Let u, g ∈ W 1,2(Ω), v ∈ W 2,2(Ω) and ∂v
∂n

∣∣
∂Ω

= 0 = ∂g
∂n

∣∣
∂Ω

. Then

(41)

∫
Ω

u∇ · (g∇v) dx = −
∫
Ω

g∇u · ∇v dx.

Proof. For the Divergence Theorem, one compares [7, p.13]. The Green First Identity is the result of
applying the Divergence Theorem to the C1 vector w := u∇v. To prove (41), we note that

(42) v∇ · (g∇u) = (vg)∆u+ v∇g · ∇u,
∂(vg)

∂n

∣∣
∂Ω

=

(
g
∂v

∂n
+ v

∂g

∂n

) ∣∣
∂Ω

= 0

by assumptions. It follows that∫
Ω

v∇ · (g∇u) =

∫
Ω

(vg)∆u+

∫
Ω

v∇g · ∇u

=

∫
Ω

[v∇g · ∇u−∇(vg)∇u] = −
∫
Ω

g∇v · ∇u, (by (40), (42)),

completing the proof. �

For p ∈ (1,∞) we define

(43) Au := −∆u for u ∈ D(A) :=

{
w ∈ W 2,p(Ω) :

∂w

∂n
= 0 on ∂Ω

}
.

It is well-known (cf. [5]) that −A generates a contractive C0−semigroup {T (t) := e−tA : t ≥ 0} of
positive linear operators on each Lp(Ω) for p ∈ [1,∞). Moreover, −A is symmetric and thus each T (t) is
a contraction on L∞(Ω). More precisely, there holds

∥T (t)f∥p ≤ ∥f∥p and f ≥ 0 =⇒ T (t)f ≥ 0

for all t ≥ 0 and f ∈ Lp(Ω) for p ∈ [1,∞].
We use also the following estimates, cf. [8].

Lemma 4.2. Assume that m ∈ {0, 1}, p ∈ [1,∞] and q ∈ (1,∞). Then there exists a positive constant
C1 such that

(44) ∥u∥m,p ≤ C1∥(A+ 1)θu∥q ∀u ∈ D((A+ 1)θ),

where θ ∈ (0, 1) satisfies

2θ > m−N

(
1

p
− 1

q

)
.

If, in addition q ≥ p, then there exists constant C2 and γ > 0 such that

(45) ∥(A+ 1)θe−t(A+1)u∥q ≤ C2t
−θ−n

2 ( 1
p−

1
q )e−γt∥u∥p ∀u ∈ Lp(Ω), t > 0.

Moreover, for any p ∈ (1,∞) and ε > 0, there exists a constant C3 and µ > 0 such that,

(46) ∥(A+ 1)θe−tA∇ · u∥p ≤ C3t
−θ− 1

2−εe−µt∥u∥p ∀u ∈ Lp(Ω), t > 0.

We will use freely Young’s inequality saying that

ab ≤ 1

p
ap +

1

q
bq, ∀a, b ≥ 0, p, q ≥ 1 and

1

p
+

1

q
= 1.

In the sequel, we fix a constant k > N and three constants {θ, θ1, θ2} such that

(47) (1 +N/k)/2 < θ < 1, N/(2k) < θ1 < 1, 1/2 + θ1 < θ2 < 1.

As direct consequences of Lemma 4.2, we have the following estimates:

(48) ∥u∥1,∞ ≤ C · ∥(A+ 1)θu∥k ∀u ∈ D((A+ 1)θ),
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(49) ∥u∥∞ ≤ C · ∥(A+ 1)θ1u∥k ∀u ∈ D((A+ 1)θ1),

and

(50) ∥(A+ 1)θ1e−t(A+1)u∥k + ∥(A+ 1)θ1e−tA∇ · u∥k ≤ C · t−θ2e−γt∥u∥k

for all t > 0, u ∈ Lk(Ω). In the above, C > 0, γ > 0 are some constants.

Below we consider a non-negative classical local solution 0 ≤ (U, V ) of (1), with the maximal existence
time Tmax. In the sequel, we fix τ ∈ (0, Tmax), and let

(51) M(τ) := ∥K0 + U0∥1,∞ + ∥V (τ)∥∞ + ∥(A+ 1)θU(τ)∥k,

(52) Wi(t) := sup
τ≤s≤t

∥vi(s)∥k, H(t) := sup
τ≤s≤t

∥U(s)∥1,∞ ∀t ∈ [τ, Tmax).

By definition, H(·) as well as Wi(·) are non-decreasing. This monotonicity will be used later. Denote

(53) Vi(t) :=

∫
Ω

vi(x, t)
k dx.

Our first result gives a way for estimating the bound of ∥V (·)∥∞ by virtue of H(·) combining with
k−norms of V.

Lemma 4.3. Assume (H3). Then

(54) ∥vi(t)∥∞ ≤ ∥vi(τ)∥∞ + C · [1 +H(t)Wi(t)
max{αi,γi}] ∀t ∈ [τ, Tmax),

where C > 0 is some constant.

Proof. Let

(55) ϕ(t) := d′ivi(t) + h(U, V )i(t) (t < Tmax).

By (H3) we can find a constant C1 ≥ 0 such that

(56) ϕ(t) ≤ C1 + C1vi(t)
γi ∀t ∈ [τ, Tmax).

Consider t ∈ [τ, Tmax). Using the usual variation of constants formula to (1), we obtain that

(57) 0 ≤ vi(t) = T̂i(t− τ)vi(τ) +X1(t) +X2(t),

where T̂i(s) := e−d′
i(A+1)s = e−d′

isT (d′is), and

(58) X1(t) := −
∫ t

τ

T̂i(t− s)∇(
m∑
j=1

qij(U, V )∇uj(s)) ds, X2(t) :=

∫ t

τ

T̂i(t− s)ϕ(s) ds.

Since each T̂i(·) is a contraction on L∞(Ω), we have that

(59) ∥T̂i(t− τ)vi(τ)∥∞ ≤ ∥Vi(τ)∥∞.
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Moreover,

∥X1(t)∥∞ ≤ C · ∥(A+ 1)θ1X1(t)∥k (by (49))

≤ C ·
∫ t

τ

∥(A+ 1)θ1 T̂i(t− s)
(
∇

m∑
j=1

qij(U, V )∇uj(s)
)
∥k ds

≤ C ·
∫ t

τ

(t− s)−θ2e−γ(t−s)
∥∥∥ m∑

j=1

qij(U, V )∇uj(s)
∥∥∥
k
ds (by (50))

≤ C ·
∫ t

τ

(t− s)−θ2e−γ(t−s)

 m∑
j=1

∥qij(U, V )∇uj(s)∥k

 ds

≤ C ·
∫ t

τ

(t− s)−θ2e−γ(t−s)H(s)∥1 + vi(s)
αi∥k ds (by (H2))

≤ C · (1 +H(t)Wi(t)
αi)

∫ t

τ

(t− s)−θ2e−γ(t−s) ds (by monotonicity of H,Wi)

≤ C · Γ(1− θ2) · (1 +H(t)Wi(t)
αi),

(60)

where Γ(·) is the usual Gamma function.
On the other hand, we have by (56) that

(61) X2(t) ≤ C1X3(t), X3(t) :=

∫ t

τ

T̂i(t− s)ϕ̃(s) ds, ϕ̃(s) := 1 + vi(s)
γi .

Note that

∥X3(t)∥∞ ≤ C · ∥(A+ 1)θ1X3(t)∥k (by (49))

≤ C ·
∫ t

τ

∥(A+ 1)θ1 T̂i(t− s)ϕ̃(s)∥k ds

≤ C ·
∫ t

τ

(t− s)−θ2e−γ(t−s)∥ϕ̃(t− s)∥k ds (by (50))

≤ C ·
∫ t

τ

(t− s)−θ2e−γ(t−s)(1 + ∥vi(s)∥γi

k ) ds (by (56))

≤ C · (1 +Wi(t)
γi)

∫ t

τ

(t− s)−θ2e−γ(t−s) ds (by monotonicity of Wi)

≤ C · Γ(1− θ2) · (1 +Wi(t)
γi).

(62)

By (57) and (61) we have that

(63) 0 ≤ vi(t) ≤ T̂i(t− τ)vi(τ) +X1(t) + C1X3(t).

Combining (59), (60) and (62), we find from (63) that

∥vi(t)∥∞ ≤ ∥vi(τ)∥∞ + C · (1 +H(t)Wi(t)
max{αi,γi}),

giving (54). This completes the proof. �

Our next result reveals that we can control H using the k−norms of V.

Lemma 4.4. There holds

(64) H(t) ≤ C · [1 + max
1≤i≤n

Wi(t)
βi ] ∀t ∈ [τ, Tmax).
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Proof. On the one hand, we have by using the variation of constants formula that

(65) ui(t) = Ti(t− τ)ui(τ) + U1(t), U1(t) :=

∫ t

τ

Ti(t− s)φ(s) ds

where

(66) Ti(s) := e−di(A+1)s = e−disT (dis), φ(s) := diui(s) + g(U, V )i(s).

For s ≥ τ we have that

∥φ(s)∥k ≤ di∥ui(s)∥k + ∥g(U, V )i(s)∥k
≤ C · (M(τ) + max

1≤j≤n
∥vj(s)βj∥k) (by (12) and (H2))

≤ C · (M(τ) + max
1≤i≤n

Wi(s)
βi).

(67)

Therefore,

∥U1(t)∥1,∞ ≤ C · ∥(A+ 1)θU1(t)∥k (by (48))

≤ C ·
∫ t

τ

∥(A+ 1)θTi(t− s)φ(s)∥k ds

≤ C ·
∫ t

τ

(di(t− s))−θe−γdi(t−s)∥φ(s)∥k ds (by (50))

≤ C ·
∫ t

τ

(di(t− s))−θe−γdi(t−s) · (M(τ) + max
1≤i≤n

Wi(s)
βi) ds (by (67))

≤ C · (M(τ) + max
1≤i≤n

Wi(t)
βi) ·

∫ ∞

0

(dis)
−θe−γdis ds

(by monotonicity of each Wi)

≤ C · Γ(1− θ)(M(τ) + max
1≤i≤n

Wi(t)
βi),

(68)

In the above, the constant C may change from line to line, but it depends only on k and M(τ).
On the other hand, we have that

(69) ∥Ti(t− τ)ui(τ)∥1,∞ ≤ C · ∥Ti(t− τ)(A+ 1)θui(τ)∥k ≤ C · ∥(A+ 1)θui(τ)∥k.

For the last inequality we have used the fact that each Ti(·) is a contraction on Lk(Ω). Combining (68),
(69) and (65), we obtain (64). �

For the proof of Theorem 1.1 we need also the following estimation result.

Lemma 4.5. Fix T < Tmax and an index i. Let

(70) δi := αi − 1.

Assume r > 0 and k > N to be such that

(71) r/N > {δi, (γi − 1)/2}, (1 + 2r/(kN))(1− 2/N) < 1,

and

(72) sup
0≤t≤T

∥vi(t)∥r < ∞.

Then there holds the estimate:

(73) ∥vi(t)∥k ≤ C ·max{1 + ∥vi(0)∥k, H(t)κi} ∀t ≤ T,
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where

(74) κi := 1/(r/N − δi) > 0.

Proof. We have that

V̇i(t)/k =

∫
Ω

vk−1
i (vi)t = E1 + E2 + E3,

where

E1 :=d′i

∫
Ω

vk−1
i ∆vi dx, E2 := −

∫
Ω

vk−1
i ∇ · (

m∑
j=1

qij(U, V )∇uj) dx,

E3 :=

∫
Ω

vk−1
i h(U, V )i dx.

We have that

E1 = −d′i

∫
Ω

(∇vk−1
i ) · ∇vi dx (using (40) to the pair (vk−1

i , vi))

= −4d′i(k − 1)k−2

∫
Ω

|∇v
k/2
i |2,

(75)

E2 =

∫
Ω

(
m∑
j=1

qij(U, V )∇uj) · ∇vk−1
i dx (using (41) to triples (vk−1

i , qij(U, V ), uj))

≤
∫
Ω

(
m∑
j=1

|qij(U, V )| · |∇uj | · |∇vk−1
i |) dx

≤ Cq(k − 1)H(t)

∫
Ω

vk−2
i (1 + vαi

i )|∇vi| dx (by (H2) and (52)).

(76)

Since

CqH(t)(1 + vαi
i )|∇vi| ≤ C2

qH(t)2(1 + vαi
i )2/d′i + (d′i/2)|∇vi|2

≤ 2C2
qH(t)2(1 + v2αi

i )/d′i + (d′i/2)|∇vi|2,

we have that

(77) V̇i(t)/k ≤ Gi + E3 + Zi,

where

(78) Gi := ρ(t)∥vk−2
i + vk−2+2αi

i ∥1 with ρ(t) := [2(k − 1)C2
qH(t)2/d′i],

and

(79) Zi := −2d′i(k − 1)k−2

∫
Ω

|∇v
k/2
i |2 dx.

To estimate E3, we use (H3) to find constant C1 > 0 such that h(U, V )i ≤ C1 +C1v
γi

i . It follows that

(80) E3 ≤
∫
Ω

vk−1
i (C1 + C1v

γi

i ) dx.

On the other hand, we choose p := 1 + 2r/(kN) > 1, i.e., r = kN(p− 1)/2. It follows that

(81) δ := (k/r − 1 + 2/N)/(pk/r − 1) = 1.

Moreover, we infer from condition (71) that p(1− 2/N) < 1, and there holds

(82) pk = k + 2r/N > k +max{2δi, γi − 1}
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by (71) again. Hence, we obtain by Lemma 3.2 combining condition (72) that

(83) Zi ≤ c1 − c2 · ∥vpki ∥1,
where c1 > 0, c2 > 0 are some constants (also depending on the value L).

Taking together (77), (80) and (83), we find that there exist two positive constants C2, C3 such that

(84) V̇i(t) ≤ C2 · ∥1 + vk−1
i + vk−1+γi

i ∥1 + ρ(t)∥vk−2
i + vk−2+2αi

i ∥1 − C3 · ∥vpki ∥1.
Under condition (82) we are able to use Young’s inequality. For example, we obtain that

ρ(t)∥vk−2+2αi
i ∥1 ≤ C ′

3 · ρ(t)1−(k+2(αi−1))/(pk) + (C3 · ∥vpki ∥1)/8
with some appropriate constant C ′

3 > 0. Finally, we obtain from (84) that

(85) V̇i(t) ≤ C4[1 + ρ(t)σi ]− C5 · ∥vpki ∥1,
where C4 > 0, C5 > 0 are two constants, and σi = pk/[pk− (k+2(αi−1))] > 0. Using Hölder’s inequality
we have that

Vi(t) = ∥vki ∥1 ≤ |Ω|1−1/p · ∥vpki ∥1/p1 .

Therefore,

(86) V̇i(t) ≤ C4[1 + ρ(t)σi ]− C6 · Vi(t)
p,

with some constant C6 > 0. The above implies that Vi(t) is decreasing if C6Vi(t)
p > C4[1+ρ(t)σi ]. Hence,

it is routine to derive from (86) the following estimate:

(87) ∥vi(t)∥k = Vi(t)
1/k ≤ C ·max{1 + ∥vi(0)∥k, ρ(t)κi/2},

where κi = 2σi/(pk) = 1/(r/N + 1− αi) is given by (74). Since ρ(t) = [2(k − 1)C2
qH(t)2/d′i] (see (78)),

we find from (87) the desired result in (73). �

Proof of Theorem 1.1. The local existence of solutions results from an application of Theorem 14.6
in [2]. Fix i and let w := 0, w̄ := max{K, ∥ui0∥∞} and define two vectors W and Ū by Wi = 0, Ūi := w̄
and Wk = Ūk := Uk if k ̸= i. We have that g(Ū , V )i ≤ 0 ≤ g(W,V )i by (H1) and thus

∂tw̄ − [di∆w̄ + g(Ū , V )i] ≥ 0 ≥ ∂tw − [di∆w + g(W,V )i].

It follows from the Comparison Principle [3] that 0 = w ≤ ui ≤ w̄. This is just the estimate in (12). The
non-negativity of each vj results also from the Comparison Principle and (H1).

To prove Theorem 1.1-(i), we assume that there exists a constant r > rc such that

(88) L(T ) = sup
0≤t≤T

∥V (t)∥r < ∞ ∀T < Tmax.

We take k > N to be so large that (1 + 2r/(kN))(1 − 2/N) < 1. We want to prove the boundedness of
H(t). Our proof idea is based on the following bootstrap method, which is similar to the Alikakos-Moser
iteration procedure [1]: First we estimate the k−norm of V by virtue of the function H(·). Then we
estimate H(·) using the obtained estimation for all k−norms of V, and finally we derive the desired result
using an elementary argument.

Fix τ ∈ (0, Tmax), and T, τ < T < Tmax. Let t ∈ [τ, T ]. First, we are in the position to Lemma 4.5 and
it yields that

(89) Wi(t) = sup
τ≤s≤t

∥vi(s)∥k ≤ C · (1 +H(t)κi) ∀t ≤ T,

where κi = 1/(r/N + 1− αi) > 0. Second, we have by Lemma 4.4 combining with (89) that

(90) H(t) ≤ CT · (1 +H(t)µ) ∀t ≤ T,
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where CT is a constant which depends on L(T ), and

(91) µ := max
1≤i≤n

(βiκi) = max
1≤i≤n

βi/(r/N + 1− αi) < 1,

since r > rc. By considering both cases H(t) ≤ 1 and H(t) > 1 separably, we derive from (90) that

H(t) ≤ max{1, (2CT )
1/(1−µ)} ∀t ≤ T.

It follows, by using Lemma 4.5 again, that Wi(t) is uniformly bounded, and so is ∥V (t)∥∞ by Lemma 4.3
for all t ≤ T. The assertion Tmax = +∞ follows from [3, Theorem 15.5], proving Theorem 1.1-(i).

To prove Theorem 1.1-(ii), we assume (H4). By Theorem 1.1-(i) we need only to establish the
boundedness of the L1−norms of the V−components. To this end, we consider

(92) X(t) :=

∫
Ω

f(t, x) dx, f(t, x) := ⟨B, (U, V )(t, x)⟩ (x ∈ Ω, t < Tmax).

Since the vector B is strictly positive, we can find a positive constant c1 such that

(93) ∥V (t, x)∥1 ≤ c1X(t) ∀t < Tmax.

We will establish the boundedness of X(t). A calculation using (40) (see the proof of Lemma 4.5)
yields that

(94) Ẋ ≤
∫
Ω

⟨B, (g, h)(U(t, x), V (t, x))⟩ dx

We have ⟨B, (g, h)(U(t, x), V (t, x))⟩ ≤ b1 + b2f(t, x)
α − b2f(t, x) by (9) in (H4). This implies that

(95) Ẋ(t) ≤ b1|Ω|+ b1

∫
Ω

f(t, x)α dx− b2X(t) ≤ b3(1 +X(t)α)− b2X(t),

where b3 := b1|Ω| + b1|Ω|1−α. For the last estimation we have used Hölder’s inequality, since α < 1. If

b1 = 0, then b3 = 0 and thus Ẋ(t) ≤ 0. This implies that X(t) ≤ X(0) for all t < Tmax. Consider the case
b2 > 0. Let y0 > 0 be such that

b3(1 + yα)− b2y < 0 ∀y > y0.

It is routine to show that

(96) X(t) ≤ X(0) + y0 ∀t < Tmax.

Therefore, we have shown that X(t) is uniformly bounded if either b1 = 0 or b2 > 0.

Consider the rest case b2 = 0. If X(t) > 1, then we find from (95) that Ẋ(t) ≤ 2b3X(t)α. It follows
that

d

dt
X(t)1−α = (1− α)X(t)−αẊ(t) < 2b3

and thus there holds X(t) ≤ X(0) + 1 + 2b3t for all t < Tmax. This completes the proof of Theorem
1.1. �
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