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1. Introduction 

Hyperbolic geometric flows are of particular importance to the understanding of manifold 

structure, space-time geometry, modern physics, general relativity and gravity theory. The 

hyperbolic geometric flow was first proposed by Kong and Liu [1], 

                                    
𝜕2𝑔𝑖𝑗

𝜕𝑡2
+ 2𝑅𝑖𝑗 + ℱ (𝑔,

𝜕𝑔

𝜕𝑡
) = 0,                                      (1.1) 

in which 𝑔𝑖𝑗  is the surface metric, ℱ  is the smooth function of 𝑔,
𝜕𝑔

𝜕𝑡
 , 𝑅𝑖𝑗  is the 𝑅𝑖𝑐𝑐𝑖 

curvature tensor. 

Liu studied the model [2]: 

                                      
𝜕2𝑔𝑖𝑗

𝜕𝑡2
= −2𝑅𝑖𝑗 − 𝛽

𝜕𝑔𝑖𝑗

𝜕𝑡
,                                              (1.2) 

in which 𝛽  is a positive constant. The classical global solution to the Cauchy problem of 

dissipative hyperbolic geometric flows is obtained, and it is discussed that the solution brows up. 

Meanwhile Liu [3] study the mixed initial boundary value problem of hyperbolic geometric flow 

and proved the global existence of classical solutions. 

The lifetimes of classical solutions of hyperbolic geometric flows with two spatial variables 

with slow decay initial data were studied by Kong, Liu et al [4]. Dai et al. [5] studied hyperbolic 
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geometric flow about the ephemeral existence and uniqueness theorem, and the nonlinear stability 

of hyperbolic geometric flow which is larger than 4D of Euclidean space was demonstrated. And 

they derived wave equations satisfied by the curvatures. They also obtained the relation that it is 

hyper geometric flow with the Einstein equation and the Ricci flow. Kong and Wang [6] studied 

the Einstein's hyperbolic geometric flow, which provides a natural tool to deform the shape of a 

manifold and to understand the wave character of metrics, the wave phenomenon of the curvature 

for evolutionary manifolds. The global existence of classical solutions for dissipative hyperbolic 

geometry flow in accord with the time was studied by Kong et al. [7]. Then Kong et al. [8] 

discussed the lower bound of life-span which is classical solutions for hyperbolic geometry flow 

equations with “small” initial data in several space dimensions. And they [9] obtained classical 

solutions of a dissipative hyperbolic geometry flow that has two spatial variates. 

In [10], Zhu studied a class of hyperbolic geometric flows defined on N-dimensional 

Riemannian manifolds. Later, Huo introduced three typical hyperbolic geometric flows on 

Riemann surface proposed by Kong et al in [11]: standard hyperbolic geometric flows, Einstein 

hyperbolic geometric flows and dissipative hyperbolic geometric flows. 

Wang studied the model [12]: 

                                          
𝜕2𝑔𝑖𝑗

𝜕𝑡2
= −2𝑅𝑖𝑗 = −𝑅𝑔𝑖𝑗 ,                                            (1.3) 

she investigates group-invariant solutions to hyperbolic geometric flow on Riemann surfaces and 

discussed the blow up of the solution. 

In this article, we will study a special case in eq (1.2). When 𝛽 = 1, namely  

                                           
𝜕2𝑔𝑖𝑗

𝜕𝑡2
= −2𝑅𝑖𝑗 −

𝜕𝑔𝑖𝑗

𝜕𝑡
.                                               (1.4) 

First of all, referring to a paper by Gao [13], we obtain a five-dimensional symmetric group of Lie 

points and a one-dimensional optimal system, and then further obtain the group-invariant solutions. 

After simplification and solution, many kinds of equations are obtained. It is found that the mixed 

equation is hyperbolic under limited conditions. Next, we consider the Cauchy problem of 

hyperbolic equation. Then the existence and uniqueness of the global solution is proved. Finally, 

blow up of the solution are investigates. 

Suppose that the Riemann surface is the topological type 𝑅2, let the initial metric be 

                                      𝑡 = 0: 𝑑𝑠2 = 𝑢0(𝑥)(𝑑𝑥
2 + 𝑑𝑦2),                                 (1.5) 

in which 𝑢0(𝑥) ∈ 𝐶
2, with bounded 𝐶2 norm and it satisfies 

                                          1 < 𝐻 ≤ 𝑢0(𝑥) ≤ 𝑀 < ∞,                                          (1.6) 

in which  𝐻,𝑀 are positive constant. 
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Theorem 1.1 Suppose the initial metric (1.5) satisfies (1.6) and any smooth function 𝑢1(𝑥) 

with bounded 𝐶1 norm, if one of the following conditions holds: 

(i)For any 𝑥 ∈ 𝑅， 

                𝑢1(𝑥) +
𝑢0
, (𝑥)

√𝑢0(𝑥) − 1
> 0,   𝑢1(𝑥) −

𝑢0
, (𝑥)

√𝑢0(𝑥) − 1
< 0 ,                       (1.7) 

       
1

√𝑢0(𝑥) − 1
𝟒

(𝑢1(𝑥) −
𝑢0
, (𝑥)

√𝑢0(𝑥) − 1
) +

2

3
(𝑢0(𝑥) − 1)

3

4 ≥ 0.                     (1.8) 

  (ii)For any 𝑥 ∈ 𝑅， 

                𝑢1(𝑥) +
𝑢0
, (𝑥)

√𝑢0(𝑥) − 1
< 0,   𝑢1(𝑥) −

𝑢0
, (𝑥)

√𝑢0(𝑥) − 1
> 0,                       (1.9) 

           
1

√𝑢0(𝑥) − 1
𝟒

(𝑢1(𝑥) +
𝑢0
, (𝑥)

√𝑢0(𝑥) − 1
) +

2

3
(𝑢0(𝑥) − 1)

3

4 ≥ 0.                   (1.10) 

Then the Cauchy problem  

                      {
(𝑒𝑤 − 1)𝑤𝑡𝑡 − 𝑤𝑥𝑥 = −𝑒

𝑤(𝑤𝑡
2 + 𝑤𝑡),

𝑡 = 0: 𝑒𝑤 = 𝑢0(𝑥),   (𝑒
𝑤)𝑡 = 𝑢1(𝑥),

                                     (1.11) 

has a unique global classical solution on 𝑡 ≥ 0. 

Theorem 1.2 Suppose (1.7) holds, and there is a point 𝑥0 ∈ 𝑅, such that 

         
1

√𝑢0(𝑥0) − 1
4

(𝑢1(𝑥0) −
𝑢0
, (𝑥)

√𝑢0(𝑥0) − 1
) +

2

3
(𝑢0(𝑥0) − 1)

3

4 < −
4

3
𝑀

3

4,  (1.12) 

or (1.9) holds, and there is a point 𝑥0 ∈ 𝑅, which make 

        
1

√𝑢0(𝑥0) − 1
4

(𝑢1(𝑥0) +
𝑢0
, (𝑥)

√𝑢0(𝑥0) − 1
) +

2

3
(𝑢0(𝑥0) − 1)

3

4 < −
4

3
𝑀

3

4,   (1.13) 

then the classical solution of the Cauchy problem (1.11) blows up on a local scale. 

2. Group-invariant solutions of dissipative hyperbolic geometric flows [14] 

For any surface (ℳ2, 𝑔), the scalar curvature 𝑅 = 2𝐾, in which 𝐾 is 𝐺𝑎𝑢𝑠𝑠 curvature of 

the surface, since 

𝑅𝑖𝑗 =
1

2
𝑅𝑔𝑖𝑗. 

The surface metric is locally conformal to the Euclidean metric, 

𝑔𝑖𝑗 = 𝑢(𝑥, 𝑦, 𝑡)𝛿𝑖𝑗,  

in which 𝑢(𝑥, 𝑦, 𝑡) > 0 is the conformal factor of 𝑔𝑖𝑗, 𝛿𝑖𝑗 is 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 symbol. So 

                                                           𝑅 = −
∆ ln 𝑢

𝑢
.                                                    (2.1) 

Thus, dissipative hyperbolic geometric flow eq (1.4) can become as follows: 

                                                      𝑢𝑡𝑡 + 𝑢𝑡 = ∆ ln𝑢.                                                  (2.2) 
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Make 𝑤 = ln𝑢, eq (2.2) becomes  

                             𝑒𝑤𝑤𝑡𝑡 + 𝑒
𝑤𝑤𝑡

2 + 𝑒𝑤𝑤𝑡 − 𝑤𝑥𝑥 − 𝑤𝑦𝑦 = 0.                             (2.3) 

Suppose the one-parameter group of infinitesimal transformations (𝑥, 𝑦, 𝑡, 𝑤) is given by 

𝑥∗ = 𝑥 + 𝜀𝜉1(𝑥, 𝑦, 𝑡, 𝑤) + 𝑜(𝜀
2), 

               𝑦∗ = 𝑦 + 𝜀𝜉2(𝑥, 𝑦, 𝑡, 𝑤) + 𝑜(𝜀
2),                                 (2.4) 

𝑡∗ = 𝑡 + 𝜀𝜉3(𝑥, 𝑦, 𝑡, 𝑤) + 𝑜(𝜀
2), 

𝑤∗ = 𝑤 + 𝜀𝜂(𝑥, 𝑦, 𝑡, 𝑤) + 𝑜(𝜀2), 

in which 𝜀 is a group parameter. 

The decision equations of the equation (2.3) can be settled as follows:  

{
 
 

 
 
𝜉3𝑡 = 0,   𝜉3𝑢 = 0,   𝜉3𝑥 = 0,   𝜉3𝑦 = 0,

𝜉1𝑡 = 0,   𝜉1𝑢 = 0,   𝜉1𝑥𝑥 = −𝜉1𝑦𝑦,

𝜉2𝑡 = 0,   𝜉2𝑢 = 0,   𝜉2𝑥 = −𝜉1𝑦,   𝜉2𝑦 = 𝜉1𝑥 ,

𝜂 = −2𝜉1𝑥.

 

So, if we go further, 

{

𝜉1 = 𝜉1(𝑥, 𝑦),   𝜉2 = 𝜉2(𝑥, 𝑦),
𝜉3 = 𝑐1,   𝜂 = −2𝜉1𝑥,

𝜉1𝑥 − 𝜉2𝑦 = 0,   𝜉2𝑥 + 𝜉1𝑦 = 0.
 

From the last two equations we can see that 𝜉1 + 𝑖𝜉2 = 𝐹(𝑥 + 𝑖𝑦). Here we let 𝐹(𝑥 + 𝑖𝑦) =

𝑘1(𝑥 + 𝑖𝑦) + 𝑘2 be linear, in which 𝑘1, 𝑘2 are complex constants, namely 

                                         {
𝜉3 = 𝑐1,   𝜉1 = 𝑐2 + 𝑐3𝑥 + 𝑐4𝑦,
𝜉2 = 𝑐5 − 𝑐4𝑥 + 𝑐3𝑦,   𝜂 = −2𝑐3,

                                   (2.5) 

in which 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 are real constants. Then the vector field is known as: 

  𝑉 = 𝜉1
𝜕

𝜕𝑥
+ 𝜉2

𝜕

𝜕𝑦
+ 𝜉3

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑤
 

                            = (𝑐2 + 𝑐3𝑥 + 𝑐4𝑦)
𝜕

𝜕𝑥
+ (𝑐5 − 𝑐4𝑥 + 𝑐3𝑦)

𝜕

𝜕𝑦
+ 𝑐1

𝜕

𝜕𝑡
+ (−2𝑐3)

𝜕

𝜕𝑤
. 

                                                                                                                                          (2.6) 

Hence the vector field of the Lie symmetric group of all vector fields in eq (2.3) is given: 

               

{
 
 

 
 
𝑉1 = 𝜕𝑡,
𝑉2 = 𝜕𝑥,
𝑉3 = 𝜕𝑦,
𝑉4 = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 − 2𝜕𝑤,
𝑉5 = 𝑦𝜕𝑥 − 𝑥𝜕𝑦.

                                                (2.7) 

Theorem 2.1: Generators in (2.7) generate an optimal system 𝑆: 

{𝑉5 ± 𝑉1 ± 𝑉4,  𝑉5 ± 𝑉4,  𝑉5 ± 𝑉1, 𝑉5,  𝑉4 ± 𝑉1,  𝑉4,  𝑉2 ± 𝑉1,  𝑉2,  𝑉3 ± 𝑉1, 𝑉3, 𝑉1}. 

Next, we will consider the solution to the equation (2.3). 

(1) 𝑉 = 𝑉5 + 𝑉1 + 𝑉4 = (𝑥 + 𝑦)𝜕𝑥 + (𝑦 − 𝑥)𝜕𝑦 + 𝜕𝑡 − 2𝜕𝑤. 

The corresponding characteristic equations are 
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𝑑𝑥

𝑥 + 𝑦
=

𝑑𝑦

𝑦 − 𝑥
=
𝑑𝑡

1
=
𝑑𝑤

−2
, 

by solving the above equations, we get the invariances 

𝑧1 = 2arctan (
𝑦

𝑥
) + ln(𝑥2 + 𝑦2) ,   𝑧2 = 𝑤 + 2𝑡, 

the invariant solution is 

𝑤 = −2𝑡 + ln(ℎ(𝑧1)), 

then eq (2.3) can be reduced as 

2ℎ𝑒−2𝑡 −
8

𝑥2 + 𝑦2
(ℎℎ′′ − ℎ′2)

ℎ2
= 0. 

(2) 𝑉 = 𝑉5 + 𝑉4 = (𝑥 + 𝑦)𝜕𝑥 + (𝑦 − 𝑥)𝜕𝑦 − 2𝜕𝑤. 

The corresponding characteristic equations are 

𝑑𝑥

𝑥 + 𝑦
=

𝑑𝑦

𝑦 − 𝑥
=
𝑑𝑡

0
=
𝑑𝑤

−2
, 

the invariances are 

𝑧 = 2 arctan (
𝑦

𝑥
) + ln(𝑥2 + 𝑦2) ,   𝑡, 

the invariant solution is given by 

𝑤 = −2 ln(𝑥 + 𝑦) + ln(ℎ(𝑧, 𝑡)), 

then eq (2.3) can be reduced as 

1

(𝑥 + 𝑦)2
(ℎ𝑡𝑡 + ℎ𝑡) −

8

𝑥 + 𝑦
−

8

𝑥2 + 𝑦2
(ℎℎ𝑧𝑧 − ℎ𝑧

2)

ℎ2
= 0. 

(3)𝑉 = 𝑉5 = 𝑦𝜕𝑥 − 𝑥𝜕𝑦. 

The corresponding characteristic equations are 

𝑑𝑥

𝑦
=
𝑑𝑦

−𝑥
=
𝑑𝑡

0
=
𝑑𝑤

0
, 

the invariances are 

𝑧 = 𝑥2 + 𝑦2,   𝑡, 
the invariant solution is 

𝑤 = 𝑤(𝑧, 𝑡), 

then eq (2.3) can be reduced as 

𝑒𝑤(𝑤𝑡𝑡 + 𝑤𝑡
2 + 𝑤𝑡) − 2𝑧

2𝑤𝑧𝑧 − 4𝑤𝑧 = 0. 

(4) 𝑉 = 𝑉4 + 𝑉1 = 𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 𝜕𝑡 − 2𝜕𝑤. 

The corresponding characteristic equations are 

𝑑𝑥

𝑥
=
𝑑𝑦

𝑦
=
𝑑𝑡

1
=
𝑑𝑤

−2
, 

the invariances are 

𝑧1 = 𝑥𝑦
−1,   𝑧2 = 𝑤 + 2𝑡, 

the invariant solution is 
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𝑤 = −2𝑡 + ln(ℎ(𝑧1)), 

then eq (2.3) can be reduced as 

2ℎ𝑒−2𝑡 −
ℎℎ′′ − ℎ′2

𝑦2ℎ2
+
−𝑥2ℎℎ′′ − 2𝑥𝑦ℎℎ′ + 𝑥2ℎ′2

𝑦4ℎ2
= 0. 

(5) 𝑉 = 𝑉2 + 𝑉1 = 𝜕𝑥 + 𝜕𝑡. 

The corresponding characteristic equations are 

𝑑𝑥

1
=
𝑑𝑦

0
=
𝑑𝑡

1
=
𝑑𝑤

0
, 

the invariances are 

𝑦,   𝑧 = 𝑡 − 𝑥, 

the invariant solution is 

𝑤 = 𝑤(𝑦, 𝑧), 

then eq (2.3) can be reduced as 

                                          𝑤𝑧𝑧 + 𝑤𝑦𝑦 = 𝑒𝑤(𝑤𝑧𝑧 +𝑤𝑧
2 + 𝑤𝑧).                                (2.8) 

Look for travelling wave solution to eq (2.8), suppose 𝜎 = 𝑧 + 𝛿𝑦, and 𝜆 = 1 + 𝛿2, then eq 

(2.8) becomes  

(1 + 𝛿2)𝑤𝜎𝜎 = 𝑒
𝑤(𝑤𝜎𝜎 + 𝑤𝜎

2 + 𝑤𝜎), 

namely 

𝜆𝑤𝜎𝜎 = (𝑒𝑤)𝜎𝜎 + 𝑒
𝑤
𝜎. 

Let’s integrate above equation twice with respect to 𝜎, the implicit solution of eq (2.8) is given 

by 

𝜆𝑤 = 𝑒𝑤 +∫𝑒𝑤𝑑𝜎 + 𝑐1𝜎 + 𝑐2, 

where 𝑐1, 𝑐2 are arbitrary constants. 

(6) 𝑉 =  𝑉3 − 𝑉1 = 𝜕𝑦 − 𝜕𝑡. 

The corresponding characteristic equations are 

𝑑𝑥

0
=
𝑑𝑦

1
= −

𝑑𝑡

1
=
𝑑𝑤

0
, 

the invariances are 

𝑧 = 𝑦 + 𝑡,   𝑥, 

the invariant solution is 

𝑤 = 𝑤(𝑧, 𝑥), 

then eq (2.3) can be reduced as 

                                          𝑒𝑤(𝑤𝑧𝑧 + 𝑤𝑧
2 + 𝑤𝑧) = 𝑤𝑥𝑥 + 𝑤𝑧𝑧.                                 (2.9) 

Look for travelling wave solution to the above equation, suppose 𝜌 = 𝑧 + 𝛿𝑥, and 𝜆 = 1 +

𝛿2, then equation becomes  
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𝑒𝑤(𝑤𝜌𝜌 + 𝑤𝜌
2 + 𝑤𝜌) = 𝜆𝑤𝜌𝜌, 

namely 

(𝑒𝑤)𝜌𝜌 + (𝑒
𝑤)𝜌 = 𝜆𝑤𝜌𝜌. 

Let’s integrate above equation twice with respect to 𝜌, the solution of eq (2.9) satisfies 

𝑒𝑤 +∫𝑒𝑤𝑑𝜌 = 𝜆𝑤 + 𝑐1𝜌 + 𝑐2, 

in which 𝑐1, 𝑐2 are arbitrary constants. 

3. Global solution and blow up 

3.1 Preliminaries 

Eq (2.8) is equivalent to (𝑒𝑤 − 1)𝑤𝑧𝑧 −𝑤𝑦𝑦 = −𝑒𝑤(𝑤𝑧
2 + 𝑤𝑧),  Let's replace 𝑧  with 𝑡 , and 

replace 𝑦 with 𝑥, we have 

                               (𝑒𝑤 − 1)𝑤𝑡𝑡 − 𝑤𝑥𝑥 = −𝑒
𝑤(𝑤𝑡

2 +𝑤𝑡),                                  (3.1) 

if 𝑒𝑤 − 1 > 0, eq (3.1) is hyperbolic; if 𝑒𝑤 − 1 < 0, eq (3.1) is elliptic. Next, Let's talk about the 

hyperbolic case. Make 𝑣 = 𝑤𝑡,   ℎ = 𝑤𝑥,  then eq (3.1) is able to become to a first order 

quasilinear equations set: 

                                 {

𝑤𝑡 = 𝑣,
ℎ𝑡 − 𝑣𝑥 = 0,

𝑣𝑡 −
1

𝑒𝑤 − 1
ℎ𝑥 = −

𝑒𝑤

𝑒𝑤 − 1
(𝑣2 + 𝑣).

                               (3.2) 

The eigenvalue of eq (3.2) can be easily calculated as 𝜆1 = −𝜆,   𝜆2 = 0,   𝜆3 = 𝜆,  in which 𝜆 =

√
1

𝑒𝑤−1
 , the matrix 𝐿(𝑈)(𝑈 = (𝑤, ℎ, 𝑣)𝑇)  of left eigenvectors and the matrix 𝑅(𝑈)  of right 

eigenvectors are respectively, 

𝐿(𝑈) = (
𝑙1(𝑈)
𝑙2(𝑈)
𝑙3(𝑈)

) = (
0 1 𝜆
1 0 0
0 1 −𝜆

), 

𝑅(𝑈) = (𝑟1(𝑈), 𝑟2(𝑈), 𝑟3(𝑈)) = (
0 1 0
1 0 1
𝜆 0 −𝜆

). 

Since ∇𝜆𝑖(𝑈)𝑟𝑖(𝑈) ≡ 0 (𝑖 = 1,2,3),  so the system (3.2) is a linearly degenerate hyperbolic 

system. Set 𝑝 = 𝑣 + 𝜆ℎ,   𝑞 = 𝑣 − 𝜆ℎ, and 𝜇 = −
𝑒𝑤

4(𝑒𝑤−1)
, then we have the following lemma. 

Lemma 3.1 𝑝 and 𝑞 satisfy 

                                    {
𝑤𝑡 =

𝑝 + 𝑞

2
,

𝑝𝑡 − 𝜆𝑝𝑥 = 𝜇[(𝑝 + 3𝑞 + 2)𝑝 + 2𝑞],

𝑞𝑡 + 𝜆𝑞𝑥 = 𝜇[(𝑞 + 3𝑝 + 2)𝑞 + 2𝑝].

                               (3.3) 
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Because of Cauchy problem 

             {
(𝑒𝑤 − 1)𝑤𝑡𝑡 − 𝑤𝑥𝑥 = −𝑒𝑤(𝑤𝑡

2 + 𝑤𝑡),

𝑡 = 0: 𝑒𝑤 = 𝑢0(𝑥),   (𝑒
𝑤)𝑡 = 𝑢1(𝑥),

                          (3.4) 

is equivalent to 

                             

{
 
 

 
 𝑤𝑡 =

𝑝 + 𝑞

2
,

𝑝𝑡 − 𝜆𝑝𝑥 = 𝜇[(𝑝 + 3𝑞 + 2)𝑝 + 2𝑞],

𝑞𝑡 + 𝜆𝑞𝑥 = 𝜇[(𝑞 + 3𝑝 + 2)𝑞 + 2𝑝],

𝑡 = 0:𝑤 = ln(𝑢0(𝑥)) ,   𝑝 = 𝑝0(𝑥),   𝑞 = 𝑞0(𝑥),

                  (3.5) 

in which 

                                 

{
 
 
 
 

 
 
 
 
𝑝0(𝑥) =

𝑢1(𝑥)

𝑢0(𝑥)
+ √

1

𝑢0(𝑥) − 1

𝑢0
′ (𝑥)

𝑢0(𝑥)
,

𝑞0(𝑥) =
𝑢1(𝑥)

𝑢0(𝑥)
− √

1

𝑢0(𝑥) − 1

𝑢0
′ (𝑥)

𝑢0(𝑥)
,

𝜆 = √
1

𝑒𝑤 − 1
,   𝜇 = −

𝑒𝑤

4(𝑒𝑤 − 1)
.

                                   (3.5′) 

Lemma 3.2 Let 𝑟 = 𝑝𝑥,   𝑠 = 𝑞𝑥, then 𝑟 and 𝑠 satisfy 

                 {
𝑟𝑡 − 𝜆𝑟𝑥 = 𝐴1𝑟 + 𝐴2𝑠 + ℎ1,
𝑠𝑡 + 𝜆𝑠𝑥 = 𝐵1𝑠 + 𝐵2𝑟 + ℎ2,

                                       (3.6) 

in which  

𝐴1 = 𝜇(3𝑝 + 2𝑞 + 2),   𝐴2 = 𝜇(3𝑝 + 2),   ℎ1 = −
𝜇𝜆

2
(𝑝 − 𝑞)[(𝑝 + 3𝑞 + 2)𝑝 + 2𝑞], 

𝐵1 = 𝜇(3𝑞 + 2𝑝 + 2),   𝐵2 = 𝜇(3𝑞 + 2),   ℎ2 = −
𝜇𝜆

2
(𝑝 − 𝑞)[(𝑞 + 3𝑝 + 2)𝑞 + 2𝑝]. 

Theorem 3.1 In the existence domain 𝐺(𝑇) of the classical solutions of Cauchy problems 

(3.5) and (3.5′), if there is a constant 𝑀0 > 0, such that 

                |𝑝(𝑥, 𝑡)| ≤ 𝑀0,   |𝑞(𝑥, 𝑡)| ≤ 𝑀0,                                    (3.7) 

so, in the region 𝐺(𝑇), 

           |𝑢(𝑥, 𝑡)| ≤ 𝑁(𝑇),   |𝑢𝑥(𝑥, 𝑡)| ≤ 𝑁(𝑇),   |𝑢𝑥𝑥| ≤ 𝑁(𝑇),                 (3.8) 

in which 𝑁(𝑇) is a positive constant that depends on 𝑇, 𝐺(𝑇) = {(𝑥, 𝑡)⌊𝑥 ∈ 𝑅, 0 ≤ 𝑡 ≤ 𝑇, ∀𝑇 >

0}.Thus, from the local existence results of classical solutions of quasilinear hyperbolic equations 

[14], the Cauchy problem (3.4) has a unique global solution for all 𝑡 ≥ 0. 

Proof: At any point (𝑡, 𝑥), denote 

𝑥 = 𝑥1(𝑡, 𝛽1),   𝑥 = 𝑥2(𝑡, 𝛽2),   𝑥 = 𝑥3(𝑡, 𝛽3), 

they are the characteristic lines of 𝜆1, 𝜆2 and 𝜆3 respectively, and satisfy 

𝑑𝑥1
𝑑𝑡

= 𝜆1 = −𝜆,   
𝑑𝑥2
𝑑𝑡

= 𝜆2 = 0,   
𝑑𝑥3
𝑑𝑡

= 𝜆3 = 𝜆, 
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𝑥1(0, 𝛽1) = 𝛽1,   𝑥2(0, 𝛽2) = 𝛽2,   𝑥3(0, 𝛽3) = 𝛽3. 

It is calculated that 

 

                                                          𝑤𝑥 =
𝑝 − 𝑞

2𝜆
,                                                            (3.9) 

                                  𝑤𝑥𝑥 =
1

2𝜆
(𝑟 − 𝑠) −

𝜇

2𝜆2
(𝑝 − 𝑞)2.                                       (3.10) 

Thus, by the first formula of (3.5), (3.6) and (3.7), we can get 

                                      ln𝐻 −𝑀0𝑡 ≤ 𝑤 ≤ ln𝑀 +𝑀0𝑡,                                                (3.11) 

                              −𝑀0√𝐻𝑒
−𝑀0𝑡 − 1 ≤ 𝑤𝑥 ≤ 𝑀0√𝑀𝑒

𝑀0𝑡 − 1,                                (3.12) 

|𝐴𝑖| ≤ 𝑁1,   |𝐵𝑖| ≤ 𝑁1, 𝑖 = 1,2, 

in which 𝑁1 is a positive constant. From Theorem 2.3 in [15], 

                                            |𝑟| ≤ 𝑀(𝑇),   |𝑠| ≤ 𝑀(𝑇).                                        (3.13) 

From (3.10) - (3.13), we have 

                                             |𝑤𝑥𝑥| ≤ 𝑀(𝑇).                                                     (3.14) 

By 𝑢 = 𝑒𝑤, from (3.11) - (3.12) and (3.14), we can prove (3.8). 

3.2 Proof of Theorem 1.1 and Theorem 1.2  

In this section, we study the brow up of the classical solutions to the initial-value problem for 

(3.5) − (3.5′). 

If want to prove Theorem 1.1, in term of the local existence theorem of classical solutions of 

quasilinear hyperbolic equations [14], it is only necessary to prove that 𝐶2 norm of 𝑢(𝑥, 𝑡) has a 

consistent prior estimation in the existence domain of the smooth solutions. 

We know from the previous, 𝑤 = ln 𝑢 and 

                                                 −
3

4
𝑝𝑞 = −

3

4
𝑝𝐿1𝑤 = −

3

4
𝑞𝐿2𝑤,                                    (3.15) 

in which 

𝐿1 =
𝜕

𝜕𝑡
− 𝜆

𝜕

𝜕𝑥
,   𝐿2 =

𝜕

𝜕𝑡
+ 𝜆

𝜕

𝜕𝑥
. 

Let 

                          𝑝̅ = (𝑢 − 1)
3

4𝑝,   𝑞̅ = (𝑢 − 1)
3

4𝑞,                                      (3.16) 

so 

                              

{
 
 

 
 𝐿1𝑝̅ = 𝑝̅𝑡 − 𝜆𝑝̅𝑥 =

𝜇

(𝑢(𝑥) − 1)
3

4

𝑝̅2 + 2𝑘(𝑝̅ + 𝑞̅),                         

𝐿2𝑞̅ = 𝑞̅𝑡 + 𝜆𝑞̅𝑥 =
𝜇

(𝑢(𝑥) − 1)
3

4

𝑞̅2 + 2𝑘(𝑝̅ + 𝑞̅).                         
(3.17) 

By calculation, 
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                                          {
𝐿1(𝑢(𝑥) − 1)

3

4 = −3𝜇(𝑢(𝑥) − 1)
3

4𝑞,

𝐿2(𝑢(𝑥) − 1)
3

4 = −3𝜇(𝑢(𝑥) − 1)
3

4𝑝.
                                   (3.18) 

Lemma 3.3 For any 𝑥 ∈ 𝑅, if 

                     𝑝̅0(𝑥) < 0,   𝑞̅0(𝑥) > 0,                                               (3.19) 

or  

                     𝑝̅0(𝑥) > 0,   𝑞̅0(𝑥) < 0,                                               (3.20) 

then in the existence domain of the classical solution to Cauchy problem (3.17) with initial 

condition (3.21), for any (𝑥, 𝑡) ∈ 𝑅 × 𝑅+, the following inequalities 

                  𝑡 = 0:

{
 
 

 
 𝑝̅ = 𝑝̅0(𝑥) =

1

√𝑢0(𝑥) − 1
4

(𝑢1(𝑥) +
𝑢0
′ (𝑥)

√𝑢0(𝑥) − 1
) ,

𝑞̅ = 𝑞̅0(𝑥) =
1

√𝑢0(𝑥) − 1
4

(𝑢1(𝑥) −
𝑢0
′ (𝑥)

√𝑢0(𝑥) − 1
) .

                  (3.21) 

                 𝑝̅(𝑥, 𝑡) < 0,   𝑞̅(𝑥, 𝑡) > 0,                                                    (3.22) 

or  

                                               𝑝̅(𝑥, 𝑡) > 0,   𝑞̅(𝑥, 𝑡) < 0.                                                    (3.23) 

Proof: If (3.19) or (3.20) holds, then by the continuity of 𝑝̅(𝑥, 𝑡) and 𝑞̅(𝑥, 𝑡), there exists 𝛿 >

0, such that for any (𝑥, 𝑡) ∈ 𝑅 × [0, 𝛿], (3.22) or (3.23) holds. 

Let's prove that (3.22) or (3.23) holds for any (𝑥, 𝑡) ∈ 𝑅 × 𝑅+. If (3.22) or (3.23) does not 

hold for (𝑥, 𝑡) ∈ 𝑅 × 𝑅+, then there is a (𝑥0, 𝑡0)(𝑡0 > 0) such that 

           {
𝑝̅(𝑥, 𝑡) < 0,   𝑞̅(𝑥, 𝑡) > 0,   𝑡 ∈ 𝑅 × [0, 𝑡0),

𝑝̅(𝑥0, 𝑡0) = 0,   𝑞̅(𝑥0, 𝑡0) > 0,
                                (3.24) 

or 

           {
𝑝̅(𝑥, 𝑡) < 0,   𝑞̅(𝑥, 𝑡) > 0,   𝑡 ∈ 𝑅 × [0, 𝑡0),

𝑝̅(𝑥0, 𝑡0) < 0,   𝑞̅(𝑥0, 𝑡0) = 0.
                                (3.25) 

If (3.24) holds, then by the first one in (3.17), we have, 

𝐿1𝑝̅(𝑥0, 𝑡0) = −
𝑢(𝑥0)

2(𝑢(𝑥0) − 1)
𝑞̅(𝑥0, 𝑡0) < 0, 

however, because of 𝑝̅(𝑥, 𝑡) < 0 (𝑡 ∈ 𝑅 × [0, 𝑡0))  and 𝑝̅(𝑥0, 𝑡0) = 0 , so 𝐿1𝑝̅(𝑥0, 𝑡0) ≥ 0 , this 

is a contradiction. 

Similarly, we can get (3.23) holds for any (𝑥, 𝑡) ∈ 𝑅 × 𝑅+. Therefore, the proof is completed. 

Denote 

                         𝑚 = (𝑢(𝑥) − 1)
3

4 (𝑝 +
2

3
) ,   𝑛 = (𝑢(𝑥) − 1)

3

4 (𝑞 +
2

3
),                    (3.26) 

the following lemma is readily available. 

Lemma 3.4 𝑚 and 𝑛 satisfy 
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                  {

𝐿1𝑚 =
𝜇

(𝑢(𝑥)−1)
3
4

(𝑚 −𝑚1)(𝑚 −𝑚2),

𝐿2𝑛 =
𝜇

(𝑢(𝑥)−1)
3
4

(𝑛 − 𝑛1)(𝑛 − 𝑛2),
                                  (3.27) 

in which 

    𝑚1 = 𝑛1 = −
4

3
(𝑢(𝑥) − 1)

3

4 < 0,𝑚2 = 𝑛2 =
2

3
(𝑢(𝑥) − 1)

3

4 > 0.                   (3.28) 

Lemma 3.5 [16,17] If there is 

             {
𝑧′(𝑡) = −ℎ(𝑡)(𝑧 − 𝑧1(𝑡))(𝑧 − 𝑧2(𝑡)),

𝑧(0) = 𝑧0,
                                  (3.29) 

in which ℎ(𝑡),  𝑧1(𝑡),  𝑧2(𝑡) ∈ 𝐶[0,+∞),  ℎ(𝑡) > 0, 

                                                         𝑧1(𝑡) < 0 < 𝑧2(𝑡),                                                      (3.30) 

(1) If 𝑧0 ≥ 0, then the continuous solution 𝑧(𝑡) of the problem (3.29) satisfies 

0 ≤ 𝑧(𝑡) ≤ 𝑠𝑢𝑝
𝑡≥0

𝑧2(𝑡); 

(2) If 

𝑧0 < 𝑖𝑛𝑓
𝑡≥0

𝑧1(𝑡), 

then there is a finite 𝜏 > 0, such that as 𝑡 → 𝜏+, the continuous solution 𝑧(𝑡) to the problem 

(3.29) satisfies 𝑧(𝑡) → −∞. 

If (1.7) or (1.9) holds, then (3.19) or (3.20) holds. And (3.22) or (3.23) is satisfied. Therefore, 

according to Lemma 3.3, (1.6), (3.16) and (3.18), we have 

                                           (𝐻 − 1)
3

4 ≤ (𝑢(𝑥) − 1)
3

4 ≤ (𝑀 − 1)
3

4.                                 (3.31) 

From (3.28) and (3.31), we get 

                                       −
4

3
(𝑀 − 1)

3

4 ≤ 𝑚1,   𝑛1 ≤ −
4

3
(𝐻 − 1)

3

4,                               (3.32) 

                                                    
2

3
(𝑀 − 1)

3

4 ≤ 𝑚2,   𝑛2 ≤
2

3
(𝑀 − 1)

3

4.                                  (3.33) 

Proof of Theorem 1.1: It is easily known that at 𝑡 = 0, 

       {
𝑚 = 𝑚0(𝑥) =

1

√𝑢0(𝑥)−1
4 (𝑢1(𝑥) +

𝑢0
′ (𝑥)

√𝑢0(𝑥)−1
) +

2

3
(𝑢0(𝑥) − 1)

3

4,

𝑛 = 𝑛0(𝑥) =
1

√𝑢0(𝑥)−1
4 (𝑢1(𝑥) −

𝑢0
′ (𝑥)

√𝑢0(𝑥)−1
) +

2

3
(𝑢0(𝑥) − 1)

3

4.
     (3.34) 

Therefore, based on the assumptions, if (1.7) holds, then we have 

𝑚0(𝑥) ≥
2

3
(𝑢0(𝑥) − 1)

3

4 ≥ 0. 

According to (1.7), (1.8), Lemma 3.3 and Lemma 3.5, we have 

                              
2

3
(𝐻 − 1)

3

4 ≤ 𝑚 ≤
2

3
(𝑀 − 1)

3

4,   0 ≤ 𝑛 ≤
2

3
(𝑀 − 1)

3

4.                 (3.35) 



12 

 

By (3.16) and (3.26), we get 

                               𝑝 = (𝑢(𝑥) − 1)−
3

4𝑚 −
2

3
,   𝑞 = (𝑢(𝑥) − 1)−

3

4𝑛 −
2

3
,                    (3.36) 

Then we have 

                                     0 < 𝑝 ≤
2

3
[(
𝑀 − 1

𝐻 − 1
)

3

4

− 1] ,   −
2

3
≤ 𝑞 < 0.                             (3.37) 

Similarly, if condition (1.9) holds, then 

                                      0 < 𝑞 ≤
2

3
[(
𝑀 − 1

𝐻 − 1
)

3

4

− 1] ,   −
2

3
≤ 𝑝 < 0.                             (3.38) 

Based on Theorem 3.1, Theorem 1.1 proved. 

Proof of Theorem 1.2: If (1.12) holds, then  

𝑛0(𝑥0) < 𝑖𝑛𝑓
𝑡≥0

𝑛1(𝑡), 

and from Lemma 3.5, there is a finite 𝜏 > 0, as 𝑡 → 𝜏+,we have 𝑛(𝑥, 𝑡) → −∞. 

Similarly, if (1.13) holds, there is also a finite 𝜏 > 0, when 𝑡 → 𝜏+, 𝑚(𝑥, 𝑡) → −∞. 

4. Conclusion 

This paper includes three parts: the first part recommended the background knowledge of 

dissipative hyperbolic geometric flow; In the second part, symmetric group of dissipative 

hyperbolic flows, one-dimensional optimal system and exact solutions are given. Finally, we 

proved the main results. 
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