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Abstract15

Methods to estimate compound flooding at the household level are largely nonexistent16

outside of complex computational models. The exclusion of topographic depressions, and17

therefore pluvial flooding, from leading flood hazard maps is also underestimating po-18

tential exposure. Furthermore, national level exploratory analyses have yet to capture19

local variability in exposure and social vulnerability, which is necessary for local stake-20

holders to identify the inequitable distribution of flood risks. Using high resolution el-21

evation data to approximate event specific inundation from both pluvial and fluvial sources,22

in conjunction with a localized social vulnerability index, we created a methodology to23

estimate flood risk at the household level. Our analysis uses the 2015 Memorial Day Flood24

in Austin, Texas as a case study and proof of concept of our estimation methodology.25

We show that the inclusion of pluvial flood sources increases inundation extents, with26

37% of the Census Block Groups in the study area experiencing flooding from only plu-27

vial sources. Furthermore, averaging flood depths, and therefore exposure estimates, to28

geographical and cartographic boundaries (e.g., Census Block Groups), masks household29

variability, with 80% of the Census Block Groups in the study area having a coefficient30

of variation around the mean flood depth exceeding 100%. Comparing our pluvial flood-31

ing estimates to a 2D hydrodynamic physical-based model, we classified household ex-32

posure accurately for 92% of the parcels. Our methodology can be used as a tool to es-33

timate the impacts of inland compound flooding on household risk in order to provide34

a first estimate of storm specific risk.35

Plain Language Summary36

There is rising concern in numerous fields in quantifying the inequitable distribu-37

tion of human risk to floods. Flooding risk can be defined as the intersection of an in-38

dividual’s exposure to a flood event and their social vulnerability. The co-occurrence of39

fluvial (river) and pluvial (surface) flooding is largely excluded from the leading flood40

hazard mapping services, therefore flood exposure is often underestimated. In addition,41

many exploratory studies of flood exposure and social vulnerability rely on low-resolution42

elevation data and aggregate risk estimates within geographic and cartographic bound-43

aries, therefore masking small-scale variabilities. Using high-resolution elevation data and44

a localized social vulnerability index, we developed a method to estimate risk at the house-45

hold level in near-real time, using the 2015 Memorial Day Flood in Austin, Texas (USA)46

as a case study.47

1 Introduction48

Flooding is the natural hazard with the greatest economic and societal impacts in49

the United States, and these impacts are becoming more severe over time (National Academies50

of Sciences Engineering and Medicine, 2019). In conjunction, as of 2019, over 80% of the51

United States population lives in urban areas. The total US population at risk of seri-52

ous flooding ranges from 13 to 41 million people, depending on the flood model, with53

high amounts of uncertainty and underestimation in urban centers (Wing et al., 2018).54

Urban flood waters come from three main sources: fluvial sources, as rivers and streams55

exceed their banks, pluvial sources from overland runoff, and coastal sources such as storm56

surges, tides, and waves. While coastal and fluvial threats are reported in leading flood57

hazard maps such as those produced by the Federal Emergency Management Agency (FEMA),58

these maps lack information regarding the threat of pluvial flood waters. Despite this,59

end users, such as emergency responders and city planners, frequently request maps in-60

cluding pluvial flood hazards and ponded water depths/extents (Luke et al., 2018). It61

is of specific concern to numerous government agencies that pluvial flooding be included62

in flood warning, mapping, and risk management efforts, including the specific identi-63

fication of topographic depressions that allow for the ponding of water (Falconer et al.,64
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2009). The goal of this paper is to produce a single measure of flood hazard risk at the65

parcel level, using a near-real time inland compounding flooding estimate and a local-66

ized social vulnerability index.67

Depressions are topographic areas that do not drain and have no outward flow when68

only partially filled with water. These areas have a negative relative relief or a lower el-69

evation in reference to their surrounding boundaries (Lewin & Ashworth, 2014). Depres-70

sions also form in areas that have little to no change in elevation producing no lateral71

flow (Le & Kumar, 2014). Depressions are not limited to single low points in elevation,72

rather they can have complex connected structures. Depending on residual water level,73

height, soil moisture, and upstream drainage, these depressions can fill, spill, and merge74

into adjacent low points. Specifically, depressions begin to fill when runoff water exceeds75

evaporation and infiltration capacity until the depression storage threshold is reached76

and overland flow begins (Hu et al., 2020). Depressions are formed through a variety of77

processes along different sections of alluvial plains, ranging from centimeters to kilome-78

ters in scale, and play a critical role in sediment deposition and water accumulation, sug-79

gesting the necessity to include such features in flood management and forecasting (Syvitski80

et al., 2012). A depression’s properties vary over different landscapes, and therefore can81

significantly influence numerous hydrological processes including delaying the initial time82

of runoff yield, total volume of outflow, increasing soil surface roughness, and reducing83

overland flow velocity (Hu et al., 2020).84

Compound flooding broadly refers to the co-occurrence of flooding from rainfall (plu-85

vial and fluvial flooding) and coastal sources (Wahl et al., 2015; Muthusamy et al., 2019).86

However, pluvial and fluvial flooding can have their own compounding effects in land locked87

regions, occurring through one of two possible mechanisms: compounding in both time88

and space or compounding in only time (Wahl et al., 2015). For the former, pluvial and89

fluvial flooding occur at the same location at the same time. This mechanism occurs in90

depressions directly adjacent to and within fluvial floodplains, which have the potential91

to be impacted from both fluvial and pluvial floodwaters. For the latter, compound ef-92

fects are only in time, meaning that pluvial and fluvial flooding occur at the same time93

over a broader region. When pluvial and fluvial flooding occur simultaneously across a94

city in multiple locations, emergency services have to be divided, thus further constrain-95

ing access to resources. Regardless of the type of compound flood occurring, all flood-96

waters will contribute to the overall watershed discharge. Topographic depressions can97

be integrated into urban flood planning to identify risk associated with the compound-98

ing effects of fluvial and pluvial flooding.99

Areas most at risk during flooding events can be identified by overlaying flood ex-100

posure maps with social or sociodemographic vulnerability maps (Rufat et al., 2015). This101

process is useful in order to discern emergency management plans and identify poten-102

tial environmental justice concerns (Chakraborty et al., 2014). Kaźmierczak and Cavan103

(2011) identified four characteristics of people and their households that influence vul-104

nerability (in the context of flooding): access to information, ability to prepare for flood-105

ing, ability to respond to flooding, and ability to recover. These factors are influenced106

by the individual and household’s social and demographic characteristics. Survey data107

measuring household flood vulnerability (the four previous characteristics) can be tar-108

geted to specific flooding scenarios or events and can be insightful to local and regional109

planners. However, low survey response rates, inadequate sampling methods, and time110

between surveys can make these surveys obsolete after a few years when considering the111

long-term effects and trends of urban flooding (Collins et al., 2019). Therefore, social112

vulnerability indices (SVIs) based on more commonly measured metrics (e.g., household113

income, household size, age, race, ethnicity, housing type, access to healthcare, access114

to transportation) are utilized as a proxy in general vulnerability applications.115

SVIs measure both the sensitivity of a population to natural hazards and its abil-116

ity to respond to and recover from the impacts of a hazard. SVIs often rely on national117
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level survey data, such as the US Census Bureau’s American Community Survey (ACS).118

ACS data have numerous strengths when compared to primary survey methods because119

methods/data are standardized across geographies, are available for all geographies, and120

are free to use. Survey data are often aggregated at coarser resolutions than those of flood121

models (e.g., Census Block Groups, Tracts, Zip Codes, Counties, etc.). This operation122

is done for a variety of reasons including protecting individual privacy and for strategic123

statistical sampling purposes to reduce the necessary resources (time and money). How-124

ever, the use of such boundaries does not provide a level of precision sufficient enough125

for the identification of significant disparities in flood exposure, thus limiting a commu-126

nity’s ability to provide emergency services adequately to those most in need (Nelson et127

al., 2015).128

Our study acts as a proof of concept for a new workflow to forecast storm specific129

flood exposure and risk in urban environments, using the 2015 Memorial Day Flood in130

Austin, Texas as a case study. We quantify fluvial and pluvial flood exposure in urban131

areas using high resolution digital elevation models (DEMs), identifying if there is a sig-132

nificant difference in flood exposure estimates when considering only fluvial and both flu-133

vial/pluvial sources. Furthermore, we combine residential flood exposure with relative134

sociodemographic vulnerability scores to estimate risk at the parcel level. In the context135

of Census Block Groups, these results highlight how aggregating flood exposure and risk136

estimates to cartographic boundaries fails to capture important variability at local scales.137

The inequitable distribution of flood risk burdens on different communities is more ac-138

curately described when examining exposure and vulnerability values at the parcel level.139

This information can help local officials to discern the extent to which possible environ-140

mental justice concerns exist within the study region.141

This paper is organized as follows: first we provide background information (Sec-142

tion 2) on terrain, social vulnerability, and risk, cover the characteristics of our study143

area and data sources (Section 3), and then explain our workflow and methodology (Sec-144

tion 4). We present results (Section 5) for the 2015 Memorial Day Flood and discuss them145

(Section 6). Finally, we state the conclusions of this work and opportunities for future146

research (Section 7).147

2 Background148

2.1 Fluvial Inundation Mapping149

Future fluvial flood risk is one of the most commonly researched impacts of climate150

change (Arnell & Gosling, 2016; Winsemius et al., 2016; Alfieri et al., 2017). Fluvial flood-151

ing is researched and studied at all spatial resolutions from global models to individual152

streams, and approaches to estimate fluvial flooding can be categorized as empirical meth-153

ods (observation based), hydrodynamic models (mathematical and physics based), and154

simplified conceptual models (non-physics based), each with their own advantages and155

disadvantages (Teng et al., 2017). This analysis uses an existing terrain based simpli-156

fied conceptual model to estimate fluvial flooding (GeoFlood) because it has been shown157

to be able to capture the general inundation patterns of flooding events as well as have158

a significant potential in guiding real-time flood disaster preparedness and response (Zheng159

et al., 2018). Since the use of high resolution terrain data in flood inundation has been160

covered in previous work, we refer the reader to the GeoFlood publication (Zheng et al.,161

2018) and references therein. Since the novelty of our study relies on the integration of162

pluvial flooding and vulnerability into this approach, we provide more background on163

these specific components.164
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2.2 Modeling Surface Water in Depressions165

Prior to the recent increase in availability of lidar data, depressions in coarser res-166

olution DEMs (+30 meters) were seen as errors in the data collection process and were167

subsequently filled in or removed to ensure that water flowed continuously downstream168

(Li et al., 2011; Callaghan & Wickert, 2019). Flood-fill, breaching, carving, and combi-169

nation algorithms modify the DEM by raising and/or lowering cells to create a depres-170

sionless surface (Jenson & Domingue, 1988; Martz & Garbrecht, 1999; Soille et al., 2003;171

Lindsay & Creed, 2005). Alternatives to modifying elevation data also exist through the172

use of a least-cost drainage path algorithm that is able to pass through depressions (Metz173

et al., 2011). Regardless of the method used, these algorithms produce hydrologically174

connected elevation surfaces by ignoring or removing depressions in the DEM and dis-175

counting their significant hydrologic impact (Callaghan & Wickert, 2019). With lidar176

technology and the availability of high resolution DEMs (1-meter and finer), topographic177

analyses can incorporate existing depressions, both naturally occurring and from anthro-178

pogenic sources. Depressions can be identified through a variety of methods utilizing re-179

mote sensing and automation techniques. Identification methods typically begin by com-180

paring a filled and unfilled DEM (i.e., a depressionless DEM and the original DEM) to181

identify areas that are different. From here, methodologies vary slightly in their ability182

to eliminate noise in data and to represent the complex nested hierarchy of depressions.183

Some methods utilize elevation profiles (Wu et al., 2016), simplified hierarchical trees (Wu184

& Lane, 2016), or filtering based on threshold variables for surface area, depth, or vol-185

ume (de Carvalho Júnior et al., 2013). Numerous methods exist to model how surface186

water moves through complex depressions with possible applications to micro- and macro-187

topographical features. Examples include the puddle-to-puddle (P2P) model, which routes188

a gridded rainfall depth, and the Fill-Spill-Merge algorithm, which routes a gridded runoff189

depth (Chu et al., 2013; Barnes et al., 2019b). Surface water storage volumes and ponded190

water extents are outputs of these two models.191

P2P delineation was first discussed in reference to microtopographic depressions,192

or depressions at the millimeter scale (Chu et al., 2013). P2P exists as a full physically193

based overland flow model, coupled with infiltration and unsaturated flow models that194

can handle spatiotemporally varying rainfall conditions (both single and multiple rain-195

fall events). This model introduced the idea of cell-to-cell, and subsequently puddle-to-196

puddle routing of water and identifies the importance and necessity of incorporating to-197

pographic depressions in overland flow modeling, specifically as the spatial resolution of198

elevation data increases. However, given the computationally expensive nature of P2P199

and other similar overland flow models that utilize cell-by-cell algorithms, near-real time200

analyses need a more efficient approach that is able to be broadly applied across a large201

landscape (e.g., an urban watershed). The algorithm chosen for this study is Fill-Spill-202

Merge, a mass-conserving approach that uses a network based algorithm (Barnes et al.,203

2019a, 2019b).204

Fill-Spill-Merge utilizes a depression hierarchy and represents the topologic and to-205

pographic complexity of depressions across a landscape as a network. Sub-depressions206

can merge to form meta-depressions, and a depression hierarchy tree can selectively fill207

and breach depressions based on the volume of water in them. The Fill-Spill-Merge work-208

flow can be described in four steps: First, Fill-Spill-Merge calculates the depression hi-209

erarchy, flow directions, and label matrix needed to route water over the landscape. Sec-210

ond, water is routed to its lowest downslope pit, assigning it to the appropriate leaf in211

the hierarchy. Third, moving through each leaf, water that overflows from a depression212

is redistributed to siblings and parents within the hierarchy. Fourth, the algorithm de-213

termines the final depths based on if the depression is completely filled, partially filled,214

or empty.215

The implementation of the depression hierarchy and routing process between leaves,216

siblings, and parents makes this algorithm independent of the runoff depth, therefore dras-217
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tically increasing its computational speed at higher runoff values when compared to cell-218

by-cell algorithms by a factor ranging between 2,000 – 63,000 (Barnes et al., 2019b). Fill-219

Spill-Merge’s ability to efficiently route water over a complex landscape is therefore ideal220

in determining the extent and depths of pluvial flood waters. While Fill-Spill-Merge was221

originally tested on coarse resolution DEMs (ranging between 15-meter and 120-meter222

cell size), this analysis looks to apply Fill-Spill-Merge on a higher resolution DEM (1-223

meter resolution).224

2.3 Risk as a Function of Vulnerability and Exposure225

This analysis’ focus is on the intersection of social vulnerability and urban inun-226

dation mapping. It is therefore important to clarify the differences and relationships be-227

tween principal ideas, such as adaptive capacity, sensitivity, exposure, hazard, vulner-228

ability, social vulnerability, and risk, within the social sciences and engineering fields. In229

the context of social sciences, adaptive capacity is the degree to which an individual or230

community is able to respond to or cope with change quickly and easily. Exposure and231

sensitivity characteristics, which are made up of such variables including social, polit-232

ical, cultural, and economic conditions, influence and constrain adaptive capacity (Smit233

& Wandel, 2006). Understanding the interconnected relationships among exposure, sen-234

sitivity, and adaptive capacity is important to estimate the degree to which stakehold-235

ers can mitigate environmental hazards (Smit & Wandel, 2006). Social vulnerability, as236

seen by social scientists, serves as a proxy for a community’s sensitivity and adaptive ca-237

pacity. SVIs are therefore built on sociodemographic data and can incorporate multi-238

hazard exposure estimates for a final metric that represents a community’s resiliency (Smit239

& Wandel, 2006).240

The original calculation and most frequently cited tool for estimating social vul-241

nerability within the United States is the Social Vulnerability Index SoVI® (Cutter et242

al., 2003). SoVI® synthesizes 42 socioeconomic and built environment variables to quan-243

tify the social vulnerability to environmental hazards and generate a comparative met-244

ric that facilitates the examination of the differences between U.S. counties (Cutter et245

al., 2003). Since its inception, it has been revised numerous times (SoVI® 2010-2014)246

and reduced to 29 socioeconomic variables. Since then, numerous social vulnerability in-247

dices, both global and regional, including those created by the United Nations Devel-248

opment Program and the Center for Disease Control (UNDP, 2010; Flanagan et al., 2011)249

have been developed and widely used. Different constructs and variations of SVIs have250

different levels of predicative power, and therefore require fine tuning for each specific251

use (Rufat et al., 2019). Both SoVI® and the CDC’s SVI, two of the most commonly252

cited SVI’s that specifically focus on the US, estimate social vulnerability at the county253

level. Due to the vulnerability heterogeneity that exists within counties, variance can go254

undetected which can adversely affect at risk populations. With the onset of sociode-255

mographic data available at higher than county resolutions, similar methodologies ap-256

plied by Cutter et al. (2013) can be applied for higher resolution boundaries.257

In the context of engineering, environmental risk represents the possibility of an258

event adversely affecting the normal function of a community or society (Cardona et al.,259

2012). In its simplest terms, risk is the product of a hazard and its consequences, with260

a hazard being any natural event including the probability of its occurrence. Consequences261

are the value of items at risk and the vulnerability of such value (Kron, 2005). This def-262

inition of risk is further explained by the Office of the United Nations Disaster Relief Or-263

ganization (UNDRO) as “the expected losses from a particular hazard to a specified el-264

ement at risk in a particular future time period” (Peduzzi et al., 2009). Risk is there-265

fore the product of frequency (i.e., probability of occurrence), exposure, and vulnerabil-266

ity variables. This analysis focuses on estimating risk from a single flood event (i.e., fre-267

quency is equal to 1 because it did occur).268
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Previous attempts have been made to disaggregate social vulnerability variables269

to a finer scale, such as down to individual tax parcels (Nelson et al., 2015). General method-270

ologies follow the same core concept of using dasymetric mapping techniques, which uti-271

lize ancillary datasets to divide mapped areas into new but still relevant zones, such as272

tax parcels. This method is commonly used with cadastral data (land use/land cover data)273

to divide other geographic boundaries. Nelson et al. (2015) discusses using cadastral-informed274

selective disaggregation logic to both extract relevant social vulnerability variables from275

tax parcel layers while dissolving Census Block Group variables to produce a parcel level276

SVI estimate. Our analysis uses dasymetric techniques to dissolve Census Block Group277

variables to residential parcels, but does not use a selective disaggregation logic. While278

geographic tax parcel data are widely available (e.g., parcel boundaries), some associ-279

ated variables (e.g., housing type, property value, gross rent, etc.) are not consistently280

reported across counties, regions, and states. Therefore, for vulnerability uniformity pur-281

poses, this analysis extracted all social and demographic variables from the ACS report.282

3 Study Area and Data Sources283

Austin, Texas, considered one of the fastest growing cities in the US, has a pop-284

ulation approaching one million residents. In conjunction with rapid urbanization to ac-285

commodate for the influx of new residents, Central Texas has seen an increase in the oc-286

currence of 1% annual exceedance probability storms, experiencing three in a five-year287

window, including the 2013 Halloween Day Flood, 2015 Memorial Day Flood, and the288

2018 Hill Country Flood. These events pose a risk to new residents as increased devel-289

opment, and subsequent expansion of impervious surfaces, increase people’s potential290

exposure to both pluvial and fluvial flooding. Dividing Austin, Texas in the middle is291

the Colorado River, which is dammed by the Tom Miller Dam to the north and the Longhorn292

Dam to the south. There are also numerous major creeks throughout the northern and293

southern sections of Austin. This study focuses on the region of Austin that is north of294

the Colorado River containing the majority of new developments, major creeks, and pop-295

ulation groups within Austin(Figure 1 & Table 1). Furthermore, this area encompasses296

a wide range of demographic groups stretching from West to East Austin, as well as en-297

compassing the downtown and University of Texas areas. When discussing exposure, vul-298

nerability, and risk at the parcel level, our analysis only considers residential parcels within299

the formally defined Austin neighborhood boundary.300

We use the 2015 Memorial Day flood in our analysis, as this event is often referred301

to as the worst flood in recent Austin history. The data sources and tools used were de-302

liberately chosen for their broad accessibility across the country, allowing the applica-303

tion of this methodology to occur across the US with little to no data availability con-304

cerns (Table 2). Stream reaches, their boundaries, streamflow discharge, and rainfall are305

all publicly available and provided by the USGS and NOAA. 1-meter DEMs for the con-306

tiguous United States are also broadly available through the USGS, as well as through307

other state and regional agencies. Parcel boundaries are well defined across the coun-308

try, and while a single national source is not publicly available, most city and state agen-309

cies will provide this information for free. For example, the Texas Natural Resources In-310

formation System (TNRIS) currently has 228 of 254 counties’ parcel data available for311

free.312

The American Community Survey (ACS) 5-Year Estimates are period estimates313

that represent data from the previous 60 months, the largest sample size when compared314

to other ACS reports. For example, the 2017 data used in this analysis is an aggrega-315

tion of data collected from 2013 through 2017. This large sample size is able to dampen316

outliers and potential errors in sociodemographic data. ACS 5-Year Estimates are avail-317

able for all block groups across the US, the highest spatial resolution that Census Bu-318

reau publishes data at, and is therefore able to capture variation in the demographic makeup319
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Boggy Creek Catchment Area

Colorado River (Lower) Catchment Area

Colorado River (Upper) Catchment Area

Shoal Creek Catchment Area
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Walnut Creek (Middle) Catchment Area

Walnut Creek (Upper) Catchment Area

Major Flowlines and Reaches

Austin, Texas Study Area and
Relevant Reach Catchment Areas

Figure 1. Austin, Texas study area boundary and relevant stream reach catchment areas.

of a region. Block Groups have a population ranging from 600 to 3,000 people, depend-320

ing on if the block group is in a more rural or urban location.321

ACS 5-Year Estimate reports at the Block Group level are not without disadvan-322

tages. Block Groups are not perfect delineations of neighborhoods, and can unintention-323

ally group dissimilar individuals, creating a large margin of error in some estimations.324

ACS 5-Year Estimates are also the least current datasets available due to their 5-year325

look back nature. This 5-year look back period also limits comparisons that can be made326

between datasets since only a few non-overlapping datasets exist. However, compared327

to other ACS reports and the difficulties and expenses of other survey data sources, the328

advantages of using the ACS 5-Year Estimates reports outweighs the disadvantages pre-329

sented. This analysis uses social and demographic data from the 2017 ACS 5-Year Es-330

timates report, the most recently available at the time of calculation and that best cap-331

tures the conditions relevant to the 2015 flood event.332
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Table 1. Austin, Texas catchment characteristics.

Catchment Name
Mean of

Daily Mean
Discharges

Instantaneous
Peak

Dischargea

Total
Rainfall
Depthb

USGS
Stream
Gauge

Number
(m3 · s−1) (m3 · s−1) (cm)

Walnut Creek (Lower) 2.49 328.5 13.2 08158600
Walnut Creek (Middle) 1.39 475.7 13.2 08158200
Walnut Creek (Upper) 1.39 475.7 13.2 08158200

Boggy Creek 0.14 37.9 13.2 08158035
Shoal Creek 0.45 311.5 13.2 08156800
Waller Creek 0.25 131.4 13.2 08157560

Colorado River (Lower) 9.97 982.6 13.2 08158000
Colorado River (Upper) 9.97 982.6 13.2 08158000

aPeak instantaneous discharge was used as a representation of the worst-case scenario and of the flash-

flood characteristics related to the Memorial Day Flood.
bTotal rainfall represents the total amount of precipitation that fell on Memorial Day (May 25th, 2015)

over a 24-hour period. 13.2 cm of rain is approximately a 0.005 annual exceedance probability for this

region (according to NOAA historical precipitation data).
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Table 2. Programming tools and data sources utilized in this methodology.

Tool/Data Name Resolution Source Description and Purpose

Fill-Spill-Merge NA
(Barnes et
al., 2019b)

Utilizing a depression hierarchy,
routes water through a topographic

surface in order to map ponded
water

GeoNet NA
(Passalacqua
et al., 2010)

Geometric framework to extract
channel networks from high

resolution topographic information

GeoFlood NA
(Zheng et al.,

2018)

Builds on GeoNet in order to create
inundation maps based on

streamflow data and the HAND
method

Parcel Boundaries NA TNRIS
Parcel boundaries with land use
classification. Only residential

parcels were considered

Elevation (DEM) 1-meter TNRIS
Topographic extent of the study

region

Stream Reaches NHD-MR USGS
USGS maintained stream reach
shapefile for the study region

Stream Reach Boundaries NHD-MR USGS
USGS maintained stream

catchment area shapefile for the
study region

Streamflow Discharge NA USGS

The peak instantaneous discharge
during the flooding event for each

catchment area was used for fluvial
flooding inundation estimation

Rainfall NA NOAA
24-hour rainfall total in inches for

the study region

American Community
Survey: 2013-17 5 Year

Estimates
Block Group

US Census
Bureau

ACS 5-year socio-economic data by
block group

Census Block Group
Boundaries

NA
US Census

Bureau

Shapefile acquired from Census
database. There are 177 block

groups in the study area
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4 Methodology and Workflow333

The following subsections detail the methodology and workflow for calculating flood334

exposure, sociodemographic vulnerability, and flood risk at the parcel level (Figure 2).335

Normalized Social 

Vulnerability at 

Block Group Level

Fluvial and Pluvial 

Inundation

Dissolve to Parcels 

Select Max Flood 

Depth intersects 

with Parcel

Reclassify to 

Exposure Scale 

and Normalize

Multiply 

Together

Residential 

Parcels Resultant 

Risk Layer

GeoNet and 

GeoFlood 

Initialization

1-meter DEM

Numerous 
Static 

Variables

GeoFlood 

Inundation Map 

(HAND)

USGS 

Streamflow Data

Fluvial Inundation 

Map

FillSpillMerge 

Code

NOAA 

Precipitation Data

Pluvial Inundation 

Map 

Process
Intermediate 

OutputInput Final Output

2017, ACS 5-Year 

Block Group Data 

(29 variables)

Data Cleaning 

(filter no data variables, 

removal of special use 

BGs, spatially interpolate 

holes)

Principal 

Component 

Analysis 

Mosaic Inundation 

Maps (summation)

Figure 2. Complete workflow of our approach including fluvial/pluvial inundation estimation

and SVI calculation.

4.1 Flood exposure at the parcel level336

The 1-meter DEM was first processed using the GeoNet workflow (Passalacqua et337

al., 2010; Sangireddy et al., 2016). GeoNet extracts channel networks from high reso-338

lution topography data through the application of nonlinear filtering and the identifi-339

cation of geodesic paths as curves of minimum cost. GeoNet uses a Perona-Malik non-340

linear smoothing image filter (set to 50 iterations) to remove observation noise and ir-341

regularities within the DEM. This non-linear filter uses gradient information to define342

the diffusion coefficient in order to preferentially smooth regions outside and within the343

channel, rather than across its boundary, in order to maintain clear channel boundaries.344

GeoNet is able to calculate both a geometric and Laplacian curvature based on the de-345

sired use. We chose to use the geometric curvature in order to normalize across the en-346

tire study region (as compared to the Laplacian calculation which is more selective). GeoNet347

uses this information, along with flow accumulation, flow direction, and slope in a cost348

function representing travel between two points to determine the geodesic curve from349

the channel head to the basin outlet. Terrain and hydrological outputs from GeoNet are350

integrated within GeoFlood, which creates, through the application of the Height Above351

Nearest Drainage (HAND) method, an inundation map (extent and depths of flood wa-352

ters) along the delineated stream channels for a given input flow rate (Nobre et al., 2011;353

Zheng et al., 2018). To summarize, given a known centerline water depth, h, at a river354

segment, the HAND raster is used to produce a water depth grid of the inundated area,355

F(h), within the local catchment draining to that segment. The water depth, d, at any356

location, i, is therefore357
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di =

{
h− handi if handi ≤ h (flooded, i ∈ F (h))

0 if handi > h (notflooded, i /∈ F (h))
(1)

The Fill-Spill-Merge algorithm determines the pluvial inundation depths and ex-358

tents using a uniform runoff depth across the study region. The storm being analyzed359

had numerous days of heavy rain leading up to the peak flood. This condition led to sat-360

urated soils for the majority of downtown Austin, justifying using rainfall depth as an361

equivalent for runoff depth. The rainfall depth is routed through the depression hierar-362

chy to its lowest down stream point before being redistributed to nodes with enough vol-363

ume to contain the volume of rainwater, with the excess being sent to the ”ocean” (Barnes364

et al., 2019b). Fill-Spill-Merge requires an input elevation that is equal to the lowest el-365

evation across the DEM which serves as the “ocean”, or the super-sink of the network366

that all water not remaining in a depression drains to. To accommodate this, we added367

an artificial elevation along the entire perimeter of the DEM that was set to 0-feet. To368

summarize, given a known volume of water in a depression, Vw, and the raster cells within369

that depression, ci = c1, ...,cN , the water level in the depression, Zw, is therefore370

Zw =
1

N
∗ (Vw +

N∑
n=1

Zi) (2)

with each cell in the depression having a water elevation equal to the computed Zw.371

For a more detailed explanation of this algorithm, we refer the reader to the Fill-Spill-372

Merge publication (Barnes et al., 2019b) and references therein.373

The inundation extents produced by GeoFlood and Fill-Spill-Merge, eq. [1] and [2],374

are merged to estimate the compound exposure. Merging the worst-case exposure to flu-375

vial and pluvial flooding will create an inundation layer that is the worst-case overall.376

The worst-case exposure to fluvial flooding occurs during the absolute maximum of stream377

flow, and pluvial flooding after the total cumulative rainfall depth. The worst-case ex-378

posure scenario does not depend on the temporal distribution of flood waters, and there-379

fore this analysis only requires the peak instantaneous discharge, which may occur at vary-380

ing times for each stream reach, and the total accumulated rainfall depth. Using raster381

math functions, the fluvial and pluvial inundation estimates are summed. This summa-382

tion specifically highlights areas that will experience both fluvial and pluvial flooding.383

Residential parcel exposure to flooding was determined by overlaying the inunda-384

tion and parcel layers and extracting the highest flood depth that intersects each par-385

cel. Numerous factors affect an individual’s flood exposure, including but not limited to386

the flood duration, depth of water, velocity of storm water, and water quality (Middelmann-387

Fernandes, 2010). Therefore, there is uncertainty regarding the direct correlation between388

flood depth and flood damage (Freni et al., 2010). Regardless, flood depth-damage re-389

lations remain one of the leading methodologies for flood exposure estimation in numer-390

ous leading models (de Moel & Aerts, 2011). For this study, flood depth remains the quick-391

est and easiest proxy for exposure to flooding.392

Adapting methods from other flood communication research, flood depths are re-393

classified and binned to a more easily understandable scale that relates water depth to394

various heights along the average person’s body (Calianno et al., 2013; Ahmed, Khan,395

et al., 2018; Ahmed, Moors, et al., 2018). This approach avoids the over/under inflation396

of other relative exposure results. For example, if all flood depths were min-max nor-397

malized, a small regional flood would appear to have a similar exposure to a large re-398

gional flood. Therefore, a household’s exposure refers to the reclassified maximum in-399

undation depth, dmax, at that parcel (Eq. [3]). The reclassified flood depths are normal-400

ized to 0-1 scale with 1 having the highest flood exposure and 0 have no flood exposure.401
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Exposure =



0 dmax = 0 (No Flooding)

1 0.1 ≤ dmax ≤ 0.15 (Ankle Deep)

2 0.15 < dmax ≤ 0.29 (Lower than Knee)

3 0.29 < dmax ≤ 0.49 (Knee)

4 0.49 < dmax ≤ 0.91 (Waist)

5 0.91 < dmax ≤ 1.07 (Chest)

6 dmax > 1.07 (Higher than Chest)

(3)

4.2 Sociodemographic Vulnerability at the Parcel Level402

Sociodemographic vulnerability data at the block group level was collected from403

Bixler et al. (2021), who utilized data from the 2017 ACS 5-Year Estimates. Bixler et404

al. (2021)’s procedure is an adaptation of SoVI® specifically developed for Austin, TX405

and Texas at large (Figure 3). Of the 29 SoVI variables, 4 were not available for this time406

period in Austin at the block group level and were therefore not extracted (hospitals per407

capita, percent of population without health insurance, nursing home residents per capita,408

percent female headed households). To further handle missing values, Bixler et al. (2021)409

excluded special use block groups (e.g., airports, military bases, prisons) and filled in holes410

by spatially interpolating from the surrounding block groups (Bixler et al., 2021). Min-411

max scaling all values for each block group further prepared the variables for the prin-412

cipal component analysis.413

SoVI variable 
extraction

Handling 
Missing 
Values

Normalize
Principal 

Component 
Analysis

Finalize SVI 
Score

Figure 3. Procedure for calculating the Social Vulnerability Index (SVI).

The principal component analysis’s (PCA) purpose is to reduce the dimensional-414

ity to statistically optimized components. A large number of variables are likely to have415

an influence on an individual’s vulnerability. The PCA reduces variables to the most in-416

fluential factors and merges them into similar highly correlated components. As a re-417

sult, seven variables were eliminated, leaving a total of 18 variables divided into six com-418

ponents (Wealth, Language and Education, Elderly, Housing Status, Social Status and419

Gender). These 18 variables (Table 3) accounted for 74.48% of the observed variance.420

The cardinality of each component was adjusted so that a higher variable value indicated421

a higher vulnerability. For example, Wealth has a negative cardinality because having422

a higher per capita income would make an individual less vulnerable. The numerical com-423

posite social vulnerability score for each block group is the sum of the normalized and424

direction-adjusted values for each variable. This final score was again normalized from425

0 to 1 (with one being the most vulnerable). The residential parcel SVI score is the SVI426

score for the block group to which that parcel belongs to.427

V ulnerability = BGSV I ∈ [0, 1] (4)

4.3 Flood Risk at the Parcel Level428

As previously described, risk is the product of frequency, exposure, and vulnera-429

bility. Since this analysis focuses on a historical single event, frequency is set to 1, and430
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therefore household risk is calculated by multiplying the normalized flood exposure value431

(Eq. [3]) by the normalized relative sociodemographic vulnerability value (Eq. [4]). Plot-432

ted by quintile, the final residential parcel flood risk highlights the comparative commu-433

nities that are the least and most at-risk.434

Risk = Exposure ∗ V ulnerability (5)

4.4 Pluvial Flooding Validation435

GeoFlood has been shown to capture the general fluvial inundation patterns of flood436

events, with inundation extents overlapping with 60–90% of FEMA inundation extents437

(Zheng et al., 2018). To validate Fill-Spill-Merge and our pluvial inundation estimates,438

we employed a physically-based 2D hydrodynamic model by using the software ProMaIDes439

(Protection Measure against Inundation Decision Support). ProMaIDes is a modular open-440

source tool for the risk-based assessment for river, urban and coastal flooding and has441

been developed at the RWTH Aachen University and University Magdeburg-Stendal, Ger-442

many (Grimm et al., 2012; Bachmann, 2012, 2021). The hydrodynamic analysis imple-443

mented in ProMaIDes is based on a finite volume approach solving the diffusive wave444

equations and includes a multistep backward differentiation method for the temporal dis-445

cretization (Tsai, 2003).446

The 2D model domain for the hydrodynamic model is one subbasin within the Shoal447

Creek Watershed, covering approximately 5 km². Furthermore, an adaptive control method448

was used on the time increment. The hydrodynamic model can be driven by spatially449

and temporally varying rainfall input, however, to enhance comparability, a uniform rain-450

fall depth of 13.2 cm was applied. Additionally, a uniform roughness coefficient for the451

model area of 0.03 (Manning) was used. To avoid high computational costs, the simu-452

lation time was limited to 1-hour of rainfall and 5-hours of follow up time, and the DEMs453

resolution was down sampled to 3-meter by 3-meter cells. The computational time re-454

quired was 670 minutes using an AMD Ryzen 9 3900X 12-Core Processor. The model’s455

final inundation output was then put through the same reclassification scheme to deter-456

mine parcel level exposure (Eq. [3]). We compared the parcel level exposure values of457

our terrain-based estimate to the model’s final inundation output for all parcels in this458

subbasin that are not impacted by fluvial flood waters (3,015 parcels).459
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Table 3. Variables included and excluded from the Social Vulnerability Index (SVI) of Austin,

Texas, retrieved from Bixler et al. (2021).

Variable Component Cardinality
Variance

Explained
(%)

Percent households earning over $200,000 annually

Wealth (-) 17.53%
Median housing value
Per capita income
Median gross rent

English as a second language with limited proficiency Language
and

Education
(+) 14.51%Percent with less than 12th grade education

Percent Hispanic

Percent households receiving social security benefits
Elderly (+) 12.17%Percent population under 5 years or 65 and over

Median age

Percent children living in 2-parent families Housing
Status

(+) 11.91%
Percent civilian unemployment

Percent of housing units with no car

Social Status (+) 9.61%
Percent civilian unemployment
Percent Poverty
Percent Black

Percent female participation in labor force
Gender (+) 8.75%

Percent female

Percent of population without health insurance
Removed

due to lack
of BG data

NA NA
Nursing home residents per capita
Percent female headed households
Hospitals per capita

Percent employment in extractive industries

Removed
during
PCA

NA NA

Percent employment in service industry
Percent unoccupied housing units
Percent Native American
Percent mobile homes
Percent renters
Percent Asian

TOTAL Variance Explained 74.48%
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5 Results460

In the following figures (excluding Figure 4), inset areas (A) and (B) compare two461

different locations within Austin, TX and represent the same area across all figures. In-462

set (A) to the North highlights an area that is dominated by fluvial flooding. Inset (B)463

to the South highlights an area that is dominated by pluvial flooding.464

5.1 Pluvial Flooding Validation465

To compare the inundation extent estimates from Fill-Spill-Merge to the physical466

based model, both rasters were overlayed and intersected (Figure 4). The intersected raster467

was then classified into four categories of wet-wet, wet-dry, dry-wet, and dry-dry, with468

each term in each pair referring to one of the raster layers (i.e., wet-wet refers to a cell469

that is flooded in both rasters, where wet-dry refers to a cell that is flooded in only one470

raster) (Johnson et al., 2019). Accuracy is then defined as the number of wet-wet cells471

divided by the sum of the wet-wet, wet-dry, and dry-wet cells. The Fill-Spill-Merge and472

physical based model were found to be 31% accurate when excluding any inundated depths473

less than 1-cm. When the lower limit of allowable depths is increased to 6-cm and 15-474

cm, the accuracy increases to 44% and 66.5% respectively, suggesting that Fill-Spill-Merge475

performs comparably well at greater depths. Fill-Spill-Merge is predominantly under-476

estimating inundated extents when compared to the model, and this is occurring at larger477

intersections and along some roadways (Figure 4, inset A, B, C).478

Comparing our reclassified parcel level pluvial flood exposure estimates to that of479

a hydrodynamic model’s output, we classified 92% of the 3,015 parcels similarly (Fig-480

ure 4). Of the 251 misclassified parcels, 94.4% (237 parcels) of them were misclassified481

by only one class (Eq. [3]). For example, a residential parcel may have an exposure clas-482

sification of 2 (between 0.15 and 0.29 m of flooding) in the model output, but only an483

exposure classification of 1 (between 0.01 and 0.15 m of flooding) in the Fill-Spill-Merge484

estimate. Furthermore, of the misclassified parcels, 69% (173 parcels) of them involve485

a misclassification between no flooding, and less than 15-cm of flooding, the lowest ex-486

posure level. Therefore, the misclassified parcels have a minimal impact on final risk val-487

ues across the subbasin. Misclassifications are not specifically concentrated in any one488

area and appear across the subbasin.489

5.2 Flood Exposure490

Through the application of our workflow (Figure 2) we estimated the worst-case491

fluvial and pluvial flood extent for the Memorial Day Flood (Figure 5). Pluvial and flu-492

vial flooding do not affect all locations equally, with some locations being affected more493

by fluvial flooding that follows streamlines (inset A1) and others being affected more by494

pluvial flooding along roadways and in between parcels (inset B1). Furthermore, the com-495

pounding mechanism varies across the study region, with some locations experiencing496

both fluvial and pluvial flooding in time and space (Inset A2) and other locations com-497

pounding only in time (Inset B2).498

Floodwater extents increase when considering both pluvial and fluvial sources (Fig-499

ure 6). Of the 177 block groups within the study area, 67 (37.9%) experience flooding500

from only pluvial sources, while flood mapping that exclusively considers fluvial sources501

would not identify these block groups’ flood exposure. Only five block groups have an502

increase in flood extents greater than 100%, suggesting that while pluvial flooding can503

greatly increase inundation extents, fluvial flooding remains the dominant source of flood504

waters (i.e., the majority of flooding comes from fluvial sources) in those block groups505

that experience fluvial flooding. This increase in floodwater extents is also visible by catch-506

ment area, showing that the increase in floodwater extents is equally substantial across507

an entire watershed and not limited to certain locations along a stream reach (Table 4).508
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The increase in floodwater extents within catchment areas when considering the com-509

bined effects of fluvial and pluvial flood sources ranges from 40% to 156%.510

Table 4. Percent increase in inundation extent by catchment area when comparing flu-

vial/pluvial flooding with only fluvial sources during the 2015 Memorial day Flood in Austin,

Texas.

Catchment Name
Area
(km2)

Fluvial
Inun.
Area
(km2)

Pluvial
Inun.
Area
(km2)

Percent
Fluvial
Inun.

Percent
Compound

Inun.

Percent
Increase

Inun.
Area

Walnut Creek (L) 52.7 5.37 4.73 10.2% 17.5% 71.3%
Walnut Creek (M) 35.0 4.04 2.57 11.5% 17.1% 47.9%
Walnut Creek (U) 41.7 6.22 4.18 14.9% 22.5% 50.6%

Boggy Creek 34.4 1.93 3.36 5.6% 14.4% 156.0%
Shoal Creek 33.9 4.59 2.58 13.5% 19.3% 42.3%
Waller Creek 14.3 1.48 1.12 10.4% 16.7% 61.4%

Colorado River (L) 24.0 2.97 4.50 12.4% 30.3% 145.3%
Colorado River (U) 19.6 2.07 0.91 10.5% 14.9% 41.1%

Analyzing flood exposure results by block groups produces a high level of variabil-511

ity, both between and within block groups (Figure 7). High coefficients of variation (stan-512

dard deviation divided by mean) signals a wide distribution, suggesting that mean ex-513

posure within the giving boundary is going to significantly over- and under- estimate house-514

hold exposure. Furthermore, the high dispersion in average depths by block group sug-515

gests that aggregating at a higher-level boundary (e.g., county) would result in similarly516

high coefficients of variation.517

Reporting exposure values by residential parcels allows for this variability and dis-518

persion to be captured in the final risk calculation (Figure 8). The reclassification of ex-519

posure values (Eq. [3]) allows for easier comparisons between regions, thus allowing for520

quicker identification of potential hot spots. High exposure results appear predominantly521

along streamlines, which is expected as fluvial channel floodplains offer more locations522

for higher depths as compared to topographic depressions which have a much smaller523

scale in size. The final risk calculation uses these exposure estimates.524

5.3 Sociodemographic Vulnerability525

Clear geographic disparities exist between the eastern and western portions of the526

study area in terms of the SVI estimates (Figure 9). Each residential parcel’s SVI value527

is equivalent to the SVI value of the block group that it coincides with. It is important528

to remember that the SVI estimate shown is relative and is therefore an arbitrary value529

that can be compared between locations. Parcels with a score of 1 are the most vulner-530

able, and parcels with a score of 0 are the least vulnerable.531

5.4 Risk532

There is a clear distinction of risk between the east and west portions of the study533

area, however individual block groups themselves also contain variability (Figure 10).534

Some locations have varying levels of risk within the same block group, which aggregated535

risk estimates would not capture. This is especially prevalent in areas with a higher con-536

centration of higher risk households. Furthermore, high risk parcels exist in areas not537

directly adjacent to stream reaches.538
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Figure 4. Comparison between near-real time estimate (Fill-Spill-Merge) and a 2D physical

based hydrodynamic model estimate of pluvial flooding at the parcel level. (A), (B), and (C)

highlight areas with concentrated parcel misclassifications.

–18–



manuscript submitted to Water Resources Research

 

0.0 2.01.0

Miles

N

Residential Parcels

Census Block Groups

Memorial Day Flood Depth

26.1 m0 m

A1

B2
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Flood Exposure and Extent:

Memorial Day Flood, Austin, TX

Figure 5. Fluvial and Pluvial flood depths and extent in Austin, Texas during the 2015

Memorial Day Flood. Insets A1 and B1 show the worst-case inundation estimates for two dif-

ferent locations. Insets A2 and B2 show those same locations, but only show inundation extents

that are from the overlapping impacts of fluvial and pluvial flooding (i.e., the extent shown in A2

and B2 highlights the specific locations that experience both fluvial and pluvial flooding.
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Figure 6. Percent increase in inundation extent by Census Block Group when comparing

fluvial/pluvial flooding with only fluvial sources during the 2015 Memorial day Flood in Austin,

Texas.
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Figure 7. Average flood exposure depth of residential parcels and their coefficient of variation

by Census Block Group during the 2015 Memorial day Flood in Austin, Texas.
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Figure 8. Reclassified residential flood exposure during the 2015 Memorial day Flood in

Austin, Texas.
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Figure 9. Austin, Texas relative Social Vulnerability Index (SVI), with 1 being most vulnera-

ble and 0 being least vulnerable.
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Figure 10. Residential flood risk during the 2015 Memorial Day Flood in Austin, Texas.
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6 Discussion539

6.1 High-Resolution Compound Flooding’s Role in Increasing Parcel540

Level Exposure541

Flood exposure is a function of both inundation extents and depths. Extent de-542

termines the breadth of flood waters, with larger flood extents forcing response and re-543

covery efforts to spread out over large areas. Depth determines the level of damage, with544

a higher depth correlated with a higher level of damage. A significant source of expo-545

sure in urban areas that is often ignored is from pluvial sources (Houston et al., 2011;546

Grahn & Nyberg, 2017). The exclusion of pluvial flooding from flood mitigation plan-547

ning will result in a drastic under representation of flood water extents which could im-548

pact millions of households across the United States (Wing et al., 2018). With 38% of549

all Census Block Groups in our study area only impacted by pluvial flooding, our results550

show that pluvial flooding cannot be excluded from flood hazard maps (Figure 6).551

Leading flood hazard maps (e.g., FEMA floodplain maps) and numerous flood risk552

studies (C. Burton & Cutter, 2008; Fekete, 2009; C. G. Burton, 2010; Finch et al., 2010;553

Abbas & Routray, 2014; Chakraborty et al., 2014; Tate et al., 2016) do not consider plu-554

vial flood waters in their inundation estimations, focusing on fluvial and/or coastal flood-555

ing. Recent national level exploratory analyses that do consider pluvial flood waters rely556

on coarse resolution (30-meter) estimates (Wing et al., 2018; Tate et al., 2021), which557

can fail to capture small scale topographic depressions that exist in urban environments.558

For example, the average width of a 4-lane intersection is approximately 15-meters. At559

30-meter resolution, it will not be possible to capture pluvial flooding’s impact on road-560

ways. We show that pluvial flooding specifically leads to ponded water on impervious561

surfaces such as roadways, intersections, and parking lots, that would otherwise not be562

identified as being inundated (Figure 5). Standing water depths greater than 13-cm can563

be high enough to reach the undercarriage of most passenger cars, inhibiting safe evac-564

uation routes (Moftakhari et al., 2018). Any increase in velocity or depth can block emer-565

gency response vehicles from reaching inundated areas.566

The co-occurrence of multiple types of flooding while usually considered with re-567

spect to coastal flooding (Wahl et al., 2015), can be translated to inland urban areas as568

either predominantly increasing depths (i.e., occurring at the same location) or extents569

(i.e., occurring at the same time). In our study area, compound flooding is predominantly570

related to increasing extents (Figure 5). Fluvial flooding is associated with higher depths,571

concentrated along stream reaches, while pluvial flooding is associated with lower depths572

spread out over larger areas (Figure 8). Low depth pluvial flooding can be described as573

“nuisance flooding”, which has the ability to disrupt transportation networks, impact574

public safety, and potentially damage property (Moftakhari et al., 2018). Fluvial and plu-575

vial floodwaters require specific mitigation actions; therefore, it is important to quan-576

tify this distinction due to the place-based nature of flooding.577

The City of Austin’s FloodPro software, which is the city’s leading source of flood-578

plain information, lacks pluvial flooding information, therefore significantly under report-579

ing exposure. The inclusion of high-resolution pluvial flooding estimates is necessary in580

understanding the potential impacts to local emergency services and infrastructure. High-581

resolution compound flooding estimates can drastically improve local and regional flood582

polices’ impacts by more accurately addressing flood issues that would otherwise go un-583

noticed.584

6.2 Impact of Aggregating Exposure and Risk to Cartographic Bound-585

aries586

One of the leading purposes of mapping flood exposure with social vulnerability587

is to identify the most at-risk populations. However, aggregating and reporting estimates588
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to cartographic boundaries can significantly mask household level variability, thus mis-589

classifying some high- and low-risk households. This misidentification can inhibit the proper590

allocation of mitigation and emergency response services. Our results show that when591

household exposure depths are averaged to Census Block Groups, 80% of all Block Groups592

have a coefficient of variation higher than 100%, showing that using a central tendency593

statistic to report flood exposure over a cartographic boundary is not representative of594

actual flood conditions (Figure 8).595

The majority of recent research on social vulnerability to floods aggregates expo-596

sure and subsequent risk estimates to Census Tract, zip code, or county boundaries (C. Bur-597

ton & Cutter, 2008; Cutter et al., 2013; Chakraborty et al., 2014; Wing et al., 2020; Tate598

et al., 2021).The two primary reasons for aggregating exposure are (i) the exploratory599

nature of these studies to identify broad regions of risk and (ii) the aggregated bound-600

ary is the resolution of the utilized socio-economic data. Exposure and risk are hetero-601

geneous within block groups (Figure 8 and 10). Since social vulnerability estimates do602

not vary within a block group (Figure 9), the observed heterogeneity in the final risk es-603

timate comes solely from the variability in exposure. While aggregated results can draw604

attention to broad regions of risk, household level data is required to properly classify605

who is at risk. This is not the first study to incorporate tax parcel data to attempt to606

estimate risk at the household level (Nelson et al., 2015; Fahy et al., 2019), however pre-607

vious studies have relied on 100-year floodplain data that lack pluvial estimates. With608

pluvial flooding having specific small-scale impacts, such as ponding along roads and in-609

tersections, using higher resolution socioeconomic data requires an equivalent increase610

in resolution of inundation estimates.611

Mitigation policies and programs exist at nearly all levels of government, includ-612

ing national, state, and local programs (e.g., FEMA’s National Flood Insurance Program,613

Texas Water Development Board’s Flood Intended Use Program, and the City of Austin’s614

Climate Resilience Action Plan). While broad exploratory and aggregated studies can615

assist with equally scaled programs at the national and state level, high resolution house-616

hold estimates are necessary for local mitigation plans to effectively serve those most at617

risk. Optimizing the location of local flood mitigation efforts based on a complete flood618

exposure analysis (high resolution pluvial and fluvial flooding) at the household level can619

further maximize a city’s social return on investment. If our final risk estimates were ag-620

gregated to the block group level, high risk households would be masked and not iden-621

tified. Similarly, low risk households could be labeled inaccurately as high risk, thus lead-622

ing to a misappropriation of resources. High risk households are not necessarily limited623

to high vulnerability neighborhoods, and it is therefore important to view and report risk624

estimates in an unbiased manner.625

6.3 Pluvial Flooding Validation626

The methodology employed by this study uses terrain-based flood mapping (Ge-627

oFlood and Fill-Spill-Merge) to produce inundation estimates in near-real time and is628

not intended to replace more complex physical based hydrodynamic models, rather it629

can produce a storm-specific estimate of risk as a storm event occurs. While GeoFlood’s630

accuracy has already been researched (Zheng et al., 2018), Fill-Spill-Merge’s applicabil-631

ity as a pluvial flooding estimate has previously not been studied. The advantages and632

disadvantages between a terrain-based estimate of pluvial flooding to a hydrodynamic633

model can be grouped into two categories: time and accuracy.634

The single subbasin used in the hydrodynamic model, which is 5 km2 in size, rep-635

resents only 2% of the entire watershed studied and took over 11 hours to compute. This636

is even considering the additional model parameters chosen to reduce computational time637

such as using a uniform rainfall and roughness coefficient, reduced rainfall and follow up638

time, and down sampling the DEM. While there is room for the model to be optimized639
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and be increased in speed, the terrain-based estimate for the entire study area can be640

processed in a few minutes. Flash floods, especially those occurring in urban areas can641

occur within six hours of initial rainfall, and are some of the most hazardous natural events642

(Hapuarachchi et al., 2011). Short-term storm specific risk estimates require the speed643

that comes with our estimation methodology, which can play a critical role in deploy-644

ing emergency communications before a flooding event begins.645

When we compared the terrain based pluvial inundation estimate to the hydrody-646

namic model, we found that it had a spatial extent accuracy of 31%, which further in-647

creased to 66.5% when we ignored the lowest depth classification which would likely not648

be deep enough to inhibit vehicular traffic and therefore have minimal effects (Eq. [3]).649

The mismatch in inundation extents predominantly occurred along intersections and road-650

ways, which does not have an impact on our household level classification since these lo-651

cations do not intersect with residential parcels. This suggests that Fill-Spill-Merge can652

potentially play a role in estimating infrastructure service interruptions (e.g., road clo-653

sures, emergency vehicles being blocked) in future network studies, while still serving its654

purpose of estimating household risk for this study. This is supported by our 92% sim-655

ilar household classification, especially considering 237 of the 251 misclassified parcels656

were by only one class. The difference in the depth estimates of Fill-Spill-Merge and the657

hydrodynamic model are minimized when we examine maximum parcel depths and ag-658

gregate our results to these boundaries. Identifying the highest risk households is the most659

important function of the reclassification methodology and showing that 69% of the mis-660

classified houses are between no flooding and less than 15-cm of flooding will have lit-661

tle to no effect on the final risk estimates.662

6.4 Equity and Environmental Justice Implications663

There is a growing concern regarding the inequitable distribution of flood risk across664

vulnerable populations as flooding is broadly projected to increase in frequency and in-665

tensity (Tate et al., 2021). Furthermore, there is limited research at the intersection of666

flood risk and environmental justice at the household level (Collins et al., 2015). Our re-667

sults presented highlight important areas for further research to better conceptualize and668

measure flood inequity, including the distribution of pluvial flooding across diverse ur-669

ban communities and downscaling risk estimates below census block groups.670

Flood inequity may be present in numerous states, regions, and cities but it is far671

from uniform across all areas (Collins et al., 2018). While some studies show that flood672

exposure is higher for socially vulnerable populations (Lee & Jung, 2014; Rolfe et al.,673

2020), other studies show that low socially vulnerable populations can experience the674

highest exposure to flood hazards given certain circumstances (Fielding & Burningham,675

2005; Bin & Kruse, 2006; Ueland & Warf, 2006; Chakraborty et al., 2014). It is because676

of these differences from one city or one flood event to another that having an event spe-677

cific understanding of vulnerability and exposure at the highest resolution possible can678

provide valuable information to enact proper preparedness and response measures. Missed679

exposure from the lack of high-resolution pluvial inundation estimates or the masking680

of household level variability in exposure can unintentionally perpetuate systemic risk681

in a city and thus becomes an important environmental justice concern.682

6.5 Limitations and Future Work683

There are inherent challenges associated with SVIs and reporting results in terms684

of relative risk that will require future and more in-depth analyses. The simplistic na-685

ture of SVIs allows instantaneous estimations, but they cannot measure the full com-686

plex nature of vulnerability (Rufat et al., 2015). SVIs could inadvertently weight vari-687

ables inaccurately, creating a biased depiction of vulnerability over a region, thus misiden-688

tifying at risk individuals and perpetuating risk. SVIs should incorporate local knowl-689
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edge, including variables such as distance to critical infrastructure (e.g., hospitals) or ac-690

cess to resources (e.g., gas, food, electricity, transportation, and water), to ensure proper691

representation of all residents. Further consideration needs to be given to estimating so-692

cial vulnerability at the household level. Census data, especially at the Block Group level,693

can have large margins of error. Assuming values found for the areal units apply at the694

household level requires a more specific analysis. One such option that has been used695

to address this concern is the use of primary household survey data (Collins et al., 2015).696

There are also challenges associated with estimating flood exposure. The methods697

used to estimate exposure are a simplification of much more complex flood mechanics698

and do not account for such variables as storm drainage networks, movement around build-699

ings and structures, and timing/velocity considerations. While this workflow can pro-700

duce estimates in near-real time, it is important to consider these estimates in the broader701

context of flood modeling and consider the inherent uncertainties of terrain-based flood702

mapping. In the context of pluvial flooding, specifically nuisance flooding at lower depths,703

estimates are directly impacted by DEM accuracy. The DEM used has a vertical accu-704

racy of 6-cm, which is significant when considering flood depths that are between 3 and705

10-cm (Moftakhari et al., 2018). While uncertainty and its communication can have a706

substantial impacts on regulatory and response processes (Downton et al., 2005; Luke707

et al., 2018), there is also evidence that flood emergency managers are willing to trade708

larger uncertainties for faster information (McCarthy et al., 2007).709

While it is necessary to understand both short-term and long-term risk, as they710

require unique actions and policies to address them, this study is a specific attempt to711

identify short-term risk for a known storm event. Long term future flood risks caused712

by the projected increase in frequency of extreme weather events due to climate change713

will require their own analyses. Future flood risk calculations can incorporate this work-714

flow by using modeled storm characteristics and projected sociodemographic informa-715

tion. As a supplemental tool, this workflow can contribute to other research, response,716

and mitigation efforts.717

7 Conclusion718

The proposed workflow in this paper identifies storm specific urban flood risk at719

the parcel level using high resolution topographic data, pluvial and fluvial flood estima-720

tions, and a localized social vulnerability index. The application of this workflow to the721

Memorial Day Flood in Austin, TX showed that estimating fluvial flooding alone is not722

enough to predict urban flood exposure and that incorporating high resolution sociode-723

mographic information is important in identifying local variability in vulnerability. Fur-724

thermore, aggregating results to cartographic boundaries masks the dispersion of expo-725

sure, vulnerability, and risk thus making it difficult to identify priority locations for re-726

mediation, mitigation, and response. Additionally, our pluvial inundation estimates clas-727

sified household pluvial flood exposure accurately 94.4% of the time. Including more flood-728

ing and vulnerability factors, such as non-census sociodemographic data, social and gov-729

ernment networks, and local infrastructure data will improve risk estimations.730
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de Carvalho Júnior, O. A., Guimarães, R. F., Montgomery, D. R., Gillespie, A. R.,824
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