References
Alström, P. et al. 2015. Dramatic niche shifts and morphological change
in two insular bird species. – R. Soc. Open Sci. 2: 140364.
Angilletta, M. J. et al. 2003. Tradeoffs and the evolution of thermal
reaction norms. – Trends Ecol. Evol. 18: 234–240.
Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical
Synthesis. – Oxford University Press.
Bartels, P. et al. 2012. Water Transparency Drives Intra-Population
Divergence in Eurasian Perch (Perca fluviatilis). –
PLoS
ONE 7 (8): e43641.
Blomberg, S. P. et al. 2003. Testing for phylogenetic signal in
comparative data: Behavioral traits are more labile. – Evolution 57:
717–745.
Bonte, D. and Saastamoinen, M. A. K. 2012. Dispersal syndromes in
butterflies and spiders. – In: Clobert, J. et al. (ed.), Dispersal
Ecology and Evolution, Oxford University Press, pp. 161–170.
Boria, R. A. et al. 2014. Spatial filtering to reduce sampling bias can
improve the performance of ecological niche models. –
Ecol.
Model. 275: 73–77.
Broennimann, O. and Guisan, A. 2008. Predicting current and future
biological invasions: Both native and invaded ranges matter. – Biol.
Lett. 4: 585–589.
Broennimann, O. et al. 2007. Evidence of climatic niche shift during
biological invasion. – Ecol. Lett. 10: 701–709.
Broennimann, O. et al. 2012. Measuring ecological niche overlap from
occurrence and spatial environmental data. – Global Ecol. Blogeogr. 21
(4): 481–497.
Butler, M. A. and King, A. A. 2004. Phylogenetic comparative analysis: A
modeling approach for adaptive evolution.
–
Am. Nat. 164 (6): 683–695.
Callaway, R. M. and Maron, J. L. 2006. What have exotic plant invasions
taught us over the past 20 years? – Trends Ecol. Evol. 21: 369–374.
Chen, W. et al. 2009. Frequent Mitochondrial Gene Introgression among
High Elevation Tibetan Megophryid Frogs Revealed by Conflicting
Genegenealogies. – Mol. Ecol. 18: 2856–2876.
Cooper, N. W. et al. 2010. Reproductive correlates of spring arrival
date in the eastern kingbird Tyrannus tyrannus . – J. Ornithol.
152: 143–152.
Crisp, M. D. et al. 2009. Phylogenetic biome conservatism on a global
scale. – Nature 458: 754–758.
Davis, M. B. and Shaw, R. G. 2001. Range shifts and adaptive responses
to quaternary climate change. – Science 292: 673–679.
Dormann, C. F. et al. 2013. Collinearity: a review of methods to deal
with it and a simulation study evaluating their performance. –
Ecography 36, 27–46.
Elith, J. et al. 2011. A statistical explanation of MaxEnt for
ecologists. – Divers. Distrib. 17 (1): 43–57.
Evans, M. E. K. et al. 2009. Climate, Niche Evolution, and
Diversification of the “Bird-Cage” Evening Primroses
(Oenothera , Sections Anogra and Kleinia ). – Am.
Nat. 173: 225–240.
Favre, A. et al. 2015. The role of the uplift of the Qinghai-Tibetan
Plateau for the evolution of Tibetan biotas. –
Biol.
Rev. 90: 236–253.
Fei, L. et al. 2005. An illustrated Key to Chinese Amphibians. –
Chengdu: Sichuan Publishing House of Science and Technology.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach
using the bootstrap. – Evolution:
783–791.
Freckleton, R. et al. 2002. Phylogenetic analysis and comparative data:
a test and review of evidence. – Am. Nat. 160: 712–726.
Fu, J. Z. et al. 2007. A phylogeny of the high-elevation Tibetan
megophryid frogs and evidence for the multiple origins of reversed
sexual size dimorphism. – J. Zool. 273: 315–325.
Grafen, A. 1989. The phylogenetic regression. – Philos. Trans. R. Soc.
Lond. B Biol. Sci. 326: 119–157.
Graham, C. H. et al. 2004. Integrating phylogenetics and environmental
niche models to explore speciation mechanisms in dendrobatid frogs. –
Evolution 58: 1781–1793.
Guisan, A. et al. 2014.
Unifying
niche shift studies: Insights from biological invasions. – Trends Ecol.
Evol. 29: 260–269.
Guo, W. Y. et al. 2013. Invasion of Old World Phragmites
australis in the New World: Precipitation and temperature patterns
combined with human influences redesign the invasive niche. – Glob.
Change Biol. 19: 3406–3422.
Hansen, T. F. 1997. Stabilizing selection and the comparative analysis
of adaptation. –Evolution 51 (5): 1341–1351.
Harmon, L. J. et al. 2007. GEIGER: Investigating evolutionary
radiations. – Bioinfor- matics 24 (1): 129–131.
Harmon, L. J. et al. 2010. Early bursts of body size and shape evolution
are rare in comparative data. – Evolution 64 (8): 2385–2396.
Harrison, T. M. et al. 1992. Raising Tibet. – Science 255: 1663–1670.
Harvey, P. H. and Rambaut, A. 2000. Comparative analyses for adaptive
radiations. – Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355:
1599–1605.
Hierro, J. L. et al. 2005. A biogeographical approach to plant
invasions: The importance of studying exotics in their introduced and
native range. –
J.
Ecol. 93: 5–15.
Hijmans, R. J. et al. 2005a. WorldClim, Version 2.1. –
<https://www.worldclim.org
/data/worldclim21.html>.
Hijmans, R. J. et al. 2005b.
Very
high resolution interpolated climate surfaces for global land areas. –
Int. J. Climatol. 25: 1965–1978.
Hofmann, S. et al. 2017. Molecular Phylogenies Indicate a Paleo-Tibetan
Origin of Himalayan Lazy Toads (Scutiger ). – Sci. Rep. 7: 3308.
Hu, J. H. et al. 2015. Niche divergence accelerates evolution in Asian
endemic Procapra gazelles. – Sci. Rep. 5: 10069.
Hudson, C. M. et al. 2015.
Virgins
in the vanguard: low reproductive frequency in invasion front cane
toads. – Biol. J. Linnean Soc. 116: 743–747.
Kalyaanamoorthy, et al. 2017. ModelFinder: fast model selection for
accurate phylogenetic estimates. – Nat. Methods 14: 587–589.
Knouft, J. H. et al. 2006. Phylogenetic analysis of the evolution of the
niche in lizards of the Anolis sagrei group. – Ecology 87:
29–38.
Kolbe, J. J. et al. 2010. Modeling the consequences of thermal trait
variation for the cane toad invasion of Australia. – Ecol. Appl. 20
(8): 2273–2285.
Kooyers, N. J. and Olsen K. M. 2012. Rapid evolution of an adaptive
cyanogenesis cline in introduced North American white clover
(Trifolium repens L. ). – Mol. Ecol. 21: 2455–2468.
Kozak, K. H. and Wiens, J. J. 2010. Accelerated rates of climatic-niche
evolution underlie rapid species diversification. – Ecol. Lett. 13:
1378–1389.
Kozak, K. H. and Wiens, J. J. 2006. Does niche conservatism promote
speciation? A case study in North American salamanders. – Evolution 60:
2604–2621.
Kumar, S. et al. 2018. MEGA X: Molecular Evolutionary Genetics Analysis
across Computing Platforms. –
Mol.
Biol. Evol. 35 (6): 1547–1549.
Li, R. 2009. Rivers as barriers for high elevation amphibians: a
phylogeographic analysis of the alpine stream frog of the Hengduan
Mountains, –
J.
Zool. 277 (4): 309–316.
Liu, C. L. et al. 2020. Most invasive species largely conserve their
climatic niche. – Proc. Natl Acad. Sci. USA 117: 23643–23651.
Losos, J. B. and Queiroz, K. D. 1997. Evolutionary consequences of
ecological release in Caribbean Anolis lizards. – Biol. J. Linnean Soc.
61: 459–483.
Martins, E. P. and Hansen, T. F. 1997.
Phylogenies
and the comparative method: a general approach to incorporating
phylogenetic information into the analysis of interspecific data. – Am.
Nat. 149: 646–667.
Mautz,
W. J. 1982. Patterns of evaporative water loss.
– In Gans, C. and Pough, F. H.
(ed.), Biology of the reptilian. Academic Press, pp. 443–481.
Molnar, P. et al. 1993. Mantle dynamics, uplift of the Tibetan Plateau
and the Indian monsoon. – Rev. Geophys. 31: 357–96.
Mulch, A. and Chamberlain, C. P. 2006. Earth science – The rise and
growth of Tibet. – Nature 439: 670–671.
Muscarella, R. et al. 2014. ENMeval: an R package for conducting
spatially independent evaluations and estimating optimal model
complexity for Maxent ecological niche models. – Methods Ecol. Evol. 5:
1198–1205.
Oufiero, et al. 2011. Swimming performance trade-offs across a gradient
in community composition in Trinidadian killifish (Rivulus
hartii ). – Ecology 92: 170–179.
Parent, C. E. and Crespi, B. J. 2009. Ecological opportunity in adaptive
radiation of Galapagos endemic land snails. – Am. Nat. 174: 898–905.
Peterson, A. T. and Holt, R. D. 2003. Niche differentiation in Mexican
birds: Using point occurrences to detect ecological innovation. – Ecol.
Lett. 6: 774–782.
Petitpierre, B. et al. 2012. Climatic niche shifts are rare among
terrestrial plant invaders. – Science 335: 1344–1348.
Phillips, B. L. et al. 2006. Invasion and the evolution of speed in
toads. – Nature 439: 803.
Phillips, B. L. et al. 2010. Evolutionarily accelerated invasions: The
rate of dispersal evolves upwards during the range advance of cane
toads. –
J.
Evol. Biol. 23 (12): 2595–2601.
Phillips, S. J. and Dudík, M. 2008. Modeling of species distributions
with Maxent: new extensions and a comprehensive evaluation. – Ecography
31: 161–175.
Rabosky, D. L. and Adams, D. C. 2012. Rates of morphological evolution
are correlated with species richness in salamanders. – Evolution 66:
1807–1818.
Revell, L. J. 2013. Two new graphical methods for mapping trait
evolution on phylogenies. –
Methods
Ecol. Evol. 4: 754–759.
Revell, L. J. 2020. Package phytools, Version 0.7–70. –
<https://github.com /liamrevell/phytools>.
Rollins, L. A. et al. 2015. Genetic perspective on rapid evolution in
cane toads (Rhinella marina ). – Mol. Ecol. 24: 2264–2276.
Rowley, D. and Currie, B. S. 2006. Palaeo-altimetry of the late Eocene
to Miocene Lunpola basin, central Tibet. – Nature 439: 677–681.
Schluter, D. 2000. The ecology of adaptive radiation. – Oxford Univ.
Press.
Seebacher, F. and Franklin, C. E. 2011. Physiology of invasion: cane
toads are constrained by thermal effects on physiological mechanisms
that support locomotor performance. –
J.
Exp. Biol. 214: 1437–1444.
Sexton, J. P. et al. 2017. Evolution of ecological niche breadth. –
Annu. Rev. Ecol. Evol. Syst. 48: 183–206.
Sherratt, E. et al. 2017. Rates of morphological evolution, asymmetry
and morphological integration of shell shape in scallops, – BMC Evol.
Biol. 17: 248.
Strubbe, D. et al. 2015. Niche conservatism among non-native vertebrates
in Europe and North America. – Ecography 38: 321–329.
Strubbe, D. et al. 2013. Niche conservatism in non-native birds in
Europe: niche unfilling rather than niche expansion. – Global Ecol.
Biogeogr. 22: 962–970.
Subba, B. et al. 2015.
Scaling
new heights: first record of Boulenger’s Lazy Toad Scutiger
boulengeri (Amphibia: Anura: Megophryidae) from high altitude lake in
Sikkim Himalaya, India. – J.
Threatened Taxa 7 (10): 7655–7663.
Swets, J. 1988. Measuring the accuracy of diagnostic systems. – Science
240 (4857): 1285–1293.
Thomas, C. D. et al. 2001. Ecological and evolutionary processes at
expanding range margins. – Nature 411: 577–581.
Tingley, R. et al. 2014. Realized niche shift during a global biological
invasion. – Proc. Natl Acad. Sci. USA 111: 10233–10238.
Tingley, R. et al. 2016. Patterns of niche filling and expansion across
the invaded ranges of an Australian lizard. – Ecography (Cop.) 39:
270–280.
Tuanmu, M. N. and Jetz, W. 2015. A global, remote sensing-based
characterization of terrestrial habitat heterogeneity for biodiversity
and ecosystem modelling. – Glob Ecol. Biogeogr. 24: 1329–1339.
Vanhooydonck, B. and Van Damme, R. 1999. Evolutionary relationships
between body shape and habitat use in lacertid lizards. – Evol. Ecol.
Res. 1: 785–805.
Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates
measures of accuracy for presenceonly niche models. – J. Biogeography
36: 2290–2299.
Wagenmakers, E. J. and Farrell, S. 2004. AIC Model Selection Using
Akaike Weights. – Psychon. Bull. Rev. 11: 192–196.
Warren, D. L. et al. 2010. ENMTools: a toolbox for comparative studies
of environmental niche models. –
Ecography
33: 607–611.
Warren, et al. 2008. Environmental niche equivalency versus
conservatism: quantitative approaches to niche evolution. – Evolution
62 (11): 2868–2883.
Wiens,
J. J. 2004. Speciation and Ecology Revisited: Phylogenetic Niche
Conservatism and the Origin of Species. – Evolution 58 (1): 193–197.
Wiens, J. J. et al. 2008.
Environmental
niche equivalency versus conservatism: quantitative approaches to niche
evolution. – Evolution 62: 2868–2883.
Yoder, J. B. et al. 2010. Ecological opportunity and the origin of
adaptive radiations. – J. Evol. Biol. 23: 1581–1596.
Zaaf, A. and Van Damme, R. 2001. Limb proportions in climbing and
ground-dwelling geckoes (Lepidosauria, Gekkonidae): a phylogenetically
informed analysis. – Zoomorphology 121: 45–53.
Zhang, D. et al. 2020. PhyloSuite: an integrated and scalable desktop
platform for streamlined molecular sequence data management and
evolutionary phylogenetics studies. – Mol. Ecol. Resour. 20: 348–355.
Supplementary material Appendix at
<www.oikosoffice.lu.se/appendix>.
Acknowledgements – We thank Chunlong Liu from Freie Universität
Berlin & Université Paris Saclay for help on conception of the earlier
draft. We thank Dr. Cheng Li, Dr. Yin Qi, Dr. Guocheng Shu and Professor
Dajie Gong, Shengchao Shi and Xiancheng Xu for their kind help in field
work.
Funding – This study was funded by the Second Tibetan Plateau
Scientific Expedition and Research Program (STEP, 2019QZKK05010503), the
Biodiversity Survey and Assessment Project of the Ministry of Ecology
and Environment, China 2019HJ2096001006, Construction of Basic
Conditions Platform of Sichuan Science and Technology Department
2019JDPT0020 and China Biodiversity Observation Networks
(Sino
BON).
Author contributions – XQL
and FX conceived the idea; XQL and FX collected the data with assistance
from YMH, XXS, MHZ, JHH and JPJ; XQL and FX processed the raw data; XQL
and CKS analyzed the data; XQL, CKS and FX leaded the writing. All
authors contributed with edits and comments toward the final manuscript.