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Abstract:

The coastal heathlands of North-west Europe are valuable cultural landscapes, created and 

maintained over millennia by a land-use regime involving burning and grazing. These 

heathlands are now critically threatened throughout their range by land-use change and, 

increasingly, climatic changes. The climatic change impacts are complex, as the coastal 

heathland regions are experiencing increased temperature and precipitation, but also 

increased frequency and severity of extreme events, such as drought. Previous studies reveal

that established heathland vegetation, including Calluna, are vulnerable to drought, but also 

that these vulnerabilities vary throughout the range, and with successional stage after fire. 

Recruitment from seed is an important regeneration strategy for Calluna heathland 

vegetation after burning, and our study is the first to assess how the seed germination and 

early seedling growth of Calluna respond to drought. We will do this in a lab germination 

experiment, where we will expose Calluna seeds to five different drought treatments, from -

0.25 MPa to -1.7 MPa, and measure germination, and record germination percentage, 

germination rates, and seedling growth, below-ground allocation, and functional traits 

(Specific Leaf Area, Specific Root Length). To allow assessment of variation in drought 

responses due to geographic origin, successional stage, and the maternal plants’ drought 

exposure, we will conduct this experiment on seeds from 540 Calluna plants sampled from 

across three drought treatments (control, 50%, and 90% coverage), in three successional 

stages after fire (pioneer, building, mature), in two regions (60N, 65N), using a factorial 

design.   

Introduction: 

Human-induced climate change has caused the global temperature to rise 1 C o ver the last 

century a trend that will continue unless drastic reductions in carbon emissions are made 

(IPCC 2019). The rise in global temperature has caused changes in the atmosphere, altering 

weather systems and precipitation patterns, which is resulting in an increase in more 

extreme weather events, such as drought (Mann et al., 2017; Stott, 2016). In oceanic boreal 

regions, such as in Norway, climate change is projected to lead to an overall increase in 

precipitation; but also, due to changes in frequency and distribution of precipitation, an 

increase in the frequency and severity of drought events (Skaland et al., 2019). 

These extreme weather events are expected to add more ecological stress to already 

vulnerable ecosystems (Gonzalez et al. 2010). Until about a decade ago, the most commonly 

observed response to global warming in the Arctic was increased shrub growth, known as 

‘arctic greening’ (IPCC 2014). In recent years, however, a new phenomenon, known as ‘arctic
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browning’, is becoming increasingly prevalent through the arctic and boreal zones globally 

(Phoenix and Bjerke 2016; Treharne et al. 2019; Bjerke et al. 2017; Wang and Friedl 2019). 

This refers to wide-spread die-back of evergreen dwarf-shrub heath vegetation, and while 

the underlying causality is not fully resolved, the phenomenon has emerged as the 

frequency of extreme weather events has increased (Phoenix and Bjerke 2016). The arctic 

browning has thus been linked to increased environmental stress  due to episodes of  low  

precipitation during winter months, reducing snow coverage, exposing the evergreen 

vegetation to frost and drought (Bjerke et al. 2014; Bjerke et al. 2017). Such drought-driven 

winter browning has also been observed at subarctic latitudes, especially in the 

anthropogenic coastal heathlands (Phoenix and Bjerke 2016). 

Coastal heathlands dominated by evergreen dwarf-shrubs are a characteristic and valuable 

cultural landscape found throughout the oceanic regions of Europe, with a history dating 

back more than 5000 years (Kaland, P.E. 1986; Birks et al. 1988; European Commision 2008; 

IPBES 2018). Coastal heathlands are currently red-listed throughout their range due to 

abandonment of traditional low-intensity land-use (Lindgaard & Henriksen 2011; Hovstad et 

al. 2018; IPBES 2018; Wilson et al. 2019)  and are now further threatened by climate change.

Several studies have aimed to quantify ecosystem responses to drought in coastal 

heathlands (Britton et al. 2001; Haugum et al. 2021; Log et al. 2017), and these studies 

demonstrate that browning leds to a reduction in primary production and reproduction, 

more generally, of the evergreen dwarf-shrub Calluna vulgaris (L.) Hull (hereafter referred to

as Calluna) (Phoenix and Bjerke 2016). In a traditionally managed coastal heathland system, 

prescribed burning is used to create a fine-scale mosaic pattern of heathlands in different 

successional stages after fire, pioneer, building and mature (de Hullu and Gimingham 1984; 

Kaland 1986). This successional mosaic pattern improves year-round pasture quality and 

access for livestock (mostly sheep, but also goats, horses, cattle), while also increasing 

biodiversity (Velle et al. 2014). Recent research suggests that heathland management may 

also lower the risk of large-scale drought damage (Haugum et al. 2021), due to major 

differences in physiology between age classes of the keystone species Calluna. Specifically, 

mature Calluna is more negatively affected by drought (Haugum et al. 2021), and large area 

abondement are leaving heathlands more vulnerable to drought damage and thus large-

scale browning. 
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Calluna revegetate after fire both vegetatively and by seed germination (Mallik and 

Gimingham 1985; Mallik, Hobbs, and Legg 1984). It has been found that mature Calluna 

plants, in the mature successional stage and beyond, has a lower probability of producing of 

root sprouts after fire (Berdowski and Siepel 1988; Meyer-Grünefeldt et al. 2015; Miller and 

Miles 1970; Hobbs and Gimingham 1984). While all successional stages have abundant seed 

production (Mallik, Hobbs, and Legg 1984), these results suggest that mature Calluna are 

more reliant on seed germination for recruitment, whereas Calluna in the pioneer and 

building stages use root sprouting as their main form for regeneration. With the increase in 

drought events, there has also been observed differences in drought responses between 

successional stages. Both very young (Meyer-Grünefeldt et al. 2015; Meyer-Grünefeldt et al. 

2016) and mature (Haugum et al. 2021) Calluna plants have been shown to exhibit a 

relatively low resistance to drought compared to building-stage plants. Yet there is no 

research on how this reduced plant fitness under drought may affect the plant’s investment 

in seeds. The research outlined above suggests contradicting predictions. On one hand, the 

mature plants’ higher dependence on seeds could predict a higher investment in seeds and 

seed quality with plant age. On the other hand, the mature plants’ lower resistance to 

drought could be hypothesised to lead to reduced seed quality in drought-impacted plants. 

Henceforth it could be hypothesized that mature successional stages might have crossed a 

threshold, now yielding less viable seeds.

Calluna is a wide-spread species that exhibits local adaptations to both climate and 

traditional land-use management (Vandvik et al. 2014, Spindelböck 2013), and different lines

of evidence indicate possible geographic variation in drought responses. First, populations of

Calluna throughout the southern European heathlands do respond differently to drought 

(Ibe et al. 2020; Meyer-Grünefeldt et al. 2016). More southern populations exhibit a greater 

tolerance to drought, while Atlantic populations are more sensitive (Ibe et al. 2020). This 

tells us there is variation among populations of Calluna in drought responses in the southern 

part of the european gradient, but whether there are differences in responses between 

atlantic and the edge of the northern end of the Calluna gradient is unstudied. Second, there

is broad-scale geographic patterns in the phylogenetic structure of  Calluna, with Northern 

and Southern populations in Norway being of different descent (Durka et al., unpublished). 

Third, populations along the south-north climatic gradient in Norway have been shown to 
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differ in regeneration modes and responses, with northern Calluna populations having 

higher seed germination temperature requirements , and lacking vegetative resprouting, 

compared to southern populations which have lower germination temperature 

requirements and use both seeds and root sprouting for regeneration (Spindelböck et al. 

2013, Nilsen et al. 2005). The lack of vegetative resprouting in the northern populations 

might indicate a higher investment in seeds compared to the southern populations, as seeds 

are the only mode of recruitment here. At the same time, the southern populations are 

adapted to a warmer climate which historically has exposed them to more frequent drought 

(Meteorologisk Institutt 2021). These lines of evidence might infer differences in seed 

germination responses to drought between Northern and Southern populations, again with 

potentially contrasting predictions resulting from the northern populations’ higher 

dependence on seeds for recruitment, and the southern populations’ adaptations to a 

warmer climate.

Drought might induce a plastic response in the parental generation during seed formation, 

that could influence the seed’s germination success (Mayer and Poljakoff-Mayber 1982; 

Donohue and Schmitt 1998), and with increasing drought, such responses could be expected 

for Calluna. During drought plants tend to produce larger seeds as a stress response, which 

is positively correlated with seedling survival during drought (Vera 1997; Lloret et al. 1999; 

Gianoli and González-Teuber 2005). Seed mass is also positively correlated with a higher 

root:shoot ratio (Lloret et al., 1999; Gianoli and González-Teuber 2005), which is beneficial 

during drought (Karcher et al. 2008; Xu et al. 2015). Calluna is more sensitive to drought 

during their seedling stage because of their high shoot:root ratio compared to building and 

mature stands of Calluna (Meyer-Grünefeldt et al. 2015). If Calluna has the ability to show a 

plastic response to drought, differences in seed size and seedling drought responses could 

differ depending on the parental drought exposure.

Based on the literature outlined above, we can make a series of partially contrasting 

predictions about the responses and tolerances of Calluna seed recruitment to drought, and 

how these might vary among  populations, successional stages, and drought treatments. 

First, we predict that northern populations will generally invest more in seeds, as an 

adaptation to the lack of vegetative regeneration, increasing seed mass which will result in a 

higher germination percentage during drought. However, local adaptations to climate would 
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predict a wider germination niche and more drought tolerant seedling traits for the Southern

population, as it has historically been more exposed to periods of drought. Similarly, mature 

plants could be expected to invest more in seed production, yet we could predict lower seed

mass, lower germination percentage, narrower germination niche and less drought-tolerant 

seedling traits in seeds from older successional stages under drought, because of the lower 

resistance to drought damage, leaving older plants with less resources for reproduction. 

Finally, if Calluna has a plastic adaptive response to drought in the parental generation, this 

could be expressed through greater seed mass, which will result in a higher germination 

percentage, wider germination niche, and more drought tolerant seedling traits in seeds 

produced by drought-impacted plants. Specifically, across all comparisons, we expect higher 

root:shoot ratio as a response to increased drought. We also expect there to be a decrease 

in specific leaf area (SLA) and increase in specific root length (SRL) with increased drought, as

this has been proven to be common responses to low water availability (Liu and Stützel 

2004; Metcalfe et al. 2008). In addition, we predict that an increased seed mass will increase 

germination percentage, germination niche, seedling size, and the plasticity in the root:shoot

ratio.

In this study we will investigate the drought responses of Calluna seed germination and 

seedling traits, and test the predictions outlined above about variation in drought responses,

by comparing the responses in seeds originating from northern and southern populations, 

pioneer, building and mature successional stages, and parental ambient vs experimental 

drought climatic conditions. Using a germination experiment in the laboratory, we are asking

the following three questions:

1. Does population, successional stage, and the parental generation’s exposure to  

drought affect Calluna seed germination?

2. Do these factors operate through variation in seed mass, and does seed mass infer 

greater germination success and drought tolerance?

3. Are population, successional stage, and parental generation’s exposure to drought 

effects evident after germination, in seedling traits?

To answer these questions we will be using seeds collected from a drought experiment 

where coastal Calluna heathlands are subjected to ambient conditions and drought 
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treatment by rainout shelters covering 50 and 90 % of the plots. The experiment is 

replicated across two regions in Norway (ca. 60N and 65N), reflecting different climates and 

also different genetic origins (Durka et al., unpublished), and across three successional 

stages after prescribed fire; pioneer, building and mature. The seeds will be germinated 

under a five-level drought gradient (including ambient conditions) in a growth chamber, 

where seed germination timing and percentage, and specific leaf area (SLA), specific root 

length (SRL), and above ground and below ground biomass will be measured on the 

seedlings. 

Methods

Study species (Calluna vulgaris (L.) Hull):

Calluna is a monotypic genus distributed across all of Europe from Scandinavia to Spain and 

from the Ural Mountains to the Azores (Tutin et al. 1973). It is an evergreen dwarf-shrub 

standing at 10-50 cm tall, but can reach up to 1m in standing height (Lid and Lid 2017). Its 

flowering season is from July to September and it has a lot of small purple coloured flowers 

(Clapham et al. 1981). Its small seed size allows seeds to be transported by wind (Beijerinck 

1940), with a maximum diameter of 0,58mm (SE=0,016mm) (Bullock and Clarke 2000). The 

reproduction in Calluna is a combination of vegetative resprouting and seedling recruitment 

from soil seed storage, with both germination and resprouting strategies varying with 

successional age (Berdowski and Siepel 1988; Miller and Miles 1970) and throughout the 

species’ range (Nilsen 2005; Vandvik et al. 2014; Spindelböck 2013). 

 

Site description:

The study was conducted in two bioclimatic regions, with three heathland successional 

stages in each. The northern sites are Buøya representing the pioneer stages, Haverøya the 

building stages and Skotsvær the mature stages (Table 1). In the southern region all three 

stages and hence sites are found on the same island, Lygra (Table 1). All six sites are 

extensively grazed by old norse sheep or spælsau (Haugum 2020). All sites have an oceanic 

climate with vegetation dominated by heather, especially Calluna, and a land use history 
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with fire and grazing. Most sites are nutrient poor wet to dry heath, heathlands, except for 

Buøya which is a slightly nutrient rich heathland (Halvorsen et al. 2016).

Table 1: Ecological and climatic site information. Mean annual precipitation (MAP), mean 

summer temperature (MST) (June-August) and mean winter temperature (MWT) 

(December-February) is based on data from 1990 to 2019 (Haugum et al. 2020)  

Site name Successional 
stage

MAP (mm) MST (℃) MWT 

(℃)

Latitude 
(Decimal 
degrees)

Longitude 
(Decimal 
degrees)

Burn 
year

Store 
Buøya

Pioneer 1254 ± 184 13.4 ± 1.3 0.7±1.6 65.83677 12.224506 2014

Haverøya Building 1720 ± 461 13.3 ± 1.4 1.5 ± 1.9 64.779 11.2193 2010

Skotsvær Mature 1254 ± 184 13.4 ± 1.3 0.7 ± 1.6 65.79602 12.22450 Before
1980

Lygra Pioneer 2020 ± 345 13.8 ± 1.5 3.4 ± 1.8 60.70084 5.092566 2013

Lygra Building 2020 ± 345 13.8 ± 1.5 3.4 ± 1.8 60.70084 5.092566 2004

Lygra Mature 2020 ± 345 13.8 ± 1.5 3.4 ± 1.8 60.70084 5.092566 1996

 ### Figure 1 ###

   

Field drought experiment

In the summer of 2016, three blocks of 70-200m2 were set out in homogenous vegetation in 

each of the six sites. In each block we installed three 2x2 meter plots, selected to be 

dominated by  Calluna while avoiding larger rocks, bare ground, and animal tracks. To avoid 

grazing in the experimental plots, each plot was fenced in spring 2017, except for Haverøya 

which was fenced in spring 2018. Each plot was randomly assigned a treatment, and had 

rain-out shelters installed following the Drought-Net protocol (Yahdjian & Sala 2002), with 

three replicates of each drought level: control, 50% and 90% roof coverage. The obtained 
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reductions in rainfall were 32.1 ± 10.3% for 50% coverage and 43.5 ± 20.3% for the 90% 

coverage (Haugum et al. 2020).

 

Collecting seeds in the field:

In each plot, 10 individuals of Calluna were tagged with a unique identifier and measured for

functional traits annually from 2016 - 2019 (Haugum et al. 2021). The marked Calluna were 

selected to represent the full range of plant sizes within each plot. For each individual, trait 

measurements involved: standing height (mm), three measures of side shoots length (mm) 

and three replicates of stem diameter (mm) (Haugum et al. 2021). From each of these 

individuals we collected at least 50 seeds. Due to death, grazing disturbance before fences 

were up, or a lost tag, extra individuals within the plot were collected as necessary to ensure

ten plants were sampled from each plot. All seed collection was undertaken between 

30.09.2019 and 30.10.2019, which is at the end of the flowering season of Calluna in Norway

(Bele and Norderhaug 2008). The seeds are dry stored in coffee filters in the lab. 

Seed Germination Experiment:

The seeds collected above will be used in a germination experiment to assess germination 

responses to drought in Calluna. Drought conditions will be established using agar infused 

with a polyethylene glycol (PEG, molecular weight 8000; 191 Sigma, St Lois, MO, USA) 

solution, with five levels of drought, including control, reaching from -0.25 to -1.7MPa 

(referred to as levels 1-5 with increasing level of drought). The 50 seeds per Individuals will 

be distributed into five petri dishes with ten seeds in each. For individuals with less than 50 

seeds, allocation will be prioritised in the following order: extreme drought treatment (level 

5,  -1.7MPa), control (level 1,  0.25MP) followed by levels 3, 2, and 4. .

 

Preparation of petri dishes:

10

19

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

20



The preparation of the dishes will follow the protocol based on Weele et al. (2000), with 

some alterations, following Gya et al. (2020).

1% agar will be autoclaved to avoid fungal or bacterial growth during germination, then 20 

mL of 1% agar will be added to the 90 mm petri dishes will have  To create the drought 

gradient, polyethylene glycol (PEG, molecular weight 8000; 191 Sigma, St Lois, MO, USA ) will

be added, after the agar is solidified to avoid polymerization of the agar. PEG will be 

dissolved in distilled water to reach the target water potentials (Table 2) with 30 mL of PEG 

solution added to the 20 mL agar dishes. The dishes will be covered by parafilm and set to 

equilibrate for 4 days. Before adding any seeds, any remaining liquid solution in the petri 

dishes will be carefully removed. 

 Table 2: Treatment level and final water potential. 

Treatment (level) Final water potential for 

petri dishes (MPa)

Grams of solid PEG added 

per litre media for overlay 

solution

Control (1) -1.25 0

Wet (2) -0.5 250

Middle value (3) -0.7 400

Drought (4) -1.2 550

Extreme Drought (5) -1.7 700

Starting the germination experiment:

After preparing the petri dishes, ten seeds from each individual (see above for treatment 

priorities for individuals with less than 50 seeds available) will be added to each of the five 

levels of water potential. Seeds will be placed apart from each other on the agar surface 
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using a tweezer and gloves to avoid any contamination. Afterwards petri dishes will be 

covered with parafilm to avoid drying, and  placed in a growth chamber (Sanyo Incubator 

MIR-553) at 18 degrees Celsius, which is the optimal germination temperature for Calluna 

(Grimstad 1985), with the light cycle set at 8 hours with light and 16 hours darkness as it is 

the optimal germination conditions for Calluna seeds from our regions (Måren et al. 2009).

The seeds will be monitored once a week until day 20 after onset of the eksperiment, twice a

week as germination rate is expected to increase from this time onwards (Vandvik et al. 

2014). Monitoring frequency will return to once a week when the cumulative germination 

curves start flattening.

 

Trait measurements:

The seeds from each individual (10-50 seeds) will be weighed collectively because of the low 

seed mass of Calluna, and the mean seed mass per  individual will be calculated by dividing 

the bulked weight by the number of seeds. The seed weight is air dried mass and not oven 

dried as the seeds are to be used in the germination trial. 

Germination traits for analyses will include germination percentage, which will be 

germinated seeds as a percentage of viable seeds in a dish, T50 (time to 50% germination), 

and germination duration (number of days it takes to reach final germination percentage). 

To test for viability, all seeds that do not germinate in the non-drought treatment will be 

tested using an embryo integrity (squish) test and/or the cut test. We assume that the 

proportion of non-viable seeds from the non-drought treatment will be the same for the rest

of the parental individuals’ petri dishes as it is randomly assigned seeds from the same 

parental plant.

To measure seedling growth and allocation, a subsampling will be done with one seedling for

each petri dish measured for the following traits: SLA – Specific Leaf Area;  SRL – Specific 

Root Length; total biomass; and allocation to below-ground. 

The chosen individuals will be harvested 1 week after recorded emergence, and separated 

into above ground and below ground sections at the point where the individual emerges 
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from is going into the agar. The above-ground parts will be divided into leaves and stems, 

and all parts will then be scanned. After scanning all seedling parts will be placed in coffee 

filters tagged with the seedling ID in a drying oven at 60 degrees for 48 hours (Díaz et al. 

2016). After drying the above and belowground biomass will be weighed. SLA is found using 

the scanned area of the upside of the leaf divided by its dry mass and SRL is found using the 

length of the root divided by the dry mass (Díaz et al. 2016). To calculate the total leaf/above

ground area, the “LeafArea” package in R will be used (Katabuchi 2019). The below-ground 

allocation (BG) will be calculated as the ratio between below-ground  and total biomass. 

Statistical analysis:

To investigate the drought effect on germination of Calluna we will use linear-mixed effect 

models performed in R (R Core Team 2019) using the lme4 package (Bates et al. 2020) and 

lmerTest (Kuznetsova et al. 2020). A binomial distribution will be assumed for the 

germination percentage, which will be analysed using a logit link function. A Poisson 

distribution will be assumed for count data, including days to germination, T50 and time to 

max germination where we will use  a log link function. Traits (SLA, SRL, seed mass, biomass 

and root:shoot) will likely be normally distributed, either with or without a log 

transformation. Here we will assume a Gaussian distribution.    

To test how population, successional stage, parental drought treatment relate to 

germination success under different drought conditions we will fit linear mixed effect 

models. For each response variable, seed mass, germination percentage, T50 (time to 50% 

germinated), maximum germination, SLA, SRL, above and below ground biomass and 

root:shoot, we will construct one global model to evaluate the treatment effects. In these 

models, the fixed effects will include field drought treatment, population, successional stage 

and lab drought treatment, and all interactions. Petri dish, blocks and sites and random 

effects in the models. The specific predictions below will then be tested by inspecting 

specific effects or interactions in the full model (e.g., P1 predicts a significant population 

effect for germination percentage, whereas P2 predicts a significant population*lab drought 

interaction). We will use post-hoc tests to further explore significant interactions between 

predictor variables, according to the specific predictions below. 
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Questions and their predictions will be investigated as follows:

1. Does population, successional stage and the parental generation’s exposure to  

drought affect the germination strategy?

For question one we specifically predict: P1) The Northern population will have a higher 

germination percentage. P2) The Southern population will have a broader germination 

niche.  P3) Mature successional stages will have a lower germination percentage and smaller

germination niche when interacting with field drought treatment and lab drought treatment.

P4) Drought exposed parental generation will have an increased germination percentage and

germination niche. To test the effect of the lab drought treatment on germination 

percentage and niche for population, successional stage, and drought exposed parents, we 

will model the linear effect of the lab drought treatment interacting with population, 

successional stage, and field drought treatment on a given germination metric (germination 

percentage, T50 (time to 50% germinated), maximal germination). 

2. Do these factors affect seed mass, and does larger seed mass affect germination 

success and root:shoot ratio?

For question two we predict: P5) The Northern population will have a higher seed mass. P6) 

The mature successional stage will have lower seed mass. P7) Drought exposed parental 

generation will have greater seed mass. P8) A larger seed mass across all factors will increase

germination percentage and increase root:shoot ratio. For P8 we will add seed mass as a 

predictor variable for germination percentage and root:shoot ratio.

3. Are population, successional stage and parental generation’s exposure to drought 

effects evident after germination, in seedling traits?

For the last question: P9) The Southern population will have a higher root:shoot ratio, lower 

SLA and higher SRL in response to drought. P10) Mature successional stages will have lower 

root:shoot ratio, higher SLA and lower SRL. P11) Drought exposed parental generation will 
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have a higher root:shoot ratio, lower SLA and higher SRL. P12) Across all factors there will be

an increase in root:shoot and SRL, and decrease in SLA, as a response to drought.

Data availability 

Data will be available at the Open Science Framework, and the script for data management 

and analysis will be made available at GitHub. 
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