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ABSTRACT. In this paper, we consider a von Karman plate system with general type of relaxation
functions on the boundary. Using some properties of the convex functions without the assumption
that initial value wyo = 0 on the boundary, we study the general decay rate result.
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1. INTRODUCTION

The purpose of this work is to investigate the general decay of the solutions to von Karman plate system

with memory condition on the boundary:
wee + A%w = [w,v] in Q x (0,00),

A%y = —[w,w] in Q x (0,00),
v:@:O on I" x (0, 00),
Ow(s)

v
ow t
5+/0 hl(t—s)(Alw(s)—i—al o

w— /0 ha(t — s) (Az2w(s) — azw(s))ds =0 on I' x (0, 00),

w(z,0) = wo(z), wi(z,0)=wi(z) in N

)ds:O on I' x (0, 00),

(1.5)
(1.6)

where Q € R? is a bounded domain with smooth boundary I', © = (z1,22), @1 and s are small positive

constants. The von Karman bracket [w, u] denotes the bilinear expression

(W, U] = Way 21 Uzszs — 2WaymoUsrwy T Wagwy Uzy or -

Let us denote by v = (v1, v2) the external unit normal vector on I and by 7 = (—v2,v1) the corresponding

unit tangent vector. Denoting by the differential operators .4; and A

where

_ _ 0Aw 04w
Aiw=Aw+ (1-NA 1w, Aw= o +(1-=Xx oy

A -9 2 2
1W = 2 V2Wy zo — V1 Wrxoxy — VoWgxqiaq,

Asw = (V% - V22)w$11‘2 + vive(Woszy — Wayay )

E-mail address: pointegg@hanmail.net.



2 GENERAL STABILITY FOR A VON KARMAN PLATE SYSTEM WITH...

and the constant A € (0, %), represents Poisson’s ratio. This system describes the transversal displacement
w and the Airy-stress function v of a vibrating plate subjected to the boundary viscoelastic damping.
The stability of the solutions to a von Karman system was considered by several authors ([1-3]). The
asymptotic behavior of the solutions to a von Karman plates with memory was studied by several au-
thors ([4-6]). On the other hand, Rivera et al. [7] proved that the solution of system (1.1)-(1.6) decays

exponentially provided the resolvent kernels satisfy
ki(0) > 0, Kj(t) < —Cuk;(t), ki (t) > —Coki(t), Vt >0, (i=1,2), (1.7

for some positive constants C; and Cs. Santos and Soufyane [8] improved the decay result of [7]. They

assumed that the resolvent kernels satisfy
ki(0) > 0, ki(t) >0, ki(t) <0, k' () > mi(t)(=ki(t), (i=1,2), (1.8)
where 7; : RT — RT is a function satisfying the following conditions

+oco
n:(t) > 0, n;(t) <0, / 0 (t)dt = +o0.
0
Kang [9] extended the results in [8] by considering general decay rates of the energy under a1 = a2 =0
and the generalized conditions

k:(0) >0, lim ki(t) =0, ki(t) <0, kI'(t) > K(—ki(t), (i=1,2), (1.9)

t— o0

where K is a positive function, with K(0) = K'(0) = 0, and K is linear or it is strictly increasing and
strictly convex on (0, r], for some 0 < r < 1. The inequality in (1.9) has been introduced for the first time
in [10]. These are weaker conditions on H than those introduced in [10]. Later, Park [11] obtained the
general decay of the solution for system (1.1)-(1.6) with @1 = a2 = 0 under the assumption (1.9) and
wo # 0 on a part of the boundary. Moreover, the stability of the solutions to the viscoelastic problems
with the memory on the boundary has been studied by many authors ([12-19]).

Motivated by their results, we prove the general decay of the solution for the system (1.1)-(1.6) when

the initial data wo # 0 on I' and the resolvent kernels k; satisfy
Ri(0) > 0, Ki(t) <0, K/(t) > &GOC(-Ki(1), (i=1,2), (1.10)

where & : Rt — RT is a positive nonincreasing differential function and G; is a positive function, with
Gi(0) = Gj(0) = 0, and G; is a linear or it is strictly increasing and strictly convex on (0,7], for some
0 < r < 1. This is a more general condition than conditions (1.8) and (1.9). Recently, Feng and Soufyane
[20] showed the general decay of the solution for system (1.1)-(1.6) with ety = a2 = 0 under the assumption
(1.10) and wo = 0 on a part of the boundary. The general stability result of viscoelastic equation, for

relaxation function h satisfying h'(t) < —£(t) K (h(t)), has been investigated in [21-23].
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The paper is organized as follows. In Section 2 we present some notations and assumptions needed for
our work. In Section 3 we prove the general decay of the solutions for the von Karman plate system with

memory condition on the boundary.

2. PRELIMINARIES

In this section, we present some material needed in the proof of our main result. Throughout this paper
we denote || - ||r2(q) and || - |[z2y by || - || and || - ||r, respectively. Let us define the bilinear form
a(w,u) = /Q {War 01 Y12y + WanwoUzsws + (Way o) Ussas + WanzoUaray) + 2(1 — 1) Way oy Usy 2y 2.
We assume that there exists zo € R? such that
F={zel:v(z)  (xr—x0) >0}
Denoting by m(xz) = x — xo, the compactness of I implies that there exists § > 0 such that
m(z)-v(z) >0 >0, Vezel. (2.1)

The following identity will be used later.

Lemma 2.1. ([24]) For any w € H*(Q) and u € H*(Q), we have
/(AQw)udx =a(w,u) + /(Azw)u - (Alw)%df, (2.2)
o

T

A(m - Vw)

/ﬂ(m V) A’ wdz = a(w, w) + / e

r

[(Azw)(m Vw) — (Aiw) ]dr

1
+§ /(m : ’/) [wazcﬂl + w?cz:cz + 20wz, 0 Wagws + 2(1 - )\)w3291582}d1—" (2'3)
T

We state the relative results of the Airy stress function and von Karman bracket [-, -].

Lemma 2.2. ([25]) Let w,u be functions in H*(Q) and v in HZ(Q), where Q is a open bounded and

connected set of R? with regular boundary. Then

/ [w, v]udz = / [w, u]vdz. (2.4)
Q Q
We introduce the following binary operators
t t
(hxw)(t) = / h(t — s)w(s)ds, (hOw)(t) := / h(t — s)|w(t) — w(s)|*ds
0 0

where * is the convolution product. By differentiating the term Aw, we obtain the following lemma for

the important property between these two operators.

Lemma 2.3. For h,w € C*([0,0) : R), we have

(h % w)ws = —%h(t)|w(t)|2 + %h/ljw _ %% = (/Ot h(s)ds ) ] (2.5)
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Now, we use the boundary conditions (1.4) and (1.5) to estimate the terms A;w and Asw. As shown

in ([7-9]), differentiating (1.4) and (1.5) and applying the Volterra’s inverse operator, we have

ow 1 Owy Owy 1
Alw—i—ala—y O + Ky % W} Asw — apw = m{wt + ko xwi },
where the resolvent kernel k;, (i = 1,2) satisfies
1, _ 1,
Denoting by v1 = #(0) and y2 = ﬁ(o)’ we get
_ ow owy Owo ow , Ow
Avw = —argr = { G = RO+ RO ) kG (2:6)
Aow = aow + Yo {ws — ka(t)wo + k2(0)w + kb * w}. (2.7)

Thus, we use the boundary conditions (2.6) and (2.7) instead of (1.4) and (1.5).
As in [12, 20], we consider the following assumptions on k; (i = 1,2).

(A) The resolvent kernel k; : Ry — Ry is twice differentiable functions such that
k;(0) > 0, Jim Ei(t)=0, ki(t)<0 (2.8)
— 00

and there exists a positive function G; € C'(Ry) and G is a linear or it is strictly increasing and strictly

convex C? function on (0,7], » < 1, with G;(0) = G%(0) = 0, such that
ki (t) > &()Gi(—ki(t)), YVt > 0. (2.9)

where &; : Rt 5 Rt isa nonincreasing differentiable function.

From (A), we easily see that there exists to > 0 large enough such that
0 < —kj(to) < —ki(t) < —ki(0), for t € [0, 0] (2.10)
and
max{k;(t), —ki(t), ki ()} < min{r, G(r)}, for t > to, (2.11)

where G = min{Gl, GQ}
As & (t) and —kj(t) are positive nonincreasing continuous functions and G;(t) is a positive continuous

function, there exist positive constants a; and b; such that
a; < &()Gi(—ki(t)) < bi, fort € [0,to)].

Therefore, for all t € [0, to], we obtain

" ’ k;(t) _ X
/1) 2 E(0GH(KID) 2 ai s = —ek() (2.12)

for some positive constant c;.
The well-posedness of von Karman system plates with boundary conditions of memory type is given by

the following theorem.
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Theorem 2.1. ([7]) Let k;(i = 1,2) € C*(R4) be such that k;, —k;, k! > 0. If the initial data (wo,w1) €
(H*(Q) N H*(Q)) x H*(Q) satisfy the conditions

Owo Own
Arwo + 041@ +m o

then the solution of (1.1)-(1.6) has the following regularity

=0, Aswo— axwo —yew1 =0 on T,

we CH([0,T] : H*(Q)) N C°([0,T] : H*()).

The energy function of system (1.1)-(1.6) is given by

B(t) = Ll + Satw,w) + Flael? + S| 220 4 gy o] 22
+%Hw|\12" + %kz(t)”wﬂ% -n / K, Dg—wdr -z FkQD wr. (2.13)
To get a general stability result, the following is needed.
Remark 2.1. 1. If G; is a strictly convex on (0,7] and G;(0) = 0, then
Gi(0z) < 0G;(z), =€ (0,7] and0< 6 < 1. (2.14)
2. Let G* be the convex conjugate of G in the sense of Young (see [26]); then
G"(s) = s(G") " (s) = GUG) " (s)] < s(G") " (s), if s € (0,G'(r)] (2.15)
and G* satisfies the following Young’s inequality
ab < G*(a) + G(b), ifa € (0,G'(r)], b€ (0,r]. (2.16)

3. Let F be a convex function on [¢,d], 0 : @ — [¢,d] and p are integrable functions on 2 such that

p(z) > 0 and [, p(z)dz = po > 0, then Jensen’s inequality holds that

F(- /Q elap(e)de) < - / F(o(2))p(x)da. (217)

Po

3. GENERAL DECAY

In this section, we study the asymptotic behavior of the solutions for the system (1.1)-(1.6). To show
the general decay property, we first prove the dissipative property. Multiplying (1.1) by w; and using (2.2),
(2.5), Young’s inequality and the boundary conditions (2.6) and (2.7), we obtain the following.

Lemma 3.1. ([7]) The energy function E(t) satisfies

E'(t) < - Slwil[f + Tkl |%——/ng dr + 2k (1) o[
[ Ol | M R Rl T O1[RE R CRY

Since wo # 0 on I, Lemma 3.1 says that E(t) may not be nonincreasing. So, we introduce the modified

/ k3 (s (3.2)

energy functional £(t) by

0
E(t) = B(t) + 2| |wo||r/ K(s)ds + 2|2
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Then from (3.1), we have
€)= ') - ZB®)llwoll? - Lhi(e Ha“’o /kg'm dr — /k’l’D—dF <0, (33)
For suitable choice of N1 and Na, let us introduce the Lyapunov functional
L(t) :== N1E(t) + N2Y(¢)
where

T(t) = / (m -Vw + 1w)w,gd:;r:.
Q 2
It is not difficult to see that L(¢) satisfies qoFE(t) < L(t) < q1 E(t), for some positive constants go and ¢i.
Lemma 3.2. Under the assumption (A), the functional Y(t) satisfies
1 1 1
(0 < 5 [ ome )l = Gl = 1800 = 5 [ (n-v)ofar
2 /i 2 2 /i

f(é — e/\o)a(w,w) — ag(i — aCe — ex\o) ||w\|12~ — al(i — 10 — e)\o)Hg—w

2 r
1 eX
_(5 - TO) ~/F(m : V) [w?mm + w92c2m2 + 2UWay 2y Wagay + 2(1 - )‘)waznm]dr
+195C (lunl + O lwllf + @) [wollf + C(62) [ g:Cwar)
r
2 Owy (|2 2 ow||? Owo / ow
+4’le€< ov F+k1(t)H8V F+k1(t H H +0(®) Fgl\jade), (3.4)
for any 0 < d; <1 (¢ =1,2), where
oo (1.t 2
C(éi) = / %ds and gi(t) = k! (t) — 8:kL(t) > 0. (3.5)
0 7

Proof. According to [7-9], from (2.3) and (2.4), we obtain

1 1 1
Y(0) = 3 [ (me ) dr = Gl = A0l = 5 [ (m-)lofar

2
3 1 0 1
—§a(11}7 w) — /F(Azw) (m -Vw + §w) dr + /F(Alw)a (m -Vw + §w)dF

1
3 /F(m : V) [wfmm =+ wozczxz + 20 Wz 2y Wagay + 2(1 - )‘)w?cmz]dr' (3'6)

Applying Young’s inequality we get

‘—/ (Asw) (m Vw + w)dF’<e||m Vw\|F+C||A2w—a2w\|p—(%—aQC)HwH%, (3.7)

4
ﬁ(m-Vw)Hi+c

I acll - (F-eto)l5

where € is a positive constant. On the other hand, by the bilinear form a(u)7 u) + fr (a1 %;“ 37: —+ azwu) dr’

‘/(Alw)agy(m~Vw+%w)dF‘ <e 38)
r

is strictly coercive on H?(2) and (2.1), we obtain

- W+ || o m - V)| < 2o (alaw, w) + asllwlfp + || 22|

A
+70 F(m V) [wilzl + wggw2 + 20 Wy 2 Wagzs + 2(1 — A)wzlm}dF, (3.9)
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where )¢ is a positive constant. Noting that
t
(k3 * w)(t) = w(t)[k2(t) — k2(0)] — / K (t — s)(w(t) — w(s))ds,
0

the boundary condition (2.7) can be written as

t
Asw — asw = yo{w: + k2 (t)w — k2 (t)wo — / ky(t — s)(w(t) — w(s))ds}. (3.10)
0
Similarly, we can show that
ow awt 811) B 8w0 ( ) Ow(s)

Using (3.6)-(3.11), we arrive at
/ 1 2 1 2 2 1 2
T(t) < 5 [ (m-v)fwe"dl = Sfwe][” = [|Av]|” = 5 [ (m - v)|Av["dT
2 /i 2 2 /i

(5~ e)atww) - aa(§ ~ axC - o)l — an (5 - en e~ edo) |2

2 4
_(% B %) A(m : V) [wazmzl + wizzz + 20 W 2y Wapwy + 2(1 - )\)wilzz]dr
(222 0| 221+ [ 22| - [ o (22 200y
+47§ce(\|wt||% + B30l + K@)l wol f + | —/0 K= o)) —weNasl|). @12

Using Cauchy-Schwarz inequality and (3.5), we have(see details in [21, 23])
2
H —/ kb (t — 8)(w(t) — w(s))dsH
S/ (;27d // (K5 (t — s) — 2k (t — 8))|w(t) — w(s)|*dsdl < C(ég)/gngdF (3.13)
0 2

and
L, ow(t) Ow(s ow
- — ) (- < 22ar. .
/0 K (¢ s)( o o )d H o( 61)/Fgl[]aydf (3.14)
Substituting (3.13) and (3.14) into (3.12), we have (3.4). a

Next, we define the functionals

:/tflw—swz,@

where f;(t ft ))ds, i=1,2.

/ fa(t — 9)|[w(s)|[2ds

Lemma 3.3. Under the assumption (A), the functionals K (t) and K2(t) satisfy the estimates
K1 (t) < 3ki( H k; EI 3.15
0 <) 5+ 5 [ # (315)

K5(t) < 3ka2(0)|w]| |7 + 3 / kyChwdl. (3.16)
r
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Proof. Taking the derivative of the functional K2(t) and using the fact f3(t) = k5(¢), we find that
K50 = 2O)lulft + [ Kale = 9wl s
= /Ot Eb(t — s)||w(s) — w(t)||fds + Z/Fw(t) /Ot ka(t — s)(w(s) — w(t))dsdl + ka(t)|Jw]|}. (3.17)

Using Young’s inequality and (2.8), we obtain

/ / ka(t — s)(w(s) — w(t))dsdl

—k5(s)ds t, 5
§2k2<o>uwu%+f’7 [ [ it = pluts) = wio)Pasar
< 2k (0) ]| — 7/k2D dr. (3.18)

From (3.17) and (3.18), we get the estimate (3.16). Similarly, we can obtain the estimate (3.15). O

Lemma 3.4. Suppose that the assumption (A) holds. Then, for N1, No > 0 large enough, there exist

positive constants 81 and B2 such that
ow
() < =B (llwell® + a(w, w) + || Avl] )+,62(k2( Dol + 0|52 )

O P, for t > to. (3.19)

— 472k (0)|[w]|F — 4y1k1 (0 v

N5l = [ poovwar = 3 [ i

where to was introduced in (2.10).

Proof. Combining (3.1), (3.4) and (3.5), we see that
RN2

N: N 0
L(t) < =2l = Nel| Al = 92 5 = 472CcNe - ks

Ny
)\|w,g||F — (G — nCN:) || S

2

r

1
—(g — e)\o)Nga(w7w) — (ag(z —eXo — @2Cc) Ny —4y3C K3 (1) 2) |wl|?

1 ~ 6 N Y101 V- ow
~(a1(5 = 0 = 1C) N2 — 1CR (1) )H&/H 20270 /Fkgmwdr— — /FleadF

N N 8
—'yz(%—472060(52)N2)/gQDwdF—'y1(71—4W1C€C(61)N2)/g1D—wdF
r

9]
1 6)\0 2 2 2
_(5 - 5 )N2 (m : V) [wmxl + Wagay + 20Wa 21 Wagay + 2(1 - )‘)wmm}dr
T

NN
2
where R = max{m(z) - v(z) : ® € I'}. We first fix € > 0 small such that

1 1 6)\0
1_6)\0>0 and §_T>O

N
43 (8) (L + 43Oz ) llwo 17 + K ()

o)

and then take a1 and oo small such that

i—e)\o—alc’€>0 and i—e/\o—agCe>O.

Next, applying the fact lim¢— o0 k;(t) = 0 (: = 1,2), we choose N> large enough so that
1

QZ(Z — EA() — aiOE)NQ — 4’nyek12(t)N2 > 4’}/7,]{37,(0), 7= 1,2
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From (2.8), (2.9) and (3.5), we have
—0iki(t) _ AGLAG)

—0iki(t) < ki (t) — 6iki(t) = gi(t) = OB I = Tt <

—ki(t), i=1,2. (3.20)
Integrating (3.20) and using (2.8), we obtain
5:C(8;) = b, /oo Mds < ki(0), i =1,2.
0
By the Lebesgue dominated convergence theorem, we find that §;C(8;) — 0 as d; — 0. Then there exists
0 < §p < 1 such that if §; < g, then

max{46171C.C(81)Na, 46395C.C(52)Na} < %
Finally, taking N; large enough so that
N1 > InaLx{ES’leeNg7 (S'ngE + %)Ng}
and choosing §; = ﬁ < do (i =1,2), we have the estimate (3.19). O
Now, we are now ready to prove our main result.

Theorem 3.1. Suppose that the assumption (A) holds. Then there exist positive constants €, 01, 02, k1

and k2 such that the energy functional satisfies, for all ¢ > to,

t rs
E(t) < 01{1 +/ e i €M (kg(s)llwol\% +ki(s ||8w0 || )ds} —o2 i € (9)ds " if G is linear, (3.21)

to
b < G_l(nz(lﬂwon%f;G(k oD+ 52, Ol (oDe(01)
S kil
t&(t)
*%HWOH%/ Hawo / k3 (s)ds, if G is nonlinear, (3.22)
¢ t

where G1(t) = tG'(eot), G = min{G1, G2} and £(t) = min{&:(¢), &2(2) )
Proof. From (2.13) and (3.19), there exist positive constants 83 and 4 such that for ¢ > ¢o,

L'(t) < —BE(t) - /kzmwdH/le—dr)wg(i@z()||wo|\r+/<:1 H&”OH) (3.23)

Applying (2.12) and (3.1), we see that, for all ¢ > to,

@//to (- ks )|w()—w(t—s)|2—ki(s)‘8gl(jt) _ 8“’(;1/‘ 3)‘2)dsdr

< — // kg Nw(t) —w(t —s)> + kY (s )‘azgit) - aw(;; s)r)dsdf‘
< f“ (=R @ llwnlit + k30| G2 ||} - 25/ 0), (3.24)

where ¢g = min{ec1,c2} and vo = min{yi,v2}. Let ®(¢) = L(t) + 020%‘0 E(t), which is equivalent to E(t).
Using (3.23) and (3.24), we obtain for all ¢ > to,

P'(t) < ﬂgE()+ﬂ5(kz()llwollr+k1 HawOH)

—54(/F i K (s)lw(t) — w(t — s)[*dsdl’ + /r/t k’l(s)‘ag’f) _ 81”((;/— s) ’2dsdl“), (3.25)
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where 5 = mas{@ + 842, 8, + 242},

€070 €00

‘We consider the following two cases.

(1) G is linear: Multiplying (3.25) by the nonincreasing function £(¢) and using (2.9) and (3.1), we have

E)D'(t) < —B3&(t)E(t) + BsE(t) (kg( Mwoll2 + K2(t H@wo H )

+,34(/F/t: kY () |w(t) — w(t — s)|*dsdl + / /to ki’(s) 8w(t) _ aw(ét); s) ‘stdl“)

<~ B + o (RO llunllt + 10| 52|} - ﬁ4<>w>m

where 5 = max{fs€o + 22, 8560 + 2422} and £(t) < €. This gives
264
Yo

E®)(t) +

Hence, using the fact that I(t) = £(¢t)@(t) + @E(t) ~ E(t), we deduce that

B < ~5:60B0) + o (B0 ol + 20| | G2 || v 2 .

1o}
1'(t) < ~Br&@1) + B (KO llwollf + K@) G2 |[), ve > 1o (3.26)
where (7 is a positive constant. We introduce

J(t) = I(t) —,66@“*7ffo“9)ds(/t k3 (s)e™ ffb“")d"dsnon%Jr/t k3 (s)e” Jio €M1 g Haon ). 327)
to
From (3.26), we have
T'(8) < =) (1), Vt > to.
Integrating this over (to,t), we obtain
J(t) < J(to)e P70 € vy > .

Using the fact that I(t) ~ E(t) and (3.27), we get the estimate (3.21).

(2) G is nonlinear: First, we construct the functional
U(t) = L(t) + v1 K1 (L) + v2 K2 (t),
which is nonnegative. From (2.13), (3.15), (3.16) and (3.19), we obtain
W) < —poB(0) + 52 (B Ollwollp + K 0| | 2|,
where po is some positive constant. Integrating this over (to,t), we arrive at

po/E ds<\If(to)+Bz(k2( )||w0|\r/ ka(t)ds + k(0 Haon / )

Therefore, from (2.8), we conclude that
¢
/ E(s)ds < 0.
to

Then, we define 71 (t) and n2(t) by, for constants 6, and 62 € (0,1),

(1) ;:91/: 81{;’}5) 3w(t—s‘

‘ ds, n2(t) —92/ l|w(t) — w(t — s)||pds € (0,1).
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Using (2.9), (2.14), (2.17) and the fact that & (¢) is a positive nonincreasing, we find that

7/ttk/1(s)Ha1;IEt aw(t—s) /t (/c" )H w(t) Bwt—s)

v r
< nle(t)G;l(el t: 51?/1/771 H w(t)  dw( t—s H d)
<goi (o[ Eoll% -5 8)
< g (g | B - 22 ras)
< 911 (g(lt)/rk’l’mg—wdr) (3.28)

where £(t) = min{&:(t), &2(t)}. Similarly, we can prove that
! 2 I 1 1
- 5 - — <Gy — 5 . .
/to Kas)llw(t) —w(t = s)|[Fds < -G (§(t) /FkQ Dde) (3.29)
Combining (3.2), (3.25), (3.28) and (3.29), we see that for all ¢t > to,

@'(t) < -8 (t) + B (ha) ol + k0| o2 ||

+§: Gy (@/Fk;’ﬂwdr) + g;‘ Gy (@/Fki’ﬂg—wdl“) (3.30)
where s = max{Bsk1(0) + 281 [ ky(s)ds, Bsk2(0) + 2212 [* ko(s)ds}. Now, for €g < 7, we define the
functional
E(t))
£(0)”

where £(t) is the modified energy given in (3.2). Using (2.15), (2.16), (3.3), (3.30) and the fact that
£ <0, @ >0and G” >0, we obtain

R(t) := ®(t)G' (eo

R(0) < =55 (co g ) + 556 (cogoh) (ra(Ollunlf + (0] G2 | 7)
+24G (o 5(((?))@ (%/kg’mwdF)+ﬂ4G( f((é)))cl (W/k';m%dr)
~ [3s(0) — (Boluwolf? + ]| 22| 2f34) ] o g
+,88\|w0||%G(k2(t))+ﬁ8H8w°H Gk (t 905 (/Fk”mwdr+/k;’mgi’dr)
~[pse0 - (ﬂg\lwo\lr+BsHawOH e )eo) £ G (o 5e00)
Hhsllul20a(0) + 5] | 22 | ks () - eojfg(t)ﬁ(t),

where 6o = min{61, 62} and 7o = min{y1, 72}. Choosing € such that p1 = BzE(0) — (Bs|lwol|? +

ﬂ8| 8“’°HF 20604)60 > 0, we have

20) £(t)

£(0)

2084
Boyo&(t)

& (oS + Bsllunl G 0a(0) + 5| | S| |-Gk (6) — o)



12 GENERAL STABILITY FOR A VON KARMAN PLATE SYSTEM WITH...

Then, multiplying this by £(¢), we get

EOR() < —pré) 5 6 (o) + s (ol Gkt + || 52| Gtk () )e(o) - 2280 (3.30)
Taking F(t) = £(¢t)R(t) + OQD%OE(t) and using (3.31), we arrive at
F () < —pie)G (50) + 81 (lanl o) + || Z2 [P Gan)e. vez w0 @)

where G1 = tG’(eot). Applying (3.32) and the fact that & <0, G} > 0 and £ < 0, we find that

[t'f( )G1 Gy (g((é;)

Hawo HiGWt)))&(t), vt > to.

ﬂ
< F)+ —(||wo||r (ka(8)) +
P1
Integrating this over (to,t), we see that

w:(t)Gl(g“))Stos<to>cl(5(t°))+p—ﬁﬂ )+ 2 [ (ol G026 + 1| ks 1) o)

£(0) £(0)
t
0
<or(1+ [ (lunlFGlkato) + | G2 [ZG U (s1)és)ds),
to
where p2 = max{to&(to)G1 (E(t ) +5 }'(to) Bf }. Therefore, we conclude that

£
pa (1 I}, (ol G (ka(s) + || 5] [2G (ks (5)))€(s)ds
o' (% tg()

£(t) < (0 ), ¥t > to.

Hence, applying (3.2), (3.22) is established.
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