Appendix
For qPCR, we used the sets of primers listed in Table S1. In order to
validate the chosen housekeeping genes as reference, we confirmed that
these genes were indeed expressed consistently across the treatments
(ANOVA, Tub: Hours after mating,F 3,11 = 0.33, P = 0.806, Exp:F 1,11 = 0.98, P = 0.344, Hours after
mating × Exp, F 3,11 = 0.39, P = 0.760,
UbiE: Hours after mating, F 3,11 = 0.62, P= 0.618, Exp: F 1,11 = 0.47, P = 0.509,
Hours after mating × Exp, F 3,11 = 0.22, P= 0.880: Fig. S1). To see the overall pattern of SFP expression after
mating, we conducted PCA and found that PC1 is mostly corresponding to
Hour after mating, and PC2 is for SFP genes (Fig. S2, Table S2)
Acknowledgements
We appreciate the support from Carool Popelier and Omar Bellaoui for
maintaining the lab culture of snails, and two anonymous reviewers for
insightful comments. This work was supported by NWO Open Competition
Grant OCENW.KLEIN.062 (JMK, YN).
Author contribution
JMK conceived and designed the study. YK and JM conducted experiments
and processed the samples. YN and JMK analysed the data and wrote the
manuscript with input from JM and YK.
Data accessibility
All data of this research will be deposited in an open-access and
permanent data depository (e.g., Dryad), upon the acceptance of
publication.
Competing interests.
None.
Reference
Abraham, S., Moyano, A., Murillo Dasso, S., Van Nieuwenhove, G.,
Ovruski, S., & Pérez-Staples, D. 2020. Male accessory gland depletion
in a Tephritid fly affects female fecundity independently of sperm
depletion. Behav. Ecol. Sociobiol. 74 : 60.
Alvarez-Fernandez, A., Borziak, K., McDonald, G. C., Dorus, S., &
Pizzari, T. 2019. Female novelty and male status dynamically modulate
ejaculate expenditure and seminal fluid proteome over successive matings
in red junglefowl. Scientific Reports 9 : 5852.
Avila, F.W., Sirot, L.K., LaFlamme, B. a, Rubinstein, C.D. & Wolfner,
M.F. 2011. Insect seminal fluid proteins: identification and function.Annu. Rev. Entomol. 56 : 21–40.
Bartlett, M.J., Steeves, T.E., Gemmell, N.J. & Rosengrave, P.C. 2017.
Sperm competition risk drives rapid ejaculate adjustments mediated by
seminal fluid. elife 6 : 1–24.
Baumann, H. 1974. The isolation, partial characterization, and
biosynthesis of the paragonial substances, PS-1 and PS-2, ofDrosophila funebris . J. Insect Physiol. 20 :
2181–2194.
Bertram, M. J., Akerkar, G. A., Ard, R. L., Gonzalez, C., & Wolfner, M.
F. 1992. Cell type-specific gene expression in the Drosophila
melanogaster male accessory gland. Mechanisms of Development38 : 33–40.
Bromfield, J.J. 2014. Seminal fluid and reproduction: Much more than
previously thought. J. Assist. Reprod. Genet. 31 :
627–636.
Claydon, A. J., Ramm, S. A., Pennington, A., Hurst, J. L., Stockley, P.,
& Beynon, R. 2012. Heterogenous turnover of sperm and seminal vesicle
proteins in the mouse revealed by dynamic metabolic labeling.Molecular & cellular proteomics 11 : M111.014993.
Coleman, S., Drähn, B., Petersen, G., Stolorov, J., & Kraus, K. 1995. ADrosophila male accessory gland protein that is a member of the
serpin superfamily of proteinase inhibitors is transferred to females
during mating. Insect Biochem. Mol. Biol. 25 : 203–207.
Currier, R.B., Calvete, J.J., Sanz, L., Harrison, R.A., Rowley, P.D. &
Wagstaff, S.C. 2012. Unusual stability of messenger RNA in snake venom
reveals gene expression dynamics of venom replenishment. PLoS One7 : 1–10.
De Boer, P., Jansen, R., Koene, J.M. & Ter Maat, A. 1997. Nervous
control of male sexual drive in the hermaphroditic snail Lymnaea
stagnalis . J. Exp. Biol. 951 : 941–951.
DiBenedetto, A. J., Harada, H. A., & Wolfner, M. F. 1990. Structure,
cell-specific expression, and mating-induced regulation of aDrosophila melanogaster male accessory gland gene. Dev.
Biol. 139 : 134–148.
Fedorka, K.M., Winterhalter, W.E. & Ware, B. 2011. Perceived sperm
competition intensity influences seminal fluid protein production prior
to courtship and mating. Evolution (N. Y). 65 : 584–590.
Fiumera, A. C., Dumont, B. L., & Clark, A. G. 2007. Associations
between sperm competition and natural variation in male reproductive
genes on the third chromosome of Drosophila melanogaster.Genetics 176 : 1245–1260.
Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels,
J.I. 1999. A sampling of the yeast proteome. Mol. Cell. Biol.19 : 7357–7368.
Herndon, L.A., Chapman, T., Kalb, J.M., Lewin, S., Partridge, L. &
Wolfner, M.F. 1997. Mating and hormonal triggers regulate accessory
gland gene expression in male Drosophila . J. Insect
Physiol. 43 : 1117–1123.
Hopkins, B.R., Sepil, I., Thézénas, M.L., Craig, J.F., Miller, T.,
Charles, P.D., et al. 2019. Divergent allocation of sperm and the
seminal proteome along a competition gradient in Drosophila
melanogaster . Proc. Natl. Acad. Sci. U. S. A. 116 :
17925–17933.
Jarne, P., David, P., Pointier, J.-P., Koene, J.M., David, P., Pointier,
J.-P., et al. 2010. Basommatophoran Gastropods. In: The
Evolution of Primary Sexual Characters in Animals (A. Córdoba-Aguilar
& J. L. Leonard, eds), pp. 173–196. Oxford University Press.
Johnson, H.F. & Davison, A. 2019. A new set of endogenous control genes
for use in quantitative real-time PCR experiments show thatformin Ldia2dex transcripts are enriched in the early embryo of
the pond snail Lymnaea stagnalis (Panpulmonata). J.
Molluscan Stud. 85 : 388–396.
Koene, J.M., Sloot, W., Montagne-Wajer, K., Cummins, S.F., Degnan, B.M.,
Smith, J.S., et al. 2010. Male accessory gland protein reduces
egg laying in a simultaneous hermaphrodite. PLoS One 5 :
1–7.
Koene, J. M. & Ter Maat, A. 2007. Coolidge effect in pond snails: male
motivation in a simultaneous hermaphrodite. BMC Evol. Biol.7 : 212.
Koene, J.M. & Ter Maat, A. 2005. Sex role alternation in the
simultaneously hermaphroditic pond snail Lymnaea stagnalis is
determined by the availability of seminal fluid. Anim. Behav.69 : 845–850.
Lefevre Jr, G., & Jonsson, U. B. 1962. Sperm transfer, storage,
displacement, and utilization in Drosophila melanogaster .Genetics 47 : 1719.
Leiblich, A., Marsden, L., Gandy, C., Corrigan, L., Jenkins, R., Hamdy,
F. et al. 2012. Bone morphogenetic protein- and mating-dependent
secretory cell growth and migration in the Drosophila accessory
gland. Proc Natl Acad Sci U S A 109 : 19292–19297.
Leiblich, A., Hellberg, J. E. E. U., Sekar, A., Gandy, C., Mendes, C.
C., Redhai, S. et al. 2019. Mating induces switch from hormone-dependent
to hormone-independent steroid receptor–mediated growth inDrosophila secondary cells. PLoS Biol. 17 :
e3000145.
Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene
expression data using real-time quantitative PCR and the
2-ΔΔCT method. Methods 25 : 402–408.
Loose, M.J. & Koene, J.M. 2008. Sperm transfer is affected by mating
history in the simultaneously hermaphroditic snail Lymnaea
stagnalis . Invertebr. Biol. 127 : 162–167.
McGraw, L.A., Suarez, S.S. & Wolfner, M.F. 2016. On a matter of seminal
importance: The emerging influence of seminal plasma components on
fertility and future progeny. Bioessays 37 : 142–147.
Wiley Online Library.
Mohorianu, I., Bretman, A., Smith, D.T., Fowler, E.K., Dalmay, T. &
Chapman, T. 2017. Genomic responses to the socio-sexual environment in
male Drosophila melanogaster exposed to conspecific rivals.RNA 23 : 1048–1059.
Monsma, S. A., Harada, H. A., & Wolfner, M. F. 1990. Synthesis of twoDrosophila male accessory gland proteins and their fate after
transfer to the female during mating. Dev. Biol. 142 :
465–475.
Nakadera, Y., Giannakara, A. & Ramm, S.A. 2019. Plastic expression of
seminal fluid protein genes in a simultaneously hermaphroditic snail.Behav. Ecol. 30 : 904–13.
Nakadera, Y., Swart, E.M., Hoffer, J.N.A., den Boon, O., Ellers, J.,
Koene, J.M.J.M., et al. 2014. Receipt of seminal fluid proteins
causes reduction of male investment in a simultaneous hermaphrodite.Curr. Biol. 24 : 859–862.
Nakadera, Y., Swart, E.M., Maas, J.P.A., Montagne-Wajer, K., Ter Maat,
A. & Koene, J.M. 2015. Effects of age, size, and mating history on sex
role decision of a simultaneous hermaphrodite. Behav. Ecol.26 : 232–241.
Nakadera, Y., Smith, A.T., Daupagne, L., Coutellec, M., Koene, J.M.,
Ramm, S.A., et al. 2020. Divergence of seminal fluid gene
expression and function among natural snail populations. J. Evol.
Biol. 1–12.
Pratt, J.M., Petty, J., Riba-Garcia, I., Robertson, D.H.L., Gaskell,
S.J., Oliver, S.G., et al. 2002. Dynamics of protein turnover, a
missing dimension in proteomics. Mol. Cell. Proteomics1 : 579–591.
Radhakrishnan, P., & Taylor, P. W. 2008. Ability of male Queensland
fruit flies to inhibit receptivity in multiple mates, and the associated
recovery of accessory glands. J. Insect Physiol. 54 :
421–428.
Ramm, S. A., Lengerer, B., Arbore, R., Pjeta, R., Wunderer, J.,
Giannakara, A. et al. 2019. Sex allocation plasticity on a transcriptome
scale: Socially sensitive gene expression in a simultaneous
hermaphrodite. Mol. Ecol. 28 : 2321–2341.
Ramm, S.A., Edward, D.A., Claydon, A.J., Hammond, D.E., Brownridge, P.,
Hurst, J.L., et al. 2015. Sperm competition risk drives
plasticity in seminal fluid composition. BMC Biol. 13 :
87.
Ramm, S.A., Lengerer, B., Arbore, R., Pjeta, R., Wunderer, J.,
Giannakara, A., et al. 2019. Sex allocation plasticity on a
transcriptome scale: Socially sensitive gene expression in a
simultaneous hermaphrodite. Mol. Ecol. 28 : 2321–2341.
Ravi Ram, K., & Ramesh, S. R. 2002. Male accessory gland secretory
proteins in nasuta subgroup of Drosophila : synthetic activity of
Acp. Zool. Sci. 19 : 513–518.
Redhai, S., Hellberg, J. E., Wainwright, M., Perera, S. W., Castellanos,
F., Kroeger, B. et al. 2016. Regulation of dense-core granule
replenishment by autocrine BMP signalling in Drosophila secondary
cells. PLoS Genet. 12 : e1006366.
Reinhardt, K., Naylor, R., & Siva-Jothy, M. T. 2011. Male mating rate
is constrained by seminal fluid availability in bedbugs, Cimex
lectularius . PLoS One 6 : e22082.
Rogers, D. W., Chapman, T., Fowler, K., & Pomiankowski, A. 2005.
Mating-induced reduction in accessory reproductive organ size in the
stalk-eyed fly Cyrtodiopsis dalmanni . BMC Evol. Biol.5 : 37.
Schmidt, T., Stumm-Zollinger, E., & Chen, P. S. 1985. Protein
metabolism of Drosophila melanogaster male accessory
glands—III: Stimulation of protein synthesis following copulation.Insect Biochem. 15 : 391–401.
Simmons, L.W. & Lovegrove, M. 2017. Socially cued seminal fluid gene
expression mediates responses in ejaculate quality to sperm competition
risk. Proc. R. Soc. B Biol. Sci. 284 : 20171486.
Sirot, L.K., Wolfner, M.F. & Wigby, S. 2011. Protein-specific
manipulation of ejaculate composition in response to female mating
status in Drosophila melanogaster . Proc. Natl. Acad. Sci.
U. S. A. 108 : 9922–9926.
Sirot, L.K., Buehner, N. a., Fiumera, A.C. & Wolfner, M.F. 2009.
Seminal fluid protein depletion and replenishment in the fruit fly,Drosophila melanogaster : An ELISA-based method for tracking
individual ejaculates. Behav. Ecol. Sociobiol. 63 :
1505–1513.
Sirot, L.K., Wong, A., Chapman, T. & Wolfner, M.F. 2015. Sexual
conflict and seminal fluid proteins: A dynamic landscape of sexual
interactions. Cold Spring Harb. Perspect. Biol. 7 :
a017533. Cold Spring Harbor Lab Press.
Sloan, N. S., Lovegrove, M., & Simmons, L. W. 2018. Social manipulation
of sperm competition intensity reduces seminal fluid gene expression.Biol. Lett. 14 : 20170659.
Swart, E.M., Davison, A., Ellers, J., Filangieri, R.R., Jackson, D.J.,
Mariën, J., et al. 2019. Temporal expression profile of an
accessory-gland protein that is transferred via the seminal fluid of the
simultaneous hermaphrodite Lymnaea stagnalis . J. Molluscan
Stud. 85 : 177–183.
R Core Team. 2020. R: A Language and Environment for Statistical
Computing. https://www.R-project.org/
Van Duivenboden, Y.A. & Ter Maat, A. 1985. Masculinity and receptivity
in the hermaphrodite pond snail, Lymnaea stagnalis . Anim.
Behav. 33 : 885–891.
Weggelaar, T.A., Commandeur, D. & Koene, J.M. 2019. Increased
copulation duration does not necessarily reflect a proportional increase
in the number of transferred spermatozoa. Anim. Biol.69 : 95–115.
Wei, D., Feng, Y. C., Wei, D. D., Yuan, G. R., Dou, W., & Wang, J. J.
2015. Female remating inhibition and fitness of Bactrocera
dorsalis (Diptera: Tephritidae) associated with male accessory glands.Florida Entomologist 98 : 52–58.
White, M.A., Bonfini, A., Wolfner, M.F. & Buchon, N. 2021. Drosophila
melanogaster sex peptide regulates mated female midgut morphology and
physiology. Proc. Natl. Acad. Sci. U. S. A. 118 :
e2018112118.
Yamamoto, K., Chadarevian, A., & Pellegrini, M. 1988. Juvenile hormone
action mediated in male accessory glands of Drosophila by calcium
and kinase C. Science 239 : 916-919.
Young, A.P., Landry, C.F., Jackson, D.J., & Wyeth, R.C. 2019.
Tissue-specific evaluation of suitable reference genes for RT-qPCR in
the pond snail, Lymnaea stagnalis . PeerJ10 :1–17.
Zonneveld, C. & Kooijman, S.A.L.M. 1989. Application of a dynamic
energy budget model to Lymnaea stagnalis (L.). Funct.
Biol. 3 : 269–278.
Figures and tables