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Abstract

This research presents a numerical approach to obtain the approximate solution of the n-dimensional cohomological
equations of fractional order in continuous-time dynamical systems. For this purpose, the n-dimensional fractional
Miintz-Legendre polynomials (or n-DFMLPs) are introduced. The operational matrix of the fractional Riemann-
Liouville derivative is constructed by employing n-DFMLPs. Our method transforms the cohomological equation of
fractional order into a system of algebraic equations. Therefore, the solution of that system of algebraic equations
is the solution of the associated cohomological equation. The error bound and convergence analysis of the applied
method under the L?-norm is discussed. Some examples are considered and discussed to confirm the efficiency and
accuracy of our method.
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1 Introduction

In the process of solving some problems related to dynamical systems, we are faced with solving equations called
cohomological equations. Some cohomological equations are obtained by verifying the triviality of the time changes
of flows. These equations in verifying the smoothness of invariant measures, conjugacy, and rigidity of group actions
are applicable. The other problems in differential dynamical systems that reduce to cohomological equations are
Livsic theory [1, 2, 3], KAM theory [4], the existence of invariant volume forms [3], etc. Recently, researches have
been done on cohomological equations [5, 6]. Despite a long 300-year history of fractional calculus, its applications
in various fields have been considered in recent decades. For example, in biology, membranes of an organism cell
possess fractional electrical conductivity [7]. Since the degree of freedom of fractional derivative is higher than
integer derivative, then the use of fractional calculus leads to a more realistic model of some processes. For this
reason, we are interested in modelling n-dimensional fractional cohomological equations (or n-DFCEs). Already,
n-DFCEs modelled by Liouville fractional partial derivative [8]. But here, we prefer to use the Riemann-Liouville (or
R-L) fractional partial derivatives of order 0 < @ < 1.

In this research, we intend to solve the n-DFCEs by employing the operational matrix of R-L fractional derivative
of n-dimensional fractional Miintz-Legendre polynomials. Most of the research that has been done so far focused
on the existence of solution of cohomological equations, but we want to apply numerical analysis tools for solving
n-DFCEs.
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One-dimensional and two-dimensional fractional Miintz-Legendre polynomials have already been introduced [9]. We
have defined and applied n-DFMLPs to approximate the solutions of n-DFCEs. The numerical solutions of n-DFCEs
are discussed for the first time in this work. Since all examples are presented for the first tlme we have not comparison
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with other studies. Our goal is to obtain the approximate solution of X f = g such that X = Z ai(xy, -
g are, respectively, the linear operator of fractional order 0 < & < 1, unknown and known functlons The coefficients
of X, f and g are smooth functions.

In section 2, definitions of Riemann-Liouville fractional derivative and 1-DFMLPs are given. In section 3, or-
thogonal n-DFMLPs are introduced. In section 4, Riemann-Liouville fractional partial derivative operational matrix
based on n-DFMLPs and product operational matrix are obtained. In section 5, the method of solution of n-DFCEs is
explained. In section 6, the convergence of the proposed method and error bounds are investigated. In section 7, some

examples are presented to prove the accuracy and efficiency of our method.

2 Preliminary concepts

In this section, the required concepts are defined. In subsection 2.1, we provide the definitions of the R-L fractional
derivative of one-variable functions and the R-L fractional partial derivatives of multi-variable functions. In subsection
2.2, definitions of one-dimensional fractional Miintz-Legendre polynomials are given.

2.1 Fractional calculus

Today, fractional calculus has many applications in various fields of science and engineering. By using fractional
differential equations, many phenomena are modelled. Fractional differential equations are solved both analytically
and numerically. Many books have been written on fractional calculus, that we will refer the reader to some of the
books [10, 11, 12].

Definition 2.1. [/0] The Riemann-Liouville fractional derivative of the function f :J C (—oo,00) — R of order
k—1 < o <k is defined as follows

1 d o f(s)ds
D= (— k/ SN 1
o F(k—a)(dt) e (t—s)oktl M
For convenience, we put ¢ = 0. Let f: Q:=[0,1] x --- x [0,1] — R be a function such that n € N, n > 2. The
—_——
n—times
R-L fractional partial derivative of f of order k — 1 < o < k with respect to x;, 1 <i < n, is defined as follows
aaf: 1 i)k i f(xl,--',xi,l,s,x,'ﬂ,-u,x,,)ds. (2)
oxf T(k—oa) dx;” Jo (x; — 5)%—k+1
The R-L fractional derivative of the power function f(¢) = ( —¢)* of order 0 < & € R is
I'l+a) _
DX ((t—c) )= =———(1—c)* % A>-1 3
D) = Fiyay = 2> G

2.2 One-dimensional fractional Miintz-Legendre polynomials
Fractional Miintz-Legendre polynomials Z;(s, ) on the [0, 1] are given as follows

ZE,]S y € (0,4) :=RT,
(-1

FI(i—1)!
basis for My, = span{1,s?,--- s}, where 2 < k € N. The analytical form of L;(s,7) is

i
’}/) = Z alisl’y7
=0

2

such that E;; = i=4((I+ j)y+1). Fractional polynomials {Lo(s,?),---,Li(s,y)} form an orthogonal



where (1) )
(L i

P a . 4

TG — (L) X

If Pi(y'ﬁ ) be Jacobi polynomial with parameters ¥, 8 > —1, then

0,11
Li(s,y)=P"7 (2s7—1), y>0-

For more information, see [13, 14]. The orthogonality of 1-DFMLPs on [0, 1] is derived by

1

1
/O L,'(S,Y)Lj(S,'y)dS: 2174’151]7

here §;; is the Kronecker function. If f(s) be an integrable function in [0, 1], then f(s) is expanded as follows

fs) =) ciLi(s,y), )
i=0
where for every i =0, 1, - oo,
1
o= (2ir+1) [ F6)Ls.Dds (©)

We can use the finite series of (6) to approximate f(s) as follows
k
£(5) = fils) = Y ciLLi(s,v)- @)
i=0

If C = [co,c1,- ,ck]T and ®(s;7) = [Lo(s,¥),L1(s,7), -~ ,Li(s,7)]", then matrix form of (7) is
fs) = CTd(s;7) = D(s:7)"C 8)

3 n-dimensional fractional Miintz-Legendre polynomials

We intend to solve n-dimensional fractional cohomological equations. Therefore, we will need to define n-
dimensional fractional Muiitz-Legendre polynomials. In this section, n-dimensional fractional Miintz-Legendre poly-
nomials on Q = [0, 1] x - - - x [0, 1] will be introduced.

| ——

n—times

Definition 3.1. The elements of {Li, (x1,01)---Li,(xn, 0) i1, ,in = 0---co} are called n-dimensional fractional
Miintz-Legendre polynomials (or n-DFMLPs) on Q, where 0 < Q-+, 04 < oo,

The vector space spanned by n-DFMLPs {L;, (x1,1) -+ L;, (Xn, 0:)|i1, -+ ,in = 0-- -k} denoted by &% (Q).
Theorem 3.1. n-DFMLPs are orthogonal on Q.
Proof. Let L,‘1 (x1 R Ot]) .. ~L,‘n (x,,, Otn), Lj] (X] s (Xl) .. 'Ljn (x,,, Otn) € CD;Z%_’:“]{’(X" (Q), then

1 1
L (e L ) (L)L) s, =

1 1
(/0 Lil (xlval )le (-x],a])d)C]) e <‘/O Lin ()Cn, an)Ljn (Xn, an)d-xn>
1 1

2ilu+1 2ipa, +1°
0 otherwise-

ifilzjla"'vin:jn



According to the orthogonality of polynomials in qbzln‘f")(’a" (Q), every f € L*(Q) is expanded as follows

S, x,) = i .. i CiyipLiy (X1, 001) -+ - Liy, (X, O,
=0  in=0
such that
Ciyoiy = (20101 + 1) -+ - (20506, + 1)/0] ---/Olf(xl,m X0 )L (x1,00) -+ - L, (Xn, 0 )dx1 - - - dxp- 9)
Let
@(xi;00) = [Lo(xi,on),Li(x1, 1), Ly (x1,00)]7,
DP(x;00) = [Lo(x2,02),Li(x2,00), - 7Lk2(x2aa2)]Ta
D3 0) = [Lo(X, 0), L1 (X, 0), -+, L, (3, 0)] -
Kronecker product of Matrices ®(x1,04), -+ ,P(x,, 0,) is denoted by
D(x;0) = Plxi; 1) @ P(x2;00) @+ © P(xp3 ), 10)

where x = (x1,---,x,) € Q, & = (a1,---,0,) € R™" and for every i = 1---n, k; > 2. Any function f € L>(Q) can be
approximated as follows

K kn
Fxn X)) 2 fo ek (X1 X)) = Z Z CiinLiy (X1, 00) -+ - Li, (X, O)
=0  i,=0

= CTo(xa)=d(ca)C 11

Letk=kj =ky=--- =k, If 1 <i< (k4 1)" suchthati= (i, +1)+ip 1 (k+1)+ip2(k+1)2+--+ip(k+1)""1,
then ¢; is Ciip-

4 Operational matrices

The operational matrix method is one of the powerful tools for solving numerically differential equations. In
this section, the product operational matrix and R-L fractional derivative operational matrix based on n-DFMLPs are
obtained. We will use these operational matrices to solve the fractional cohomological equations.

4.1 Product operational matrix

Letx € Q and o € A. For simplicity, i-th element of vector ®(x; ¢t), L;, (x1, 1) - - - Lj, (Xu, &%), is denoted by ®; or
D; iy i1 = (i + 1) Fipt (k+ 1) +Fipa(k+1)2+- +iy (k+ 1)" 1,

Sometimes the process to solve differential equations faced with multiplication ®(x; a)®(x; o)’ C where C is a
coefficient vector of order (k+ 1)" in Equation (11).

Theorem 4.1. Let ®(x; ) and C be vectors defined in Equations (10) and (11), then
O(x;a)P(x; )1 C = CP(x; ),
where C is product operational matrix of order (k-+1)" x (k+ 1)". The entries of C are computed as follows
(k+1)" 1 1
Cr = (20ur1 +1)(20072 + 1)+ (20 +1)( ; ci/o y /0 DD, dx, - dxy),
where c; is i-th entry of vector C and r = (r, + 1) +ry_1(k+1) +rpa(k+1)> 44 (k+1)" 1.
4



Proof. The I-th entry of vectors ®(x; &) ®(x; )" C and C®(x; o), respectively, are
P Pict + P Prcr+ -+ PPy 1y C s 1y Cn®@ +Cp®r+--+ él(k+1)”¢(k+l)"'

If the polynomials ®;®;, - -+, PP 1)» can be expanded as follows

k k 1 1
;=) - ) ((2a1j1+1)~~~(2anjn+1)/0 /O DD, dxidx; - - dx, )P,

Jj1=0 Jn=0
then,
C 194 +C12CI>2+ +Cl(k+])”q)(k+l)
1 1
< Z Qauji+1)- (Zocnjn+1)/0 /0 <1>,c1>1<1>jdx1---dxn)<1>j>c1+
J1=0
k k 1 1
<Z e Z((2a1j1+1)~~~(2anjn+l)/ / CIDICIJZCDjdxl--~dx,,)<l>j>cz+~~+
J1=0 Jn=0 0 0
k k 1 1
< Z Z ((2a1j1+1)---(20¢,,j,1+1)/ / (I)l(l)(kJrl)nq)jdxl"'dxn)q)j)C(k+1)n,
N=0 ja=0 o Jo
and
. (k+1)" 1 1
C,®d, = Z ((2a1r1+1)--~(2anrn+l)/0 /0 <I>1<I>Sd>,dx1--~dxn)<l>,cs-
s=1 b
Consequently,

(k+1)"

Z cs/ /(IJICIDCDdxl dxy |-

Clr = (2051}’1 + 1) 206,,1’” [

4.2 Riemann-Liouville fractional derivative operational matrix of n-DFMLPs

For our goal in this work, R-L fractional partial derivative operational matrix based on n-DFMLPs will be obtained.
Let ®(s; @) be a vector that its entries are I-DFMLPs where s € [0, 1], @ € R*. Riemann-Liouville fractional derivative
of order 0 < 8 < 1 of ®(s; &) is as follows

oDB®(s;0) = [0DP Lo (s, 00), -, 0DP Ly (5, 00))-
Theorem 4.2. R-L fractional derivative of order 0 < B < 1 of ®(s; ) can be calculated as
oDB®(s;00) = D*P(s; ),

such that D%B is a (k+ 1) x (k+ 1) matrix. The entries of D*# are

(ra+1) 1
p%P (2loc+1) aya L ,
LI+l T rZ()tZ 1 rjr oL — B+1) (F+I)Ot—ﬁ

where a,j is defined in Equation (4).
Proof. Forevery 0 < j <k,

J I'(re+1) _
DPLi(s,0) =Y ayj—rntt ) _groa—p.
D3 L(s, 1) r;)afr(ra—ﬁﬂ)s

5



k
Let onLj(s, o) =Y diLi(s,a) such that
1=0
1
4 ~ Qal+1) / oDPL(s, o0)Ly(s, &)ds
0
/ C(ro+1)

1 1
_ ro—p
= (2061+l)/0 Zarjmxi tgogtls[ads

1 y
= (2al+1) ZZa,jatl [(ra+1) )/ srte=B g¢

r=0t= ra— B +1
I'(ra+1) 1
= (al+1) a,ia .
Zo,Z TUT(ra—B+1) (r+nja—B+1
Consequently,
il
I B I'(roo+1) 1
Qal+1) aia .
Difiim = rz%)tz%) M T(ra—B+1) (r+n)a—B+1
O
oPi
The partial fractional derivative of ®(x; o) with respect to x;, 1 <i < n, of order f8; > 0 is denoted by ﬁd)(x; a)
X
9B l
Therefore the operational matrix of partial fractional derivative o @(x; o) is as follows
X
9Bi o fi
ﬂq’(ﬂ a) =L@ QL1 ®@ DU QL @@Ly )P(x; ),
1

i—th component

where ® is Kronecker product.

5 Method of solution of FCEs

We intend to use of obtained operational matrices from previous sections for numerically solving of n-DFCEs.
Consider the following n-DFCE

n aﬁlf
; xla )X 8 ﬁz( 'axn):g(xlv"'vxn)' (12)
Assume the unknown function f(xy,---,x,), functions g(xi,---,x,), @i(x1,---,x,), and partial fractional derivatives
B
of unknown function > (x1,---,x,) can be approximated as follows
X;
[ ) = Flo(na)=@(xa)'F, (13)
ai(x, %) ~ Ald(po)=®(xa)’A;, 1<i<n (14)
glxr, e ,xy) =~ GTCI>(x;Oc) = <I>(x;oc)TG, (15)
aﬁ'f T o B r .
&xﬁi (X], : 7xn) ~ CID(x,OC) Ik+1®"'®1]¢+1® w ®Ik+1®"'®lk+1 F, 1 S lén' (16)

! i—th component
A system of algebraic equations is obtained by substituting Equations (13, 14, 15, 16) in Equation (12) as follows
AT¢()C, a)q)(x’ a)T(D(lxl 7ﬁ| )TF +qu)<x’ a)q)(x’ a)T(Dg‘ZsﬁZ)TF + . +A£¢(x, a)q)(x’ a)T(D’?mﬁn)TF —
G Toxa)=dxa)a,



i

where for every 1 <i<n, DY — (L1 Q- QL ® D%Pi @11 ®- - ®Iii1). Since forevery 1 <i<n,

i—th component
Al ®(x;0)@(x; )T (DFP)TF = d(x; )74 (DIPHTF,
then,
O (x; )7 (AIT(Df‘1 Py L & (D2 T +AnT(D,2‘mﬁn)T)F = d(x;0) G-
Therefore to approximately solve FCEs of Equation (12), we solve the system of algebraic equations
(&T(D?” P+ & (DT 4 +ffnT<D3‘"’ﬁ”)T)F =G,
where the entries of vector F are unknown variables.

6 The convergence of the proposed method

In this section, the convergence of proposed method will be shown. We suppose that the approximation in (8)
is the best approximation for one-variable function f : R — R. Now we want to estimate the accuracy of that
approximation.

Taylor’s Theorem for one variable functions with Lagrange form of the remainder is as follows [15, 16, 17, 18].

Theorem 6.1. Let k > 1 be an integer number and a € R. Suppose for f: R — R, all derivatives of order 1 to k+ 1
of f exist. Then

2 x_aZ k .X—Clk
10 = f@+L@e-a+ L@ L O
N dk+1f (x_a)k+l . <€ .

dxk+1 (6) (k+1)! 7
Let f: R — R be a function that satisfies in Theorem 6.1 at x=0. Then f can be approximated as follows
d? 2 dkf . xk

Lo ... J(O) *
2! dxk k!

Lemma 6.1. Ifwe let the approximation by one-dimensional Miintz-Legendre polynomials of any function f :[0,1] —
k+1

R, fi(x), be best approximation and be bounded, then

dxk+1

A
(k+1)!V2k+3’

loD® f(x) =0 DB fi (%) <

1/ (x) = fe(x)]]2 <
A

D(k+2—B)\/2k+3—-B

dk—Hf
Akt |

Proof. Since fi(x) is the best approximation, then

where A = sup|

1) = f®@l2 < If&) = f@)]2
B dk+1f Paan B A
N ||dxk+1 (5)(k+1)!”2_(1¢+1)!\/ﬁ'




And

dk+1f F(k+2) xk+lfﬁ ||

dxF T Tk+2—B) (k+ 1) "2
A

T(k+2—PB)\/2k+3—B

oDEf(x) =0 DY fix)l2 < |

The error bounds tends to zero if k — oo.

Theorem 6.2. [/9] Suppose U C R" be a convex open set and f be a smooth real-valued function on U. Let m > 1,
x € U, and xo € R" be small enough such that x+xo € U, then

k n nooq 8mf
flr) = zzzgﬁu
ak+1f
+ / ki(xo+tx)x- o Xy, dt
IIZ’I zk“Z 1 (9)6,1 axik+1 ! .
8mf ak+1f
Theorem 6.3. Let f be a function on Q, such that form=0,1,--- k+1, ———— € C(Q). Let all —————
ax,-l . 8x,-m 3in tee 8x,'k+1
be bounded wheni; =1,---,n, j=1,---  k+ 1. If fi ... x be the best approximation of f in @al’ J(Q), then
1 Mnk+1
— 1 < Z)k+1 , 17
||f(X) fk, .,k(x)”z > (3) (k+ 1), ( )
] e 18)
o e e A
Where
ak+1f
M, . iy = sup ﬁ(’f) , M= ,max M, .. lk+1}
xeQ | 0Xi; Xigi1 I n
J=1, kL
. " f .
Proof. Since for every m = 0,--- ,k+ 1, ﬁ(x) € C(Q), then according to Theorem 6.2 we have Taylor
'xil e xim
expansion with the remainder of f at xo = 0 as follows
k n n
1 s
) = Y (),
mZ::()ilZ::l ikZ::1 m! dxi, -+ Jx;,, o
n n 1 1 ak-Hf
+ — (1=t ——L—(tx)dr x;, -~ x;, dt-
i121 ik§'=1 o k! 0xiy -+ 0y, 1 o

Therefore, f(x) can be approximated by removing the remainder that denoted by fk k- The error bound is computed
as follows

f) = fe k@] < 1F) = fr ()]

u U 1 okHl f

D T T
i1=1 ik£1 o k! 8x,~1~-axik+l 1 k+1
n n Milx"'vikJrl

S Lk Ty
h= Ut 1=
nk+1M

- X1 Xkt




Therefore,

1M2 k+1)2 2 1
X)— fre. k(x < / / T X, dxy---dx
170~ sl < ([ [ Tt dn e
k+1
_ ‘/,k+1M”+
3
n okt f N | A
LetRy:= Y --- -t ————(tx)x;, - x;, . dt, Ry == ————Xx1 -~ X1, then Ry < Ry. Therefore,
et Ry ilgl 1A+)1:1f0 k'( )axil"'gxikﬁ(x)xl Xigs k (k+1)!x1 X+ 1, then Ry < Ry. Therefore

there exists b(x) such that R, — b(x) = Ry. If let f; ... x(x) — b(x) be an approximate of £, then

Bj B; Bj Bi(# ) — b(x
Pif o Phi, P o a0

; —@) < | ; |
0 0 90 b
| k+lM B; 1 |
= ™ IR )
and
dbif dbi fk Mnk+1
1, - ek ) < -
dx;’ r(1-p;) \/1* 23;
O
oB; B;
Consequently, || f(x) — fi,.. x(x)|]2 — 0 and || f(x) _ ke (x)]]2 — 0 as k — oo.
9P 9P
j j

Theorem 6.4. Let D®P be the R-L fractional derivative operational matrix based on 1-DFMLPs of order 0 <
k

B < 1. Let f € L*0,1] can be approximated as f(s) ~ fi(s) = ¥ fiLi(s,&) = FT®(s;a), where f; = (2ia +
i=0

1) Jo f(s)Li(s, &t)ds. Then

koAk i
DB —FTD*Pp(s;a)| < — 1Y lal,
oD 5 5012 < g LA L o
dk+1siot—ﬁ
where A; = sup el and AF = max{A;|i =0,--- ,k}. If we increase the number of 1-DFMLPs, then the error
s

tends to zero.

Proof. The R-L fractional derivative of order 0 < 8 < 1 from every L;(s, @) is as follows

i Ira+1) 4
oDPLi(s, ) :rg{)arims -k,
then
8 T no B LoT(ra+l) raf L
1=0 zfo 2
rOtJrl) Ar

< .
- sz I(ro+1— ﬁ)‘a”|(k+1)z 2%k+3
<

N "'m—m

kalk
9



Obviously, by increasing the number of 1-DFMLPs, the error of obtained fractional derivative operational matrix
tends to zero. O

Theorem 6.5. Let f € L>(Q), 0 < Bj < 1. If f can be approximated by

k k k
f,r(_’...7 ( ) FTCI) x OC = Z Z Z f,l vin ll xl,al) L,‘j(Xj,(Xj)---L,‘n(xn,Otn),

l|:0 l]:()

then
kot jlk

| E ﬁZ Y Y ol Yl
KK 7 ayi|-
(k+ 2k+3 =0 =0 =R

- ~FTD P o (x a)
8x-’

dk+1 lo‘ B

Where 2;j = sup , and l‘;-‘ = max{A;|i =0,--- ,k}. By increasing the number of n-DFMLPs the error

ds k+1
bound of the obtained operational matrix of R-L partial fractional derivative tends to zero.

. 2 . aﬁjfk T %>B;
Proof. By taking L=-norm of the difference between [), K and F D" ®(x; ), we have
a J

P fi.. aj.Bj . 4 .

|02 - Pata)| < ¥ 3 B il )l (o)
X . i1=0 ij=0 in=0
j
i'
J T(raj+1)

k
.7ﬁA
iy ||| (2l +1) Ly(x, 00) 2 x
r;) YT(rog+1— -)‘ J ;0 ! )

1Li;, (jrrs @ 1)]12 -+ ([ Ly (s O |2 <

s—O ﬁj +1

Zk:ZZV | 1 ! ka}lk i| 1 1 <
o S =M 2000+ 20 i+ U\ (k+ 1)1V2k+3 ariy| 20 1i+ 1 200+ 1

kot /I"

k k X ”
(k—H—ZH Z:: ijz:"o. '.i,lz:"o'ﬁl""’”' Y lar |

Consequently, if K — oo, then the error bound tends to zero. O

Theorem 6.6. Let f € L*(Q) and fi...x € @,ff‘,jf'_}(’a” (Q) be the exact solution and the approximation solution of

9B
Equation (12), respectively. Assume the functions a;(xi,--- ,x,) and fractional partial derivatives ﬁ(xl X)),
X'
i=1,---,n, are bounded with bounds [l; and 1);, respectively. Then the error bound of proposed methocli is

n

Mnk+1 kot ,1k

k k k ij
Bk kll2 < (u( o Y Syt |a~.)+
j; I\r(1-8;) M ST \/2k+3,§0 i,go ig’o o ga "

n

pntt!
i (k+1)!\/2k+3>'
ak+lai

Where for every j=1,--- ,n, p/ = max{pjj:l),_,ﬁjk+l } and p{l sup

okl T oxi - 0x; :
J1 Jk+1

10



Proof. Forevery j=1,---,n, due to be bounded a;(x1,--- ,x,), (ai(X1,- -, Xn))k... x is also bounded,
\(ai(xl,n- ,xn))k74..,k| < u;. Then

1Bk ill2 = l[(@ )ik FTDTPr0(r )+ 4 (@0, FTDEPr (o 0) — g2 =

Bi B
(@) x FT DY Pd(x; 0) — ay s +-o o+ (@) k FTDO P d(x;00) —ay f||2 <
) k) axﬂl 5 B xﬁn
1 n
b f B
(@) x FTDProd(x; o) — a) T ||2+ (@i, 4 FTDEPrd(x; 00) — Bf||zg
8x1 P
i ,
(@) kHzlli—FTD“' Po(x, a)||z+|| PR L allar = (@i allo -+
8x1
b f
||(an)k,...,kuzua 5~ FTDPrao(x; @)+ 2L PN T allan — (an)eall2 <
PL ek P fi i
II(al)k,~-~,kz< B o ,31 =2+ ax’fl —FT D (s Ot)|z)+|| i l2llar = (@), ll2 -+

P 8 P s .. P f
n)e- o1 (12 af’; 1= ”‘—FTDs‘"%(x;a)|z)+||axgn||z||an—<an>k,...,kz-

Consequently,

Mnk+l ka]kk

n k k k i
Ey .. < asi.| |+
e < X (1 l—ﬁ,m s 7 M NI A W)

lj n—

n; pjn* ) .
Tk + 1)!\/2k+3
Where M and /IJ’? are defined in Theorems 6.3, 6.5, respectively. O

Remark 6.1. According to Theorem 6.6, if k — oo, then Ey ... ; — 0 and the proposed method is convergence.

7 Illustrative test examples

In this section, given examples are provided to demonstrate the efficiency and accuracy of our proposed method.
In all our examples, n, (k+1)" denotes the number of variables and bases, respectively. If f € L*(Q) and fi.... x €
qul_f_mk’a" (Q) be the exact solution and the approximate solution, respectively, the absolute errors between them are

fCerse e sxn) = frp k(15 2n) ], (1,00 x0) € Q

The maximum absolute errors are calculated by

,I:Illaxn {‘f(x{17 7x{;n) _fk,-“-,k(x{lf" 7x{;n)|}v

f=Loe (k1)

2hi—1 2jp—1 2jn—1
h J1 Jn — .

Were(xl 9 Xn) ((k+l)n,(k+l)"7 ’(k—i-l)n

Plots of maximum absolute errors are displayed by

).

ma(t) = max {FG )~ sG]t i) )

ij=1oe (k1)
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Example 7.1. Consider the following two-dimensional FCE

2
with exact solution u(x,y) = x3y

a =0 = 3 are reported in Table 1. Also, we report the absolute error in Table 2. The accuracy and efficiency of

I(

—)x3 cos”(x
3% cos’ ()

2
3.

our method are reported in Figures 1 and 2.

Table 1: The numerical result of Example 7.1

d3u

1

(0) + TGy sin’ () 2

d3u

dy3

(x,y) =

2 2
3y3

[(3)x3y3,

W | W

The values of the exact solution and the approximate solution for k = 5,7,9,

Approximate solutions

x=y Exact solutions k=5 k=1 k=9

0 0 -8.6499e-6  0.0004093593  -0.0156772165
0.1 0.04641588833 0.0464312147 0.0464183583  0.0463053392
0.2 0.1169607095  0.1169464422 0.1169606529  0.1170104943
0.3 0.2008298851  0.2007922429 0.2008264283  0.2008591848
0.4  0.2947225199  0.2946863795 0.2947207296  0.2946557013
0.5 0.3968502629  0.3968372254 0.3968516564  0.3967873063
0.6  0.5060595992  0.5060788853 0.5060619996  0.5061126173
0.7  0.6215328012  0.6215769416 0.6215334091  0.6216589573
0.8 0.7426542134  0.7426969020 0.7426523442  (0.7426491573
0.9 0.8689404462  0.8689354930 0.8689386362  0.8687528073

Table 2: Absolute errors of Example 7.1

X=y k=5 k=7 k=9

0 8.6499¢-6  4.093593e-4 1.56772165e-2
0.1 1.532637e-5 2.46997e-6 1.1054913e-4
0.2  1.42673e-5 5.66e-8 4.97848e-5
0.3  3.76422¢-5 3.4568e-6 2.92997e-5
04  3.61404e-5 1.7903e-6 6.68186e-5
0.5 1.30375e-5 1.3935e-6 6.29566e-5
0.6 1.92861e-5 2.4004e-6 5.30181e-5
0.7  4.41404e-5 6.079¢-7 1.261561e-4
0.8  4.26886e-5 1.8692e-6 5.0561e-6
09  4.9532e-6 1.8100e-6 1.876389¢-4

12



Figure 1: From left to right: the exact solution, the approximate solution, the absolute error of Example 7.1. Note
that k = 7.

©  Approximate solution Exact solution ]

0.00006

0.54

0.00005

0.4+

0.00004 4

0.3
0.00003

0.2
0.00002

017 0.00001 1

Figure 2: The comparison of the exact solution and the approximate solution (left) and the maximum absolute error
(right) of Example 7.1. Note k =7, x = 0.4.

Example 7.2. We consider the following two-dimensional FCE

CACIMRWCLL NN
oxi 8y% ’ 1"(%) (7))

—
—_

with exact solution u(x,y) = x*> — y*. We apply the proposed method in this article for this example. The values of the
exact solution and the approximate solution are reported in Table 3. Also the absolute errors are reported in Tables 4

1
fork=17,8,9, o4 =0 = T The accuracy and efficiency of our method are reported in Figures 3 and 4.
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Table 3: The numerical result of Example 7.2
Approximate solutions

x=y Exact solution k=17 k=38 k=9

0 0 -1.9999e-10  8.500000258e-11  -5.058621551e-10
0.1 0 -8.8e-10 8.e-11  -5.10735623e-10
0.2 0 -1.09e-9 8.e-11 -5.1080572e-10
0.3 0 4.5e-10 9.e-11 -5.0001182e-10
0.4 0 1.2e-10 l.e-10 -4.789065e-10
0.5 0 -3.4e-10 l.e-10 -4.738289%¢-10
0.6 0 -2.9e-10 l.e-10 -4.582606e-10
0.7 0 -1.5e-10 l.e-10 -5.447979-10
0.8 0 -5.3e-10 l.e-10 -5.015494e-10
0.9 0 1.94e-9 l.e-10 -4.869799¢-10

Table 4: Absolute errors of Example 7.2

x=y k=17 k=38 k=9
0 1.9999¢-10  8.500000258e-11  5.058621551e-10
0.1 8.8e-10 8.e-11 5.10735623e-10
0.2 1.09¢-9 9.e-11 5.1080572e-10
0.3 4.5¢-10 9.e-11 5.0001182e-10
0.4 1.2e-10 l.e-10 4.789065e-10
0.5 3.4e-10 l.e-10 4.738289¢-10
0.6 2.9e-10 l.e-10 4.582606e-10
0.7 1.5e-10 l.e-10 5.447979¢-10
0.8 5.3e-10 l.e-10 5.015494e-10
0.9 1.94e-9 l.e-10 4.869799¢-10

l

////"’

NN' r
/]

S - P 3

Figure 3: From left to right: the exact solution, the approximate solution, the absolute error of Example 7.2. Note
that k = 9.
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‘ ¢ Approximate solution Exact solution

7.%x107

0.14
6. %107

T
0.2

~0.14 5.% 107

024
4% 1071
0.3
3. % 10-‘),
0.4

-0.54 2.% 107

0.6
1.x 1071

-0.74

-0.8

Figure 4: The comparison of the exact solution and the approximate solution (left) and the maximum absolute error
(right) of Example 7.2. Note k =9, x = 0.4.

Example 7.3. In this example, the following two-dimensional FCE is considered with exact solution u(x,y) = x>y —xy,

1 1

1 d?u 102u Xy 3 6 5,

x2y— (x,y) +xy2 —(x,y) = (X =x =)+ ==y
Ix? dy? r(3) r(3)

We report the values of the exact solution and the approximate solution in Table 5. Also, the absolute errors are

reported in Table 6, for k =4,5,6, o = ap = 7 The accuracy and efficiency of our method are reported in Figures
5 and 6.

Table 5: The numerical result of Example 7.3
Approximate solutions

x =y Exact solution k=4 k=5 k=6
0 0 -0.0004734844234  0.0000508542  0.0000264210
0.1 -0.0099 -0.009957151397  -0.0099357655  -0.0099000552
0.2 -0.0384 -0.03759784243  -0.0384084745 -0.0383999987
0.3 -0.0819 -0.08139495625 -0.0818235180 -0.0818999617
0.4 -0.1344 -0.1350775202  -0.1343411794  -0.1343999774
0.5 -0.1875 -0.1890817207 -0.1875555650  -0.1874999927
0.6 -0.2304 -0.2316625456  -0.2305476072  -0.2303999956
0.7 -0.2499 -0.2494840616  -0.2499982854  -0.2498999955
0.8 -0.2304 -0.2279805666  -0.2303048199  -0.2303999998
0.9 -0.1539 -0.1515990163  -0.1536882787  -0.1539000045
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Table 6: Absolute errors of Example 7.3

x=y k=4 k=5 k=6
0  4.734844234c-4  5.08542¢-5 2.64210e5
0.1  5.7151397e-5  3.57655¢-5 5.52¢-8
02  8.0215757e-4  8.4745¢-6 1.3e-9
03  5.0504375¢-4  7.64820e-5 3.83¢-8
04  6.775202¢-4  5.88206e-5 2.26e-8
0.5  1.5817207e-3  5.55650e-5 7.3e-9
06  1.2625456e-3  1.476072¢-4 4.4e-9
07  4.159384e-4  9.82854e-5 4.5¢-9
08  24194334e-3  9.51801e-5 2.e-10
09  23009837e-3  2.117213e-4 4.5¢-9

Figure 5: From left to right: the exact solution, the approximate solution, the absolute error of Example 7.3. Note
that k = 5.

[ © _ Approximate soluttion Exact solution] 0.00010

0.2 0.4 0.6 0.8 1 0.00009 4

0.00008 4
0.00007 9
~0.14
0.00006 1
0.00005 1
0.00004
-0.24
0.00003 -
0.00002 -

0.00001 -
-0.34

0 02 04 06 08 1

Figure 6: The comparison of the exact solution and the approximate solution (left) and the maximum absolute error
(right) of Example 7.3. Note k =5, x = 0.4.
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Example 7.4. We consider the following two-dimensional FCE

7 195%u 1 7 d%u ZF(%
X10y2 —(x,y) +x2y10 —(x,y) = — 3,
odx3 ayg F(TO

that its exact solution is u(x,y) = \/xy. We use of the proposed method, for obtaining the approximate solution. We

1
report the values of the exact solution and the approximate solution in Table 7, for k =4,5,6, a; = ap = 5 Also, the

absolute errors are reported in Table 8.The accuracy and efficiency of our method are reported in Figures 7 and 8.

Table 7: The numerical result of Example 7.4

Approximate solutions

x=y Exact solution k=4 k=5 k=6
0 0 0.004674419445  0.0262889566  0.4420366028
0.1 0.1 0.1000048627  0.0999956947  0.1000144611
0.2 0.2000000000 0.1999874128  0.2000020790  0.2000052542
0.3 0.3000000000 0.2999845807  0.3000047221  0.2999981671
0.4 0.4000000000 0.3999929445  0.4000040266  0.3999966301
0.5  0.5000000000 0.5000056047  0.5000012037  0.4999977514
0.6  0.6000000000 0.6000164656  0.5999977804  0.6000000861
0.7 0.7000000000 0.7000205909  0.6999953504  0.7000023959
0.8 0.8000000000 0.8000140327  0.7999955184  0.8000031058
0.9  0.9000000000 0.8999936201  0.8999999404  0.9000008838
Table 8: Absolute errors of Example 7.4

xX=y k=4 k=5 k=6

0 4.674419445e-3  2.62889566e-2  4.420366028e-1

0.1 4.8627e-6 4.3053e-6 1.446112e-5

0.2 1.25872e-5 2.0790e-6 5.2542e-6

0.3 1.54193e-5 4.7221e-6 1.8329e-6

0.4 7.0555e-6 4.0266e-6 3.3699¢-6

0.5 5.6047e-6 1.2037e-6 2.2486e-6

0.6 1.64656e-5 2.2196e-6 8.61e-8

0.7 2.05909e-5 4.6496e-6 2.3959¢-6

0.8 1.40327e-5 4.4816e-6 3.1058e-6

0.9 6.3799¢-6 5.96e-8 8.838e-7
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Figure 7: From left to right: the exact solution, the approximate solution, the absolute error of Example 7.4. Note that
k=4.

©  Approximate solution 1 Exact solution

0.6
0.003 4

0.5+

0.4+
0.002 4

0.34

0.2
0.001 4

Figure 8: The comparison of the exact solution and the approximate solution (left) and the maximum absolute error
(right) of Example 7.4. Note k =4, x = 0.4.

Example 7.5. Consider the following two-dimensional FCE

xyaiu(xy)ﬂ%y%am(xy)—x%(
ox: yr L) IE)

1

y 2 Y2y
o) T (S 3 T oy
I'(s) T(G)
this equation has the exact solution u(x,y) = x*y+xy>. For numerically solving the assumed equation, we use the
proposed method. We report the values of the exact solution and the approximate solution in Table 9, for k = 4,5,6,

a =0 = 5 Also, the absolute errors are reported in Table 10. The accuracy and efficiency of our method are

reported in Figures 9 and 10.
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Figure 9: From left to right: the exact solution, the approximate solution, the absolute error of Example 7.5. Note

that k = 6.

Table 9: The numerical result of Example 7.5

Approximate solutions

x =y Exact solution k=4 k=5 k=6
0 0 -6.017889461e-8 -7.53e-8 -7.88e-8
0.1 0.002 0.001999980773  0.0019999836  0.0019999872
0.2 0.016 0.01599999201  0.0159999942  0.0159999929
0.3 0.054 0.05399999630  0.0539999952  0.0539999921
0.4 0.128 0.1279999976  0.1279999948  0.1279999943
0.5 0.250 0.2499999978  0.2499999952  0.2499999970
0.6 0.432 0.4319999977  0.4319999961  0.4319999987
0.7 0.686 0.6859999978  0.6859999971  0.6859999990
0.8 1.024 1.023999998 1.024000000  1.024000000
0.9 1.458 1.457999996  1.457999996  1.457999997

Table 10: Absolute errors with k = 4,5, 6 of Example 7.5

x=y k=4 k=5 k=6
0  6017889461c-8 7.53¢-8 7.88¢-8
0.1 1.9227¢-8 1.64e-8  1.28¢-8
0.2 7.99¢-9 58¢9  7.le9
03 3.70e-9 48¢9  7.9e9
0.4 2.4e-9 52¢9  5.7e9
0.5 2.2e-9 48¢9  3.0e9
0.6 2.3e-9 39¢9  1.3e-9
0.7 2.2-9 299  1.0e9
0.8 2.9 0 0
0.9 4.9 4.9 3.9
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¢ Approximate solution Exact solution

2.x107
054 1.8 %1071
1.6 x 107
044 1.4 %107
12x107
31 1.x 1071
8.x 10714
0.24
6.% 10710
014 4.x 107104

2.% 10714

Figure 10: The comparison of the exact solution and the approximate solution (left) and the maximum absolute error
(right) of Example 7.5. Note k = 6, x = 0.4.

Example 7.6. We consider the following three-dimensional FCE

2 2 2

d5u d5u d3 34 214 232
— (6, %,2) + —5 (0, 3,2) + =5 (x,,2) = X525 +x5y525 +x5y575,
x5 dys 075

2 4
5 5.

y%z By applying the proposed method, the numerical solution is obtained. We
2

report the values of the exact solution and the approximate solution in Table 11, for k =5,6,7, o1 = p = 03 = 5

with the exact solution u(x,y) = x

Also, the absolute errors are reported in Table 12. The accuracy and efficiency of our method are reported in Figures
11 and 12.

Table 11: The numerical result of Example 7.6
Approximate solutions

x=y Exact solution k=5 k=6 k=17
0 0 -1.17e-8  -4.320239786e-9  -1.449693311e-9
0.1  0.01584893192 0.01584671301 0.01585091164  0.01584974646
0.2 0.05518918646 0.05519821018 0.05518984875 0.05518711764
0.3 0.1145033673 0.1145102563 0.1144977447 0.1145033177
0.4 0.1921799095 0.1921715774 0.1921754713 0.1921835515
0.5 0.2871745888 0.2871538910 0.2871788518 0.2871768983
0.6 0.3987238835 0.3987074991 0.3987348894 0.3987204890
0.7 0.5262310526 0.5262375774 0.5262373841 0.5262249908
0.8 0.6692093138 0.6692419869 0.6692000621 0.6692097898
0.9 0.8272495069 0.8272759868 0.8272331760 0.8272584968
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Table 12: Absolute errors of Example 7.6

xX=y k=5 k=6 k=17
0 1.17e-8 4.320239786e-9  1.449693311e-9
0.1  2.21891e-6 1.97972e-6 8.1454e-7
0.2 9.02372e-6 6.6229¢-7 2.06882¢-6
0.3 6.8890e-6 5.6226e-6 4.96e-8
0.4 8.3321e-6 4.4382e-6 3.6420e-6
0.5 2.06978e-5 4.2630e-6 2.3095e-6
0.6  1.63844e-5 1.10059e-5 3.3945e-6
0.7 6.5248e-6 6.3315e-6 6.0618e-6
0.8  3.26731e-5 9.2517e-6 4.760e-7
0.9  2.64799e-5 1.63309e-5 8.9899¢-6

Figure 11: From left to right: the exact solution, the approximate solution, the absolute error of Example 7.6. Note
thatk =7 and x =0.1.

[ © _ Approximate solution Exact so]ulion]
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Figure 12: The comparison of the exact solution and the approximate solution (left) and the maximum absolute error
(right) of Example 7.6. Note k =7, x = 0.4, z =0.3.
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8 Conclusion

For the first time, we had numerically solved fractional-order cohomological equations with variable coefficients.
Our method had based on the R-L partial fractional derivative operational matrix. Since our equations are n-
dimensional, then here n-DFMLPs were introduced. The product operational matrix was presented. Error bound
and convergence analysis was investigated. Numerical results in the given examples showed that our method is use-

ful.
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