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Devoting to exploring the translation invariance and convolution invariance of doubly weighted pseudo almost automorphic

stochastic processes with impulses on time scales proposed in this paper. Based on these results, taking advantage of a

new approach to obtain the existence and uniqueness of the doubly weighted pseudo almost automorphic solutions to a

class of stochastic nonlinear impulsive equations on time scales, which enrich the dynamics of doubly weighted pseudo

almost automorphic stochastic processes. Finally, an example is researched to illustrate our conclusions. Copyright c© 2009

John Wiley & Sons, Ltd.
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1. INTRODUCTION

In view of the inevitability of random factors in various fields in the authentic world, and a large number of dynamic systems

may have structural changes once subjected to small variations in random factors, therefore, qualitative analysis of stochastic

differential equations in depicting economical models, electronics, nuclear reactor dynamics, fluid dynamics, biological kinetics

and so on have magnetized more and more attention of many mathematicians, see previous studies for details [1]-[5]. At this

point it is natural and realistic to investigate a class of stochastic nonlinear equations driven by Brownian motion.

The difference with random factors is that many phenomena characterized by the fact that their states are subject to mutation

at certain point, and then can be modeled by impulsive system, which has become an active area of research due to its fully

consideration of the influence of instantaneous changes on the whole process [6]-[7], especially, it has the properties of differential

and difference equations. In addition, as a link and promotion for the classical theory of differential equations and difference

equations, the theory of time scales effectively unify continuous and discrete analysis, and has occupied an irreplaceable position

in various fields of application, such as quantum physics, artificial intelligence, economics et al., see the literature [8]-[14] for

more details and references therein. In recent years, the perfect match between impulse and time scales has become a hot topic

and attracted increasing attention on the existence and uniqueness of almost periodic and almost automorphic mild solutions or

its extension of different kinds of abstract equations [15]-[16].
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As one of the important and significant extensions of classical almost automorphic function [17], Diagana introduced a new

concept of doubly weighted pseudo almost automorphic functions [18], which simplified as weighted pseudo almost automorphic

functions presented by Blot if ρ and q is equivalent [19]. More interesting, Yang and Zhu extends the case of doubly weight

to stochastic process in the sense of square-mean [20]. In resent years, there has been tremendous interest in developing

the qualitative property of differential equations with almost automorphic coefficient or its promotion, such as the existence,

uniqueness, stability of varied differential equations, the detail contributions respect to this topic can be references therein in

[21]-[23]. Nevertheless, there are very few authors which have been worked on the almost periodic/automorphic stochastic

process and its applications to stochastic equations on time scales with impulses [24]. So far, the research on p-mean doubly

weighted pseudo almost automorphic stochastic process with impulses on time scales for p > 2 remains unexplored, let alone in

exploring its properties or even existence and uniqueness of the doubly weighted pseudo almost automorphic mild solutions for

a class of stochastic abstract equations.

As we know, it is pointed out in [25]-[28] that the weighted pseudo almost automorphic mild solution to various stochastic

differential equations obtained by classic Banach fixed point theorem, the acquisition of these theorems requires the indispensable

lipchitz assumptions for the coefficients of stochastic systems, which is a strong constraint. In order to weaken this condition, we

split the doubly weighted pseudo almost automorphic stochastic process with impulses on time scales proposed in this paper into

two parts, including almost automorphic and ergodic perturbed composition at infinity. The feature of the required assumptions

is that only the former needs the lipchitz condition, while the latter controlled by a bounded functions and a nondecreasing

function. Therefore, a natural question is that wether we can get the existence and uniqueness of the doubly weighted pseudo

almost automorphic mild solution for a class of impulsive stochastic equations with time scales without utilize Banach fixed point

theorem? This is an urgent but unsolved problem.

In order to fill the gap of the foregoing discussion, this paper firstly proposed the concept of p-mean doubly weighted pseudo

almost automorphic stochastic processes with impulses on time scales, and further establishes some properties of the space of

these stochastic processes, such as the convolution invariance and translation invariance. These results obtained are not appeared

in previous papers. Moreover, by taking advantage of a new approach presented in [29] under the non-lipchitz condition, we

investigate a class of nonlinear stochastic equations driven by Brownian motion of the form

∆x(t) = A(t)x(t)∆t + F1(t, x(t))∆t +

∫ t

−∞
B(t − u)F2(u, x(u))∆u∆t

+

∫ t

−∞
C(t − u)F3(u, x(u))∆W (u)∆t, t ∈ T, t 6= ti ,

x(t+
i )− x(t−i ) = Ii(x(ti)), i ∈ Z,

(1)

where A(t) is a family of linear operator; T is almost periodic time scale; ∆x stands for the ∆-stochastic differential of stochastic

process x ; B and C are convolution-type kernels; {Bt : t ∈ T} is Brownian motion indexed by time scale defined on a complete

probability space, F1, F2 and F3 are stochastic processes that satisfied some appropriate assumptions. In addition, the notations

x(t+
i ) and x(t−i ) represent the right-hand and the left-hand side limits of x(·) at ti in the sense of time scale respectively.

Finally, we briefly describe the organization and main results of this paper. In section 2, the relevant definitions and lemmas

are simply introduced. In section 3, the convolution invariance and translation invariance of the space of doubly weighted pseudo

almost automorphic stochastic processes with impulses on time scales are presented. In section 4, for the stochastic equations

(1), the existence and uniqueness of the p-mean doubly weighted pseudo almost automorphic mild solution is proved. Finally,

an example is explored to illustrate our conclusions.

2. PRELIMINARIES

Throughout this paper, let (Ω,F ,P) be a complete probability space and (H, ‖ · ‖) be real separable Hilbert spaces. Denote

by Lp(H) the set of all p-mean integrable H-valued random variables that is a Banach space endowed with the norm

‖X‖PC = sup
t∈T

(E‖X(t)‖p)
1
p <∞. Assume Cb(T, Lp(H)) represents the space of all stochastically continuous bounded mappings

from T to Lp(H).
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Denote the closed nonempty subset of real linear space R by the time scale T and the interval [a, b]T = {t ∈ T : a ≤ t ≤ b}.
Define the backward jump operator %: T→ T, the forward jump operator σ: T→ T and the graininess function µ: T→ R+

as %(t) = sup{s ∈ T : s < t}, σ(t) = inf{s ∈ T : s > t} and µ(t) = σ(t)− t respectively. In addition, the point t ∈ T is called

left-dense or right-dense if ρ(t) = t, t > inf T or σ(t) = t, t < supT, it is called left-scattered or right-scattered if %(t) < t or

σ(t) > t separately. Besides, if T has a left-scattered maximum or a right-scattered minimum m, then define Tk = T−m or

Tk = T−m correspondingly, otherwise, Tk = Tk = T.

Definition 2.1.[9] A function g: T→ R is called rd-continuous if it is continuous at right dense points of T and its left-side limits

exist at left dense points. The set of all rd-continuous functions will be denoted by Crd(T,R). For any f ∈ Crd(T,R), presented

by f ∆(t) as the delta derivative of f at t, which is the number (if it exists) with the property that for any given ε > 0, there

exists a neighborhood U of t such that for all s ∈ U, it yields

|f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| < ε|σ(t)− s|.

Further, if F ∆(t) = f (t), then delta integral is defined as∫ r2

r1

f (t)∆t = F (r2)− F (r1) for r1, r2 ∈ T.

Definition 2.2.[9] A function p: T→ R is called regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ T. The set of all such regressive

and rd-continuous functions will be denoted by R = R(T,R). Let the set R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, t ∈ T}.

Definition 2.3.[9] If p is a regressive function, then the generalized exponential function ep is given as the unique solution of

the initial value problem y∆ = p(t)y , y(s) = 1, where s ∈ T. An explicit formula for ep(t, s) is defined as

ep(t, s) = exp

{∫ t

s

ξµ(τ)(p(τ))∆τ

}
for all s, t ∈ T

with

ξh(z) =


log(1+hz)

h
, for h 6= 0,

z, for h = 0.

Lemma 2.1.[10] Let p and q are regressive functions, define

p ⊕ q = p + q + µpq, 	p =
−p

1 + µp
, p 	 q = p ⊕ (	q).

Definition 2.4.[10] If a, b ∈ T and a ≤ b, then

ϑ((a, b]T) = b − a, ϑ((a, b)T) = %(b)− a.

If a, b ∈ T\Tk and a ≤ b, then

ϑ([a, b)T) = %(b)− %(a), ϑ([a, b]T) = b − %(a),

For more details of time scales and ∆-measurability, one is referred to[].

Definition 2.5.[11, 12] A time scale T is said to almost periodic if

Ξ := {τ ∈ R : t ± τ ∈ T, for any t ∈ T} 6= 0.

Let Γ be a collection of sets which is constructed by subsets of R. A time scale T is called an almost periodic time scale with

respect to Γ, if

Γ∗ = {±τ ∈ ∩Λ : Λ ∈ T, t ± τ ∈ T, for t ∈ T},

and Γ∗ is called the smallest almost periodic set of T.
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Definition 2.6.[13] A Brownian motion defined on a probability space (Ω,F ,P) indexed by a time scale T is an adapted

stochastic process W = {W (t) : t ∈ T} with the following properties:

(i) W (t0) = 0 a.s.;

(ii) if t0 ≤ s < t, then the increment W (t)−W (s) is independent of F(s), and is normally distributed with mean zero and

variance t − s for t, s ∈ T.

Definition 2.7.[13] A stochastic process f : T×Ω→ R belongs to L2([0, 1]T) if f is adapted and P
(∫ 1

0
|f (t, ω)|2∆t <∞

)
= 1.

Lemma 2.2.[13] A ∆-stochastic integral has the following properties:

(i) If f , g ∈ L2([0, 1]T) and a1, a2 ∈ R, then

∫ 1

0

[a1f (t) + a2g(t)]∆W (t) = a1

∫ 1

0

f (t)∆W (t) + a2

∫ 1

0

g(t)∆W (t).

(ii) Itô-isometry holds, that is

E
{[∫ 1

0

f (t)∆W (t)

]2
}

= E
[∫ 1

0

f 2(t)∆t

]
.

Next, one introduces some concepts in the case of p-mean, which not investigated in previous papers.

Definition 2.8. f : T× Lp(H) is said to be rd-piecewise continuous for the increasing sequence {tk} ⊆ T, k ∈ Z, if f is continuous

on [tk , tk+1)T, where [tk , tk+1)T are called intervals of continuity of the function f .

Denote the space of all such stochastic processes by PCrd(T, Lp(H)).

In the following, let D be the unbounded increasing sequences of real numbers set that consists of all sequences {ti}i∈Z
satisfying inf

i∈Z
(ti+1 − ti) > 0. For any {ti}i∈Z ∈ D, let BPCrd(T, Lp(H)) be the space of all bounded rd-piecewise continuous

functions f : T× Lp(H) such that f is continuous at t for any t /∈ {ti}i∈Z and f (ti) = f (t−i ) for all i ∈ Z.

Definition 2.9. Let t ji = ti+j − ti for i , j ∈ Z. The set {t ji } is called equipotentially almost automorphic on an almost periodic

time scale T, if for any sequence of real numbers {s ′n}n∈Z, there exists a subsequence {sn}n∈Z such that lim
n→∞

tsnk = βk is well

defined and lim
n→∞

β−snk = tk for tk ∈ D.

Definition 2.10. A stochastic process X ∈ PCrd(T, Lp(H)) is said to be p-mean piecewise almost automorphic if sequences of

impulsive {tk} satisfying {t jk} is equipotentially almost automorphic and for every sequence of real numbers {s ′n}n∈Z ⊆ Ξ, there

exists a subsequence {sn}n∈Z ⊆ Ξ such that for stochastic process X∗: T→ Lp(H) satisfying

lim
n→∞
E‖X(t + sn)−X∗(t)‖p = 0 and lim

n→∞
E‖X∗(t − sn)−X(t)‖p = 0.

The familay of all such p-mean stochastic processes is denoted by AA(T, Lp(H)).

Remark 2.1. AA(T, Lp(H)) is a Banach space with norm ‖ · ‖PC .

Definition 2.11. A jointly continuous stochastic process f (t, x) ∈ PCrd(T× Lp(H), Lp(H)), is said to be p-mean piecewise

almost automorphic in t ∈ T and for all x ∈ Lp(H) if sequences of impulsive {tk} satisfying {t jk} is equipotentially almost

automorphic and for every sequence of real numbers {s ′n}n∈Z ⊆ Ξ, there exists a subsequence {sn}n∈Z ⊆ Ξ such that for stochastic

process f ∗(t, x): T× Lp(H)→ Lp(H) satisfying

lim
n→∞
E‖f (t + sn, x)− f ∗(t, x)‖p = 0 and lim

n→∞
E‖f ∗(t − sn, x)− f (t, x)‖p = 0.

The set of all such stochastic processes is denoted by AA(T× Lp(H), Lp(H)).

From Definition 2.9 and Definition 2.10, one gives the next conclusions.

Lemma 2.3. Let x ∈ PCrd(T, Lp(H)) is piecewise almost automorphic on time scales, and {tk} ⊆ T is equipotentially almost

automorphic with inf
i ,q∈Z

tqi > 0, then {x(tk)} is a p-mean almost automorphic sequence.

Lemma 2.4. Let Ik is a sequence of p-mean almost automorphic and x ∈ AA(T, Lp(H)), assume there exists a constant L > 0

such that

E‖Ik(x)− Ik(y)‖p ≤ LE‖x − y‖p, k ∈ Z

4 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–17
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for any x, y ∈ Lp(H), then {Ik(x(tk))} is p-mean almost automorphic sequence.

Let U be the set of ∆-locally integrable ρ: T→ (0,+∞), for given r ∈ [0,+∞) ∩ Ξ and for any t0 ∈ T, define

m(r, ρ, t0) :=

∫ t0+r

t0−r
ρ(s)∆s.

Further, let U∞ := {ρ ∈ U : lim
r→+∞

m(r, ρ, t0) = +∞}, Ub = {ρ ∈ U∞ : ρ is bounded and inf
x∈T

ρ(x) > 0}. It is clear that Ub ⊂ U∞ ⊂
U . In addition, denote by

PAAρ,q(T, Lp(H)) :=

{
x ∈ BPCrd(T, Lp(H)) : lim

r→+∞

1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖x(t)‖pq(t)∆t = 0

}
,

PAAρ,q(T× Lp(H), Lp(H)) := {f (t, x) ∈ PAAρ,q(T, Lp(H)) : uniformly with respect to x ∈ Lp(H)} .

Based on Definition 2.10, we propose the following concepts.

Definition 2.12. Let ρ, q ∈ U∞. A stochastic process f ∈ PCrd(T, Lp(H)) is said to be doubly weighted piecewise pseudo almost

automorphic on time scales provided f = f1 + f2, where f1 ∈ AA(T, Lp(H)) and f2 ∈ PAAρ,q(T, Lp(H)).

Denote by DWPAA(T, Lp(H), ρ, q) the set of all such processes.

Similarly, we can introduce

DWPAA(T× Lp(H), Lp(H), ρ, q)

:=
{
f = f1 + f2 ∈ PCrd(T× Lp(H), Lp(H)) : f1 ∈ AA(T× Lp(H), Lp(H)) and f2 ∈ PAAρ,q(T× Lp(H), Lp(H))

}
.

Remark 2.2. If ρ/q ∈ Ub, then ρ and q is equivalent. Further, it follows DWPAA(T, Lp(H), ρ, q) = DWPAA(T, Lp(H), ρ) =

DWPAA(T, Lp(H), q).

Remark 2.3. In this paper, one investigates the doubly weighted piecewise pseudo almost automorphic stochastic process for

p > 2 and that ρ is not equivalent to q, which is more difficult and possesses complex qualitative properties than the case p = 2

and ρ, q is equivalent.

Next, we will present a indispensable Krasnoselskii’s fixed point theorem used in section 4.

Lemma 2.5.[29] Let B be a bounded closed and convex subset of X, J1, J2 be two maps of B into X such that

J1x + J2y ∈ B for x, y ∈ B.

If J1 is a contraction and J2 is completely continuous, then the equation

J1x + J2x = x

has a solution on B.

3. TRANSLATION INVARIANCE AND CONVOLUTION INVARIANCE

This section mainly establishes the translation and convolution invariance of the doubly weighted piecewise pseudo almost

automorphic stochastic processes on time scales for the nonequivalence weights functions ρ1, q1 and ρ2, q2, which play an

important role in the research of next section.

Denote by

U∗∞ =

{
ρ, q ∈ U∞ : sup

t /∈Mε(·)

q(t)

ρ(t)
< +∞, sup

t∈Mε(·)
q(t) < +∞, for any · ∈ BPCrd(T, Lp(H))

}
,

where Mε(·) := {t ∈ T : E‖ · (t)‖p ≥ ε}.
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Inspired by Lemma 3.2 in [16] and Lemma 3.1 in [20], one presents the following lemma.

Lemma 3.1. Let ρ, q ∈ U∗∞, then f ∈ PAA0(T, Lp(H), ρ, q) if and only if for each ε > 0, it yields

lim
r→+∞

1

m(r, ρ, t0)
ϑ∆([t0 − r, t0 + r ]T ∩Mε(f )) = 0.

Denote by Mr,t0,ε(·) = [t0 − r, t0 + r ]T ∩Mε(·). Based on Lemma 3.1, under some suitable conditions, one gives some results

as follows.

Theorem 3.1. Let ρ, q ∈ U∗∞ and

lim|t|→∞
ρ(t + τ)

ρ(t)
< +∞, sup

t∈Mε(·)

q(t + τ)

q(t)
< +∞, sup

t /∈Mε(·)

q(t + τ)

ρ(t)
< +∞ for τ ∈ T,

then DWPAA(T, Lp(H), ρ, q) is translation invariant with respect to Ξ.

Proof. It is clear that in order to complete the proof, it only needs to show PAAρ,q(T, Lp(H)) is translation invariant with

respect to Ξ, that is, for any f ∈ PAAρ,q(T, Lp(H)), it follows

fτ (t) = f (t − τ) ∈ PAAρ,q(T, Lp(H)) for τ ∈ T.

Similar to the proof of Theorem 2.1 in [22], it follows lim|t|→+∞
ρ(t+τ)
ρ(t)

< +∞ leads to

limr→+∞
m(r + τ, ρ, t0)

m(r, ρ, t0)
< +∞.

Without loss of generality, let τ > 0, one can calculate as follows:∫ t0+r

t0−r
E‖f (t − τ)‖pq(t)∆t =

∫ t0+r−τ

t0−r−τ
E‖f (t)‖pq(t + τ)∆t = J1 + J2,

where

J1 =

∫
[t0−r−τ,t0+r−τ ]∩Mε(f )

E‖f (t)‖pq(t + τ)∆t,

J2 =

∫
[t0−r−τ,t0+r−τ ]\([t0−r−τ,t0+r−τ ]∩Mε(f ))

E‖f (t)‖pq(t + τ)∆t.

From the definition of Mε(f ), one deduces

J1 ≤
∫
Mr+τ,t0 ,ε(f )

E‖f (t)‖pq(t + τ)∆t ≤ sup
t∈Mε(f )

q(t + τ)

q(t)

∫
Mr+τ,t0 ,ε(f )

E‖f (t)‖pq(t)∆t, (2)

and

J2 ≤
∫

[t0−r−τ,t0+r+τ ]\Mr+τ,t0 ,ε(f )

E‖f (t)‖pq(t + τ)∆t

≤ sup
t /∈Mε(f )

q(t + τ)

ρ(t)

∫
[t0−r−τ,t0+r+τ ]\Mr+τ,t0 ,ε(f )

E‖f (t)‖pρ(t)∆t. (3)

According to (2)-(3), one obtains

1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖fτ (t)‖pq(t)∆t

≤ sup
t∈R
E‖f (t)‖p sup

t∈Mε(f )

q(t)H1(ρ, q, τ, t0)
ϑ∆(Mr+τ,t0,ε(f ))

m(r + τ, ρ, t0)
+H2(ρ, q, τ, t0)ε,

6 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–17
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where

H1(ρ, q, τ, t0) =
m(r + τ, ρ, t0)

m(r, ρ, t0)
sup

t∈Mε(f )

q(t + τ)

q(t)
, H2(ρ, q, τ, t0) =

m(r + τ, ρ, t0)

m(r, ρ, t0)
sup

t /∈Mε(f )

q(t + τ)

ρ(t)
,

therefore,

lim|t|→+∞Hi(ρ, q, τ, t0) <∞, i = 1, 2.

Since f ∈ PAAρ,q(T, Lp(H)) and ρ, q ∈ U∗∞, thus, from Lemma 3.1, it follows that for each ε > 0,

ϑ∆(Mr+τ,t0,ε(f ))

m(r + τ, ρ, t0)
→ 0 as r → +∞.

In view of ε→ 0, then
1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖fτ (t)‖pq(t)∆t → 0 as r → +∞,

which implies fτ ∈ PAAρ,q(T, Lp(H)). 2

In order to investigate the convolution invariance of the space of the doubly weighted piecewise pseudo almost automorphic

stochastic processes, one define

(Kξ)(t) = (ξ ∗ k)(t) :=

∫
R
k(t − s)ξ(s)∆W (s), k ∈ L2(T).

Theorem 3.2. Let ρ, q ∈ U∗∞ and the space DWPAA(T, Lp(H), ρ, q) is translation invariant, then DWPAA(T, Lp(H), ρ, q) is

convolution invariant.

Proof. Clearly, it only needs to prove PAAρ,q(T, Lp(H)) is convolution invariant provided it is translation invariant. It follows

ξ ∗ k ∈ BPCrd(T, Lp(H)) for any ξ ∈ BPCrd(T, Lp(H)) and k ∈ L2(T). By using Burkholder-Davis-Gundy inequality, it follows

E|(ξ ∗ k)(t)|p ≤σ̄pCpE
(∫
R
|k(t − s)|2‖ξ(s)‖2∆s

) p
2

≤σ̄pCp‖k‖p−2

L2

∫
T
|k(t − s)|2E‖ξ(s)‖p∆s.

Therefore

lim
r→+∞

1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖(ξ ∗ k)(t)‖pq(t)∆t

≤ lim
r→+∞

σ̄pCp‖k‖p−2

L2

m(r, ρ, t0)

∫ t0+r

t0−r

∫
R
E‖ξ(s)‖p|k(t − s)|2∆sq(t)∆t

= lim
r→+∞

σ̄pCp‖k‖p−2

L2

m(r, ρ, t0)

∫ t0+r

t0−r

∫
R
E‖ξ(t − s)‖p|k(s)|2∆sq(t)∆t.

From Fibini theorem, it follows

lim
r→+∞

1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖(ξ ∗ k)(t)‖pq(t)∆t

≤σ̄pCp‖k‖p−2

L2

∫
R
|k(s)|2 lim

r→+∞

1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖ξ(t − s)‖pq(t)∆t∆s.

Combining the translation invariant of PAAρ,q(T, Lp(H)) and the Lebesgue dominated convergence theorem, it deduces

lim
r→+∞

1

m(r, ρ, t0)

∫ t0+r

t0−r
E‖(ξ ∗ k)(t)‖pq(t)∆t = 0,

which yields the convolution invariant of PAAρ,q(T, Lp(H)). Further, DWPAA(T, Lp(H), ρ, q) is convolution invariant. 2
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Corollary 3.1. If define

(Kξ)(t) = (ξ ∗ k)(t) :=

∫
R
k(t − s)ξ(s)∆s, k ∈ L1(T),

then the Theorem 3.2 still holds.

Remark 3.1. The translation invariance of the space of PAAρ,q(T, Lp(H)) is the sufficient condition of its convolution invariance.

Remark 3.2. Denote by Uρ,q := {ρ, q ∈ U∞ : PAAρ,q(T, Lp(H)) is translation invariant} in the rest of this paper.

4. EXISTENCE AND UNIQUENESS

In order to state the main results, one demands the following conditions.

(H1) A(t) generates an exponential stable evolution system {T (t, s)}t≥s , that is, there exist K > 0 and δ > 0 satisfy

‖T (t, s)‖ ≤ Ke	δ(t, s) for t ≥ s,

and for any sequence {s ′n}∞n=1 ⊆ Ξ, there exist a subsequence {sn}∞n=1 such that for any ε > 0, there exists N > 0 satisfying

‖T (t + sn, s + sn)− T1(t, s)‖ ≤ εe	δ(t, s) and ‖T1(t − sn, s − sn)− T (t, s)‖ ≤ εe	δ(t, s) for t ≥ s.

(H2) Assume Fi = ϕi + ηi ∈ DWPAA(T× Lp(H), Lp(H), ρ, q) and ρ, q ∈ Uρ,q, where ϕi ∈ AA(T× Lp(H), Lp(H)) and ηi ∈
PAAρ,q(T× Lp(H), Lp(H)) such that there exists positive constant L satisfies

E‖ϕi(t, x)− ϕi(t, z)‖p ≤ LE‖x − z‖p, i = 1, 2, 3 (4)

for any x , z ∈ Lp(H). Moreover, there exist γ(t) ∈ PAAρ,q(T,T+) with ζ2 := sup
t∈T

γ(t), and a nondecreasing function Φ: T+ → T+

such that for all x ∈ Lp(H) with ‖x‖PC ≤ h, it follows

E‖ηi(t, x)‖p ≤ γ(t)Φ(hp) and lim inf
h→+∞

Φ(h)

h
= ζ1. (5)

(H3) Let Ii ∈ PCrd(Lp(H), Lp(H)) is a p-mean almost automorphic sequence and there exists a constant L > 0 such that

E‖Ik(x)− Ik(z)‖p ≤ LE‖x − z‖p, k ∈ Z,

for any x, z ∈ Lp(H).

Lemma 4.1. Assume (H1) holds and ϕ ∈ AA(T, Lp(H)), then

χ(t) :=

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)ϕ(u)∆W (u)∆s, t ≥ σ(s)

lies in AA(T, Lp(H)).

Proof. For any given sequence {s ′n}n∈N ⊆ Ξ, there exists a subsequence {sn}n∈N and stochastic process ϕ̃: T→ Lp(H) such

that

lim
n→∞
E‖ϕ(t + sn)− ϕ̃(t)‖p = 0. (6)

Let W̃ (m) = W (s +m)−W (s) for each m ∈ R, then W̃ also is a Brownian motion and has the same distribution as W .

Define

χ̃1(t) =

∫ t

−∞
T1(t, σ(s))

∫ s

−∞
C(s − u)ϕ̃(u)∆W (u)∆s,

then

E‖χ1(t + sn)− χ̃1(t)‖p ≤ 2p−1[Ψ1
t,sn(t) + Ψ2

t,sn(t)],
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where

Ψ1
t,sn(t) := E

∥∥∥∥∫ t

−∞
T (t + sn, σ(r) + sn)

∫ 0

−∞
C(−m)[ϕ(r + sn +m)− ϕ̃(r +m)]∆W̃ (m)∆r

∥∥∥∥p ,
Ψ2
t,sn(t) := E

∥∥∥∥∫ t

−∞
[T (t + sn, σ(r) + sn)− T1(t, r)]

∫ 0

−∞
C(−m)ϕ̃(r +m)∆W̃ (m)∆r

∥∥∥∥p .
From the well-known Hölder and Burkholder-Davis-Gundy inequality, it yields

Ψ1
t,sn(t) ≤ Kp

(−	 δ)p−1

∫ t

−∞
e	δ(t, σ(r))E

∥∥∥∥∫ 0

−∞
C(−m)[ϕ(r + sn +m)− ϕ̃(r +m)]∆W̃ (m)

∥∥∥∥p dr
≤ KpCp

(−	 δ)p−1

∫ t

−∞
e	δ(t, σ(r))E

∥∥∥∥∫ 0

−∞
[C(−m)ϕ(r + sn +m)− ϕ̃(r +m)]2∆m

∥∥∥∥
p
2

dr

≤K
pC̄p(1 + µ̄δ)p−1

δp−1

∫ t

−∞
e	δ(t, σ(r))

∫ ∞
0

|C(u)|2E‖ϕ(r + sn − u)− ϕ̃(r − u)‖p∆u∆r

≤
KpC̄p(1 + µ̄δ)p‖C‖2

L2(0,+∞)

δp
sup
t∈T
E‖ϕ(t + sn)− ϕ̃(t)‖p,

where C̄p = Cp‖C‖p−2

L2(0,+∞)
and Cp is a positive constant.

Based on the translation invariance of AA(T, Lp(H)), (6) and the Lebesgue dominated convergence theorem, one deduces

Ψ1
t,sn(t)→ 0 as n →∞.

Similarly, for any ε > 0, there exists N > 0 such that

Ψ2
t,sn(t) ≤

εpC̄p(1 + µ̄w)p‖C‖2
L2(0,+∞)

δp
sup
t∈T
E‖ϕ̃(t)‖p,

therefore, Ψ2
t,sn(t)→ 0 as n →∞. Further, E‖χ1(t + sn)− χ̃1(t)‖p → 0 as n →∞, likewise, lim

n→∞
E‖χ̃1(t − sn)− χ1(t)‖p = 0

can be checked.

Taking a Taking a analogous method as the proof of Lemma 4.1, the following conclusion is established successfully.

Corollary 4.1. Assume (H1) holds and φ ∈ AA(T, Lp(H)), then

Φ1(t) =

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)φ(u)∆u∆s

and

Φ2(t) =

∫ t

−∞
T (t, σ(s))ϕ(s)∆s

are piecewise almost automorphic.

Lemma 4.2. Assume (H1) holds and ti ∈ AA(Lp(H), Lp(H)) and x(ti) ∈ AA(T, Lp(H)), if x : T→ Lp(H)) is defined by

x(t) :=
∑
ti<t

T (t, ti)x(ti),

then x ∈ AA(T, Lp(H)).

Proof. Since x(ti) ∈ AA(T, Lp(H)), then for any given sequence {τ ′n}n∈N ⊆ Ξ, there exists a subsequence {τn}n∈N and stochastic

processes x̃(ti): T→ Lp(H) such that

lim
n→∞
E‖x(ti + τn)− x̃(ti)‖p = 0 for ti ∈ T, i ∈ Z. (7)

Let

x∗(t) =
∑
ti<t

T (t, ti)x̃(ti),
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it obtains

E‖x(t + τn)− x∗(t)‖p

≤2p−1

E
∥∥∥∥∥∥
∑
ti<t

[T (t + τn, ti + τn)− T (t, ti)] x(ti + τn)

∥∥∥∥∥∥
p

+ E

∥∥∥∥∥∥
∑
ti<t

T (t, ti) [x(ti + τn)− x̃(ti)]

∥∥∥∥∥∥
p

≤2p−1

∑
ti<t

e	δ(t, ti)

p−1∑
ti<t

e	δ(t, ti)
[
εpE ‖x(ti + τn)‖p +KpE ‖x(ti + τn)− x̃(ti)‖p

]
≤ 2p−1

(1− e	δ(φ0, 0))p

[
εp sup

ti∈T
E ‖x(ti + τn)‖p +Kp sup

ti∈T
E ‖x(ti + τn)− x̃(ti)‖p

]
.

Since e	δ(φ0, 0) < 1 with φ0 = inf
i∈Z

(ti+1 − ti), therefore lim
n→+∞

E‖x(t + τn)− x∗(t)‖p = 0 by utilizing (7) and ε→ 0. Similarly, it

yields lim
n→+∞

E‖x∗(t − τn)− x(t)‖p = 0, further, x ∈ AA(T, Lp(H)).

Theorem 4.1. Let (H1)-(H3) hold, then Eq.(1) admits a unique p-mean doubly weighted piecewise pseudo almost automorphic

mild solution provided that

(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
(L+ ζ1ζ2) +

L

(1− e	δ(φ0, 0))p
<

1

4p−1Kp
. (8)

Proof. Next, we will divide the proof into five steps.

Step 1. Assume

Θh := {ω(·) ∈ PAAρ,q(T, Lp(H)) : ‖ω‖PC ≤ h}.

Moreover, for any φ ∈ AA(T, Lp(H)), set the operator (Γ1ω)(t) :=
7∑
i=1

(`iω)(t) with

(`1ω)(t) :=

∫ t

−∞
T (t, σ(s))[ϕ1(s, φ(s) + ω(s))− ϕ1(s, φ(s))]∆s,

(`2ω)(t) :=

∫ t

−∞
T (t, σ(s))η1(s, φ(s) + ω(s))∆s,

(`3ω)(t) :=

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)[ϕ2(u, φ(u) + ω(u))− ϕ2(u, φ(u))]∆u∆s,

(`4ω)(t) :=

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)η2(u, φ(u) + ω(u))∆u∆s,

(`5ω)(t) :=

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)[ϕ3(u, φ(u) + ω(u))− ϕ3(u, φ(u))]∆W (u)∆s,

(`6ω)(t) :=

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)η3(u, φ(u) + ω(u))∆W (u)∆s,

(`7ω)(t) :=
∑
ti<t

T (t, ti)[Ii(φ(ti) + ω(ti))− Ii(φ(ti))].

Based on (5) and (8), it is not difficult to obtain that there exists a positive constant h0 satisfies

4p−1Kp(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
{Lhp0 + ζ2Φ[(h0 + ‖x‖PC)p]}+

4p−1KpL

(1− e	δ(φ0, 0))p
≤ hp0 . (9)

For above given positive constant h0, then we claim that Γ11 := `1 + `3 + `5 + `7 and Γ12 := `2 + `4 + `6 maps Θh0 into itself.

In fact, by applying (H2), it yields for i = 1, 2, 3 that

max
t∈T
{E‖ϕi(t, x(t) + ω(t))− ϕi(t, x(t))‖p,E‖Ii(φ(ti) + ω(ti))− Ii(φ(ti))‖p} ≤ LE‖ω(t)‖p, (10)

E‖ηi(t, x(t) + ω(t))‖p ≤ γ(t)Φ[(h + ‖x‖PC)p]. (11)
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For any ω1 ∈ Θh0 , in view of ω1(·) ∈ PAAρ,q(T, Lp(H)) and γ(·) ∈ PAAρ,q(T,T+), then ϕi(·, x(·) + ω1(·))− ϕi(·, x(·)) ∈
PAAρ,q(T, Lp(H)), ηi(·, x(·) + ω1(·)) ∈ PAAρ,q(T, Lp(H)) and Ii(φ(ti) + ω(ti))− Ii(φ(ti)) ∈ PAAρ,q(Lp(H), Lp(H)). Further,

by utilizing Theorem 3.2 and Corollary 3.1, it obtains (`iω1)(t) ∈ PAAρ,q(T, Lp(H)) for i = 1, · · ·, 7, that is, (Γ1jω1)(t) ∈
PAAρ,q(T, Lp(H)) for j = 1, 2.

In addition, together (10) with (11), based on (H1)-(H3), by using Hölder inequality and Burkholder-Davis-Gundy inequality,

it yields for ω1 ∈ Θh0 that

E‖(Γ11ω1)(t)‖p

≤4p−1 (E‖(`1ω1)(t)‖p + E‖(`3ω1)(t)‖p + E‖(`5ω1)(t)‖p + E‖(`7ω1)(t)‖p)

≤ 4p−1Kp

(−	 δ)p−1

[∫ t

−∞
e	δ(t, σ(s))E‖ϕ1(s, x(s) + ω1(s))− ϕ1(s, x(s))‖p∆s

+ ‖B‖p−1

L1(0,+∞)

∫ t

−∞
e	δ(t, σ(s))

∫ s

−∞
|B(s − u)|E‖ϕ2(u, x(u) + ω1(u))− ϕ2(u, x(u))‖p∆u∆s

+ Cp

∫ t

−∞
e	δ(t, σ(s))E

(∫ s

−∞
|C(s − u)|2‖ϕ3(u, x(u) + ω1(u))− ϕ3(u, x(u))‖2∆u

) p
2

∆s

]

+ 4p−1Kp

∑
ti<t

e	δ(t, ti)

p−1∑
ti<t

e	δ(t, ti)E‖Ii(φ(ti) + ω1(ti))− Ii(φ(ti))‖p

≤4p−1KpL

[
(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
+

1

(1− e	δ(φ0, 0))p

]
hp0 , (12)

and

E‖(Γ12ω1)(t)‖p ≤3p−1 (E‖(`2ω1)(t)‖p + E‖(`4ω1)(t)‖p + E‖(`6ω1)(t)‖p)

≤3p−1Kp(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
ζ2Φ[(h0 + ‖x‖PC)p].

By applying (9), it follows

‖Γ1jω1‖PC ≤ h0 for j = 1, 2,

this indicates Γ1j : Θh0 → Θh0 hold for j = 1, 2.

Step 2. Show the operator Γ2 is a contraction mapping on AA(T, Lp(H)), where

(Γ2x̃)(t) :=

∫ t

−∞
T (t, σ(s))ϕ1(s, x̃(s))∆s +

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)ϕ2(u, x̃(u))∆u∆s

+

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)ϕ3(u, x̃(u))∆W (u)∆s +

∑
ti<t

T (t, ti)Ii(x̃(ti)),

for any x̃ ∈ AA(T, Lp(H)). In fact, for any x1, x2 ∈ AA(T, Lp(H)), it deduces

(Γ2x1)(t)− (Γ2x2)(t)

=

∫ t

−∞
T (t, σ(s))[ϕ1(s, x1(s))− ϕ1(s, x2(s))]∆s +

∑
ti<t

T (t, ti)[Ii(x1(ti))− Ii(x2(ti))]

+

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)[ϕ2(u, x1(u))− ϕ2(u, x2(u))]∆u∆s

+

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)[ϕ3(u, x1(u))− ϕ3(u, x2(u))]∆W (u)∆s

:=∇(ϕ1, x1, x2, t) +∇(Ii , x1, x2, t) +∇(ϕ2, x1, x2, t) +∇(ϕ3, x1, x2, t).
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From (H1), (4) and (H3), similar to the calculation of (12), it obtains

E‖(Γ2x1)(t)− (Γ2x2)(t)‖p

≤4p−1 (E‖∇(ϕ1, x1, x2, t)‖p + E‖∇(Ii , x1, x2, t)‖p + E‖∇(ϕ2, x1, x2, t)‖p + E‖∇(ϕ3, x1, x2, t)‖p)

≤4p−1KpL

{
(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
+

1

(1− e	δ(φ0, 0))p

}
sup
t∈T
E‖x1(t)− x2(t)‖p.

Therefore, based on the condition (8), it yields

‖(Γ2x1)− (Γ2x2)‖PC < ‖x1 − x2‖PC .

Step 3. Show Γ11 is a contraction mapping on Θh0 .

For any ω1, ω2 ∈ Θh0 , by using (4) it follows

E ‖[ϕi(·, x(·) + ω1(·))− ϕi(·, x(·))]− [ϕi(·, x(·) + ω2(·))− ϕi(·, x(·))]‖p ≤ LE ‖ω1(·)− ω2(·)‖p ,

E ‖[Ii(φ(·) + ω1(·))− Ii(φ(·))]− [Ii(φ(·) + ω2(·))− Ii(φ(·))]‖p ≤ LE ‖ω1(·)− ω2(·)‖p .

Together this with Hölder and Burkholder-Davis-Gundy inequality, it is not difficult to deduce

E‖(Γ11ω1)− (Γ11ω2)‖p

≤4p−1KpL

{
(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
+

1

(1− e	δ(φ0, 0))p

}
sup
t∈T
E‖ω1(t)− ω2(t)‖p,

this implies based on (8) that

‖(Γ11ω1)− (Γ11ω2)‖PC < ‖ω1 − ω2‖PC .

Step 4. Prove {(Γ12ω)(t) : ω(t) ∈ Θh0} is a relatively compact set in Lp(H).

Let t ∈ T be fixed, for given ε0 > 0, (11) suggests

(Γε0
12ω)(t) := Γ2

1(t − ε0) + Γ4
1(t − ε0) + Γ6

1(t − ε0)

is uniformly bounded for any ω(t) ∈ Θh0 . Combining with the compactness of evolution family T (t, t − ε0), it claims

{T (t, t − ε0)(Γε0
12ω)(t) : ω(t) ∈ Θh0}

is a relatively compact set in Lp(H). Since

(Γ12ω)(t)− T (t, t − ε0)(Γε0
12ω)(t)

=

∫ t

t−ε0

T (t, σ(s))η1(s, x(s) + ω(s))∆s +

∫ t

t−ε0

T (t, σ(s))

∫ s

−∞
B(s − u)η2(u, x(u) + ω(u))∆u∆s

+

∫ t

t−ε0

T (t, σ(s))

∫ s

−∞
C(s − u)η3(u, x(u) + ω(u))∆W (u)∆s,

therefore, by using some analysis techniques, it deduces

E ‖(Γ12ω)(t)− T (t, t − ε0)(Γε0
12ω)(t)‖p → 0 as ε0 → 0.

Step 5. Claim that {(Γ12ω)(t) : ω(t) ∈ Θh0} is equicontinuous.

For any ε1 > 0, based on (11), there exists δ1 > 0, for ω(t) ∈ Θh0 , 0 ≤ t2 − t1 < δ1, it has

E
∥∥∥∥∫ t2

t1

T (t2, σ(s))

∫ s

−∞
C(s − u)η3(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥p < ε1

12p
, (13)
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E
∥∥∥∥∫ t1

t1−δ1

[T (t2, σ(s))− T (t1, σ(s))]

∫ s

−∞
C(s − u)η3(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥p < ε1

12p
. (14)

Choosing a sufficiently large and suitable constant r0 > 0 satisfies

E
∥∥∥∥∫ t1−r0

−∞
[T (t2, σ(s))− T (t1, σ(s))]

∫ s

−∞
C(s − u)η3(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥p < ε1

12p
. (15)

On the other hand, the compactness of the {T (t, s)}t≥s indicates its norm continuity, that is, there exists 0 < δ′ < δ1 such that

for all ω(t) ∈ Θh0 and 0 ≤ t2 − t1 < δ′, it follows

E

∥∥∥∥∥
∫ t1−δ′

t1−r0
[T (t2, σ(s))− T (t1, σ(s))]

∫ s

−∞
C(s − u)η3(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥∥
p

<
ε1

12p
. (16)

By applying (13)-(16), it calculates

E‖(Γ6
1ω)(t2)− (Γ6

1ω)(t1)‖p

≤4p−1

(
E
∥∥∥∥∫ t2

t1

T (t2, s)

∫ s

−∞
C(s − u)g2(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥p
+ E

∥∥∥∥∫ t1

t1−δ′
[T (t2, s)− T (t1, s)]

∫ s

−∞
C(s − u)g2(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥p
+ E

∥∥∥∥∫ t1−r0

−∞
[T (t2, s)− T (t1, s)]

∫ s

−∞
C(s − u)g2(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥p
+ E

∥∥∥∥∥
∫ t1−δ′

t1−r0
[T (t2, s)− T (t1, s)]

∫ s

−∞
C(s − u)g2(u, x(u) + ω(u))∆W (u)∆s

∥∥∥∥∥
p)

<
ε1

3p
.

Similarly, we get E‖(Γ2
1ω)(t2)− (Γ2

1ω)(t1)‖p < ε1
3p

and E‖(Γ4
1ω)(t2)− (Γ4

1ω)(t1)‖p < ε1
3p
. Therefore, for any ε1 > 0, there exists

δ1 > 0 such that for any ω(t) ∈ Θh0 and 0 ≤ t2 − t1 < δ′ < δ1, it follows

E‖(Γ12ω)(t2)− (Γ12ω)(t1)‖p

≤3p−1
[
E‖(Γ2

1ω)(t2)− (Γ2
1ω)(t1)‖p + E‖(Γ4

1ω)(t2)− (Γ4
1ω)(t1)‖p + E‖(Γ6

1ω)(t2)− (Γ6
1ω)(t1)‖p

]
< ε1.

From above discussion, we claim that Eq.(1) admits a unique doubly weighted piecewise pseudo almost automorphic mild

solution. In fact, for any x̃ ∈ AA(T, Lp(H)), under the lipschitz conditions (4), it follows ϕi(t, x̃(t)) ∈ AA(T, Lp(H)). From

Lemma 2.3, Lemma 2.4 and (H3), it gives Ii(x̃(ti)) ∈ AA(Lp(H), Lp(H)). Further, from the lemma 4.1-4.2, corollary 4.1

and step 2, by using the contraction mapping principle in Banach space, it yields that Γ2 has as least one fixed point

x∗(t) ∈ AA(T, Lp(H)). Moreover, combining step 4 with step 5, it follows the operator Γ12 is completely continuous, this together

with step 1 and step 3, then the Krasnoselskii’s fixed point theorem indicates that there exists one fixed point ω∗(t) ∈ Θh0 ,

clearly, ω∗(t) ∈ PAAρ,q(T, Lp(H)). Further, consider the coupled system

x∗(t) =
∫ t
−∞ T (t, σ(s))ϕ1(s, x∗(s))ds +

∫ t
−∞ T (t, s)

∫ s
−∞ B(s − u)ϕ2(u, x∗(u))∆u∆s

+
∫ t
−∞ T (t, σ(s))

∫ s
−∞ C(s − u)ϕ3(u, x∗(u))∆W (u)∆s +

∑
ti<t

T (t, ti)Ii(x
∗(ti)),

ω∗(t) =
∫ t
−∞ T (t, σ(s))[ϕ1(s, x∗(s) + ω∗(s))− ϕ1(s, x∗(s))]∆s

+
∫ t
−∞ T (t, σ(s))η1(s, x∗(s) + ω∗(s))∆s

+
∫ t
−∞ T (t, σ(s))

∫ s
−∞ B(s − u)[ϕ2(u, x∗(u) + ω∗(u))− ϕ2(u, x∗(u))]∆u∆s

+
∫ t
−∞ T (t, σ(s))

∫ s
−∞ B(s − u)η2(u, x∗(u) + ω∗(u))∆u∆s

+
∫ t
−∞ T (t, σ(s))

∫ s
−∞ C(s − u)[ϕ3(u, x∗(u) + ω∗(u))− ϕ3(u, x∗(u))]∆W (u)∆s

+
∫ t
−∞ T (t, σ(s))

∫ s
−∞ C(s − u)η3(u, x∗(u) + ω∗(u))∆W (u)∆s

+
∑
ti<t

T (t, ti)Ii(x
∗(ti) + ω∗(ti))−

∑
ti<t

T (t, ti)Ii(x
∗(ti)), t ∈ T,
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obviously, (x∗(t), ω∗(t)) ∈ AA(T, Lp(H))× PAAρ,q(T, Lp(H)) is a solution to this coupled system. Further x(t) = x∗(t) +

ω∗(t)) ∈ DWPAA(T, Lp(H), ρ, q), it is not difficult to check that x(t) is a solution to (1). 2

If the condition (H2) replaced by (H̄2), where (H̄2) presented as follows.

(H̄2) Assume Fi = ϕi + ηi ∈ DWPAA(T× Lp(H), Lp(H), ρ, q) and ρ, q ∈ Uρ,q, where ϕi ∈ AA(T× Lp(H), Lp(H)) and ηi ∈
PAAρ,q(T× Lp(H), Lp(H)), for any x , z ∈ Lp(H), there exists positive constant L satisfies

E|Fi(t, x)− Fi(t, z)|p ≤ LE|x − z |p, i = 1, 2, 3.

Further, the following result holds.

Theorem 4.2. Let (H1), (H̄2) and (H3) hold, then Eq.(1) admits a unique p-mean doubly weighted piecewise pseudo almost

automorphic mild solution x∗ provided that

(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
+

1

(1− e	δ(φ0, 0))p
<

1

4p−1KpL
. (17)

Moreover, the almost automorphic component x∗1 of x∗ is the unique mild solution of

∆x1(t) = A(t)x1(t)∆t + ϕ1(t, x1(t))∆t +

∫ t

−∞
B(t − u)ϕ2(u, x1(u))∆u∆t

+

∫ t

−∞
C(t − u)ϕ3(u, x1(u))∆W (u)∆t, t ∈ T, t 6= ti ,

x1(t+
i )− x1(t−i ) = Ii(x1(ti)), i ∈ Z,

(18)

Proof. Define the operator Υ with

(Υx)(t) :=
∑
ti<t

T (t, ti)Ii(x(ti)) +

∫ t

−∞
T (t, σ(s))F1(s, x(s))∆s +

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)F2(u, x(u))∆u∆s

+

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)F3(u, x(u))∆W (u)∆s := =F1,x(t) + =F2,x(t) + =F3,x(t) + =Ii ,x(t)

for t ∈ T. Assume z1, z2 are two mild solution of Eq.(1), by using (H1), (H̄2) and (H3), then

41−pE‖(Υz1)(t)− (Υz2)(t)‖p

≤E

∥∥∥∥∥∥
∑
ti<t

T (t, ti)[Ii(z1(ti))− Ii(z2(ti))]

∥∥∥∥∥∥
p

+ E
∥∥∥∥∫ t

−∞
T (t, σ(s))[F1(s, z1(s))− F1(s, z2(s))]∆s

∥∥∥∥p

+ E
∥∥∥∥∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)[F2(u, z1(u))− F2(u, z2(u))]∆u∆s

∥∥∥∥p
+ E

∥∥∥∥∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)[F3(u, z1(u))− F3(u, z2(u))]∆W (u)∆s

∥∥∥∥p
≤Kp

(∫ t

−∞
e	δ(t, σ(s))∆s

)p−1 [∫ t

−∞
e	δ(t, σ(s))E‖F1(s, z1(s))− F1(s, z2(s))‖p∆s

+ ‖B‖p−1

L1(0,+∞)

∫ t

−∞
e	δ(t, σ(s))

∫ s

−∞
|B(s − u)|E‖F2(u, z1(u))− F2(u, z2(u))‖p∆u∆s

+ Cp

∫ t

−∞
e	δ(t, σ(s))E

(∫ s

−∞
|C(s − u)|2‖F3(u, z1(u))− F3(u, z2(u))‖2∆u

) p
2

∆s

]

+Kp

∑
ti<t

e	δ(t, ti)

p−1∑
ti<t

e	δ(t, ti)E ‖Ii(z1(ti))− Ii(z2(ti))‖p

≤KpL

[
(1 + µ̄δ)p

δp

(
1 + ‖B‖p

L1(0,+∞)
+ Cp‖C‖pL2(0,+∞)

)
+

1

(1− e	δ(φ0, 0))p

]
sup
t∈T
E ‖z1(t)− z2(t)‖p .
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Therefore, (17) implies the operator Υ is a contraction mapping. Further, for any x = x1 + x2 ∈ DWPAA(T, Lp(H), ρ, q),

where x1 ∈ AA(T, Lp(H)) and x2 ∈ PAAρ,q(T, Lp(H)), it follows Fi(·, x(·)) = ϕi(·, x1(·)) + Fi(·, x(·))− Fi(·, x1(·)) + ηi(·, x1(·)),

moreover

(Υx)(t) = =ϕ1,x1 (t) + =ϕ2,x1 (t) + =ϕ3,x1 (t) + =Ii ,x1 (t) + =0(t),

where

=0(t) =

∫ t

−∞
T (t, σ(s))ΨF1,η1 (s, x, x1)∆s +

∫ t

−∞
T (t, σ(s))

∫ s

−∞
B(s − u)ΨF2,η2 (s, x, x1)∆u∆s

+

∫ t

−∞
T (t, σ(s))

∫ s

−∞
C(s − u)ΨF3,η3 (s, x, x1)∆W (u)∆s +

∑
ti<t

T (t, ti)[Ii(x(ti))− Ii(x1(ti))]

and ΨFi ,ηi (·, x, x1) = Fi(·, x(·))− Fi(·, x1(·)) + ηi(·, x1(·)) for i = 1, 2, 3.

Similar to the proof of Theorem 2.2 in [25], then Fi(·, x(·)) ∈ DWPAA(T, Lp(H), ρ, q), where ϕi(·, x1(·)) ∈ AA(T, Lp(H))

and Fi(·, x(·))− Fi(·, x1(·)) ∈ PAAρ,q(T, Lp(H)), ηi(·, x1(·)) ∈ PAAρ,q(T, Lp(H)). Combine Lemma 2.3, Lemma 2.4, Lemma 4.1,

Lemma 4.2 and Corollary 4.1, it claims =ϕi ,x1 (·) ∈ AA(T, Lp(H)) and =Ii ,x1 (·) ∈ AA(Lp(H), Lp(H)). By using Theorem 3.2 and

the Corollary 3.1, it yields =0(·) ∈ PAAρ,q(T, Lp(H)). Based on the contraction mapping principle in Banach space, it obtains

that Eq.(1) admits a unique p-mean doubly weighted piecewise pseudo almost automorphic mild solution x∗.

Assume the operator

(Υ1x)(t) := =ϕ1,x1 (t) + =ϕ2,x1 (t) + =ϕ3,x1 (t) + =Ii ,x1 (t),

obviously, (Υ1x)(·) ∈ AA(T, Lp(H)). Similar to the prove of Step 2 in Theorem 4.1, it is not difficult to investigate the operator

Υ1 is a contraction mapping under (17). Furthermore, x∗1 is the unique p-mean piecewise almost automorphic mild solution of

Eq.(18).

Example 4.1. Consider the nonlinear stochastic impulsive equations on time scales

∂ζ(t,x)
∆1t

= ∂2ζ(t,x)

∆2x
2 + F1(t, ζ(t, x)) +

∫ t
−∞ B(t − u)F2(u, ζ(u, x))∆1u

+
∫ t
−∞ C(t − u)F3(u, ζ(u, x)) ∂W (u)

∆1t
, (t, x) ∈ T× [0, π]T, t 6= ti

∆2ζ(ti , x) = d
(

cos i + sin
√

5i
)
ζ(ti , x), i ∈ Z, x ∈ [0, π]T,

ζ(t, 0) = ζ(t, π) = 0, t ∈ T,

(19)

where ti = i + 1
16

∣∣cos(i + 1)− sin
√

3t
∣∣ for i ∈ Z and

Fi(t, ζ) = d(sin 2πt + sin
√

2t) sin ζ +
1

10
e−|t|ζ, i = 1, 2, 3.

Define A = ∂2

∆2r
2 , it is not difficult to deduce that the evolution family {T (t, s)}−∞<s≤t<+∞ satisfies

‖T (t, s)‖ ≤ eΘ 1
2

(t, s) for t ≥ s.

Let x(t) = ζ(t, ·) and

ρ(t) = q(t) =

t + 1, for t > 0,

e−t
2
, for t ≤ 0,

then Eq.(19) can be formulated in abstract form as Eq.(1) and the assumptions (H1)-(H3), (H̄2) hold, where γ(t) = 1
10
e−|t|,

Φ(h) = h, L = 2d , φ0 = inf
i∈Z

(ti+1 − ti) > 17
20

, µ̄ = 4
3

, K = 1, δ = 1
2

. In addition, let ‖B‖L1(0,+∞) = 0.2 and ‖C‖L2(0,+∞) = 0.1, by

choosing sufficiently small positive constant d , from Theorem 4.1 and Theorem 4.2, it follows (19) admits a unique p-mean

doubly weighted piecewise pseudo almost automorphic mild solution.
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