5 Acknowledgments
The authors acknowledge support from the National Natural Science Foundation of China (Grant No. 21776261, 21808203), the China Postdoctoral Science Foundation (Grant No. 2017M612029).
6 Literature Cited
  1. Nayak SN, Bhasin CP, Nayak MG. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew Energy . 2019;143:1366-1387.
  2. Foong SY, Liew RK, Yang YF, Cheng YW, Yek PNY, Mahari WAW, Lee XY, Han CS, Vo DN, Le QV, Aghbashlo M, Tabatabaei M, Sonne C, Peng WX, Lam SS. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions.Chem Eng J . 2020;389:124401.
  3. Bundhoo ZMA. Microwave-assisted conversion of biomass and waste materials to biofuels. Renew Sust Energ Rev . 2018;82:1149-1177.
  4. Zhou MH, Xu JM, Jiang JC, Sharma BK. A review of microwave assisted liquefaction of lignin in hydrogen donor solvents: effect of solvents and catalysts. Energies . 2018;11,2877.
  5. Nizamuddin S, Baloch HA, Siddiqui MTH, Mubarak NM, Tunio MM, Bhutto AW, Jatoi AS, Griffin GJ, Srinivasan MP. An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass.Rev Environ Sci Biotechnol . 2018;17:813-837.
  6. Salema AA, Afzal MT, Bennamoun L. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresour Technol . 2017;233:353-362.
  7. Fang Z, Smith, RL, Qi XH. Production of biofuels and chemicals with microwave . Dordrecht: Springer, 2015.
  8. Beneroso D, Monti T, Kostas ET, Robinson J. Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts.Chem Eng J . 2017;316:481-498.
  9. Arpia AA, Chen WH, Lam SS, Rousset P, de Luna MDG. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review. Chem Eng J . 2021;403:126233.
  10. Zhang YN, Cui YL, Liu SY, Fan LL, Zhou N, Peng P, Wang YP, Guo FQ, Min M, Cheng YL, Liu YH, Lei HW, Chen P, Li BX, Ruan R. Fast microwave-assisted pyrolysis of wastes for biofuels production-a review. Bioresour Technol . 2020;297:122480.
  11. Yu SZ, Duan Y, Zhou X, Xie QL, Zeng GX, Mao XN, Liang XJ, Lu MZ, Nie Y, Ji JB. Three-dimensional simulation of a novel microwave-assisted heating device for methyl ricinoleate pyrolysis. Appl Therm Eng . 2019;153:341-351.
  12. Nie Y, Duan Y, Gong RC, Yu SZ, Lu MZ, Yu FW, Ji JB. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME). Bioresour Technol . 2015;186:334-337.
  13. Nie Y, Duan Y, Gong RC, Yu SZ, Lu MZ, Ji JB. Device and process for producing undecylenic acid methyl ester using methyl ricinoleate as raw material.US10081590B2,2018.
  14. Yu SZ, Duan Y, Mao XN, Xie QL, Zeng GX, Lu MZ, Nie Y, Ji JB. Pyrolysis of methyl ricinoleate by microwave-assisted heating coupled with atomization feeding. J Anal Appl Pyro . 2018;135:176-183.
  15. Rakesh V, K.Datta A, H.Walton J, L.McCarthy K, J.McCarthy M. Microwave combination heating :coupled electromagnetics-multiphase porous media modeling and MRI experimentation. AIChE J . 2012;58(4):1262-1278.
  16. Zhang ZJ, Su TY, Zhang SW. Shape effect on the temperature field during microwave heating process. J Food Quality . 2018;2018:1-24.
  17. I.Polaert, L.Estel, D.Luart, C.Len, M.Delmotte. A new and original microwave continuous reactor under high pressure for future chemistry.AIChE J . 2016;63(1):192-199.
  18. Gangurde LS, Sturm GSJ, Devadiga TJ, Stankiewicz A, Stefanidis GD. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors. Ind Eng Chem Res . 2017;56(45):13379-13391.
  19. Zhou J, Li YG, Li NY, Liu ST, Cheng LB, Sui SC, Gao J. A multi-pattern compensation method to ensure even temperature in composite materials during microwave curing process. Compos Part A Appl Sci Manuf . 2018;107:10-20.
  20. Kappe CO. How to measure reaction temperature in microwave-heated transformations. Chem Soc Rev . 2013;42(12):4977-4990.
  21. Ramírez A, Hueso JL, Mallada R, Santamaría J. Ethylene epoxidation in microwave heated structured reactors. Catal Today . 2016;273:99-105.
  22. Mohd Mokhta Z, Ong MY, Salman B, Nomanbhay S, Salleh SF, Chew KW, Show PL, Chen WH. Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location. Energy . 2020;190:116474.
  23. Meredith R. Equipment safety, engineers’ handbook of industrial microwave heating. IET Digital Library . 1998;323-330.
  24. Yang FM, Zhu HC, Huang K, A four-port microwave cavity structure design for improving heating uniformity and efficiency. Vaccum Electrnics . 2019;05:66-69.
  25. T/CIESC 0013-2021, Chinese standard for heating uniformity of industrial microwave equipment. 2021.