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Abstract
The Fuzzy C-Means (FCM) algorithm is widely used in data mining and machine learning. However, the
sensitivity of FCM to the initial value and noise inevitably leads to the decline of the clustering effect. In
this paper, a new improved fuzzy clustering algorithm is proposed— Robust denoising FCM clustering via
L2,1 NMF and local constraint (RFCM-L2,1NMF). Firstly, RFCM-L2,1NMF combines the L2,1NMF that
has noise residual estimation with FCM, using the robustness and noise constraint terms of the L2,1NMF
to attenuate the effect of noise on data clustering. Secondly, RFCM-L2,1NMF uses the low-dimensional
representation of L2,1NMF as the initial value of FCM, which reduces the defects of FCM caused by the
initial value to a certain extent, and makes the clustering effect more stable. Furthermore, since the low-
dimensional representation of L2,1NMF is the hub connecting L2,1NMF and FCM, to obtain a more accurate
low-dimensional representation, we construct a new local constraint term in this paper. Finally, experiments
on data sets validate that RFCM-L2,1NMF is superior compared to other state-of-the-art methods.

K E Y W O R D S

fuzzy C-means, L2,1 Nonnegative matrix factorization, noise residual, local constraint

1 FIRST LEVEL HEAD

Data clustering is one of the basic topics in machine learning. Its purpose is to divide data samples into different clusters
according to a certain criterion, so that the data samples of the same cluster have high similarity, and the data of different clusters
difference is as large as possible. Cluster analysis is also widely used in data mining1, pattern recognition2, image processing3

and many other fields.
The fuzzy clustering algorithm4 is a classical partition-based clustering algorithm. Fuzzy clustering algorithm introduces

the concept of fuzzy, to establish the uncertainty description of the sample to the category, and expand the value range of the
membership degree. At the same time, fuzzy clustering algorithm uses the degree of membership to determine that each sample
point belongs to a certain cluster, so that it has a better clustering effect and data expression ability, can more objectively reflect
the objective world, and make the classification more realistic, so fuzzy clustering has become a research hotspot of cluster
analysis. Fuzzy clustering algorithms mainly include transitive closure methods based on fuzzy equivalence5, methods based
on similarity relations and fuzzy relations6, and maximum tree methods based on fuzzy graph theory7 etc. But these methods
have been gradually reduced in practical applications and research due to their high computational complexity. Because of good
robustness and flexibility, the most widely used in practical applications is the fuzzy clustering algorithm based on the objective
function4, that is, the fuzzy C-means clustering algorithm (FCM).

However, the traditional FCM algorithm still has some defects, such as being very sensitive to the initial value and noise,
slow convergence speed and a large amount of calculation. To solve these problems, experts and scholars have proposed some
variant FCM algorithms. Hathaway and Hu8 designed a density-weighted fuzzy C-means clustering (DWFCM) to improve
convergence speed by simplifying a larger data set into a smaller weighted data set. Hung et al.9 refined the initial value of the
FCM algorithm and proposed a psFCM algorithm. Based on the FCM method, Gao et al.10 combined with relative entropy,

Abbreviations: FCM, Fuzzy C-Means; NMF, Nonnegative matrix factorization; RFCM, Robust denoising FCM.
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and proposed a new method to intelligently consider noise-adaptive FCM and its extended version (adaptive-REFCM). Liu11

proposed a new FCM clustering algorithm based on local density. At the same time, some improved FCM algorithms were
designed to process large-scale clustering problems. The gradient-based fuzzy C-means (GBFCM)12 used the gradient decrease
to improve convergence speed and stability. Given that the high dimensionality of features may lead to a high-complexity
and low-stability clustering performance, Havens et al.13 presented LFCM and rseFCM algorithms for very large data, which
reduce the complexity of clustering through nonlinear clustering with kernel techniques and relaxing convergence conditions.
In addition, Li et al.14 proposed a fuzzy C-means clustering algorithm with different attributes, and obtained a new parameter
selection rule. Krinidis et al.15 used local spatial information and gray information in a new fuzzy way. Fuzzy local information
C-means algorithm (FLICM) was proposed by fusion together. Recently, based on the triangle inequality, Zhou et al.16 proposed
a new membership fuzzy C-means clustering algorithm (MSFCM). Wang et al.17 proposed a new Residual-driven FCM with
weighted L2-norm fidelity (WRFCM) algorithm, which is based on residual estimation and obtains a weighted L2-norm fidelity
term by weighting the mixed noise distribution, thereby reducing the impact of noise on clustering. In the era of information
technology, the explosion of information has made the structure of data more complex. However, the existing FCM clustering
algorithm lacks a direct connection with the structural characteristics of the data set, so its effectiveness in processing clustering
problems is far from satisfactory.

Lee et al.18 proposed non-negative matrix factorization in 1999, whose purpose is to obtain two low-rank non-negative factor
matrices and make their product close to the original data matrix. Non-negative matrix factorization (NMF) is widely used due
to its well-interpreted and clear physical meaning19,20. Many representative variants and extensions of NMF have subsequently
been proposed to solve different problems. For example, since many data contain noise and outliers, Kong et al.21 proposed
a robust formulation of NMF using L2,1 norm loss function(L2,1 NMF), and derive a computational algorithm with rigorous
convergence analysis. Hoyer et al.22 proposed non-negative sparse coding (NNSC), this method directly used the l1-norm on the
coding matrix to enhance the sparsity of the decomposition results. Cai et al.23 proposed the graph regular non-negative matrix
factorization (GNMF), which used the graph Laplace matrix to preserve the geometric structure of the data and significantly
improved the effect of clustering. Recently, Ye et al.24 proposed ensemble clustering based on non-negative matrix factorization
without using prior information. Tong et al.25 proposed non-negative matrix factorization with local constraints to improve
action recognition accuracy. In addition, in26, Tao et al. presented image clustering methods based on non-negative matrix
factorization and fuzzy C-means, etc.

Inspired by the above work, we propose a new algorithm in this paper, Robust denoising FCM clustering via L2,1 Nonnegative
matrix factorization (RFCM-L2,1NMF). RFCM-L2,1NMF absorbs the advantages of both L2,1NMF and FCM. Specifically, our
algorithm uses fuzzy clustering in a low-dimensional subspace of the original data, which avoids the FCM being affected to
some extent by the initial value. At the same time, to strengthen the connection with the structural features of the data set, we
construct a new local constraint term to make the low-dimensional representation more accurate. In addition, a control noise
term is added to the new objective function to reduce the effect of noise on clustering.

The rest of the paper is structured as follows. Section 2 introduces the related work of FCM and L2,1NMF. In Section 3,
RFCM-L2,1NMF are proposed. In Section 4, some comparative experiments are done to verify the effectiveness of the proposed
algorithm. The conclusion is given in the last section.

2 RELATED WORKS

2.1 NMF

Given a non-negative data matrix X = [x1, x2, · · · , xn] ∈ Rp×n, and xi ∈ Rp is the i–th column of X, which represents a data point.
The standard NMF decomposes X as a product of the basis matrix W ∈ Rp×c and the coefficient matrix H ∈ Rc×n, where H is
the representation of the original data in a low-dimensional space, c is the reduced dimension. NMF is widely used in machine
learning fields and data mining. Since it uses Euclidean distance, i.e. the error of each data point is squared into the objective
function, which makes it prone to outliers. Kong et al.21 proposed a robust formulation of NMF using l2,1 norm loss function.

min
W,H

∥X – WH∥2,1,

s.t. W ≥ 0, H ≥ 0
(1)

where ∥ · ∥F represents the Frobenius norm.
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From the literature21, the iterative update formula of (1) can be obtained as follows:

Wij ← Wij
(XDHT )ij

(WHDHT )ij
, (2)

Hij ← Hij
(WTXD)ij

(WTWHD)ij
. (3)

where D is a diagonal matrix with the diagonal elements given by

Dii = 1/

√√√√ p∑
j=1

(X – WH)2
ji =

1
∥xi – Whi∥

. (4)

.

2.2 FCM

FCM clustering partition X into c clusters with the cluster centers V = [v1, v2, · · · , vc] ∈ Rp×c and the membership degree matrix
U =

[
uij
]
∈ Rc×n. For a given fuzziness weighting exponent m > 1, V and U are solved iteratively according to the following

optimization problem
FCM clustering partition X into c clusters with the cluster centers V = [v1, v2, · · · , vc] ∈ Rp×c and the membership degree

matrix U =
[
uij
]
∈ Rc×n. For a given fuzziness weighting exponent m > 1, V and U are solved iteratively according to the

following optimization problem

min
U,V

Jm =
c∑

i=1

n∑
k=1

um
ik ∥xk – vi∥2

s.t.
c∑

i=1

uik = 1,

(5)

where v.j represents the j–th column row of V , ui. represents the i–th row of U.
The FCM scheme usually initializes U as U(0) and updates V and U alternatively by

vi =

∑n
j=1

(
uij
)m

xj∑n
j=1

(
uij
)m ,

uij =

[
c∑

k=1

(
∥xj – vi∥
∥xj – vk∥

) 2
m–1
]–1

.

until convergence in achieved.
In the process of clustering, noise is a problem that cannot be ignored. If the noise distribution can be made closer to the

Gaussian distribution, the noise can be characterized using the l2 norm, which means that the noise can be estimated more
accurately. In21, it is proposed to assign an appropriate weight to each noise element, which forms a weighted residual that
almost obeys a Gaussian distribution. As follows,

∥Wl ⊙ Rl∥2
2 =

k∑
j=1

∣∣wjlrjl
∣∣2. (6)

where ⊙ performs element-by-element multiplication, each element wjl is assigned to a location (j, l), and wjl = e–ξr2
jl , where ξ is

a positive parameter, which aims to control the decreasing rate of wjl.
Moreover, Zhou et al.16 introduced the triangle inequality in clustering based on FCM and gave a new geometric explanation,

and proposed a new membership scaling scheme. The basic idea of Zhou is to use the triangle inequality to filter out those
samples whose nearest cluster centers do not change in the next iteration. By using a new scaling scheme, the effect of the
in-cluster samples is enhanced, and the relationship of samples out-of-cluster is weakened.
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2.3 Entropy-like divergence kernel function

To solve the drawbacks of Euclidean distance in dealing with noise, and inspired by information divergence and S-divergence,
Wu et al.27 constructed an entropy-like divergence kernel by combining the Jensen-Shannon/Bregman divergence with a convex
function φ(x) = –x ln x. Setting de(x, y) = x ln x+y ln y

2 – x+y
2 ln( x+y

2 ) and entropy-like divergence kernel is defined as follows:

Ke(x, y) = e– de (x,y)
2δ2 , (7)

where δ is the scale parameter of entropy-like divergence kernel.
Compared with Euclidean distance, entropy-like divergence can suppress noise better. For square Euclidean distance,

minimizing
n∑

j=1
∥xj – z∥2 for z, a sample mean is obtained as follows.

z =

 n∑
j=1

xj

 /n, (8)

For entropy-like divergence, minimization
n∑

j=1
( xj ln xj+z ln z

2 – xj+z
2 ln( xj+z

2 )) for z and the sample mean is obtained as follows.

z = exp
(

1
n
· ln(

xj + z
2

)
)

. (9)

The artificial data set {31.1, 31.6, 31.9, 32, 32.2, 32.4, 32.5, 32.8, 33.5, 34} is given and used to test the robustness of entropy-like
divergence. By solving Eq. (8) and Eq. (9), the estimated value of z is 32.4. Set the noise point to 17. In this case, Eq. (8) can
obtain its estimate as z = 31, and Eq. (9) can obtain its estimate as z = 31.1002, which means that they are both corrupted by
noise points. But equation Eq. (8) yields values that are outside the original data range, while Eq. (9) yields values that do not. So
we know that both the squared Euclidean distance and the class entropy divergence are affected by noise points, but compared
with squared Euclidean distance, the center value obtained by entropy-like divergence is closer to the estimated center value of
32.4, which means that entropy-like divergence can better able to suppress noise than Euclidean distance.

3 THE PROPOSED ALGORITHM

3.1 RFCM-L2,1NMF

NMF is essentially a dimensionality reduction tool. Our algorithm retains the advantages of NMF and combines the low-
dimensional representation of NMF with FCM, which weakens the influence of initial values on FCM to a certain extent. At the
same time, to reduce the influence of noise points and outliers on clustering, we add noise sparse terms and local constraints to
the objective function.

3.1.1 Objective function of RFCM-L2,1NMF

Since NMF is a popular and effective dimensionality reduction method, we absorb the advantages of NMF to make up for
the large-scale calculation problem caused by FCM clustering on high-dimensional data sets. To obtain a more accurate
low-dimensional representation, we consider adding the local constraint term to the objective function, namely

c∑
i=1

n∑
j=1

hijkij = tr(HTK), (10)
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where K =
[
kij
]
∈ Rc×n measures the spatial relationship between xj and wi. For further denoising, our K adopts Entropy-like

divergence kernel function from the previous section,as follows,

K = 1 – Re(xj, wi),

Re(x, w) = e– de (x,w)
2δ2 ,

de(x, w) = x ln x+w ln w
2 – x+w

2 ln( x+w
2 ).

(11)

RFCM-L2,1NMF uses NMF for dimensionality reduction, and uses fuzzy clustering on low-dimensional subspaces, which
effectively avoids large-scale calculation problems caused by direct implementation of fuzzy clustering on high-dimensional
data sets. At the same time, to reduce the influence of noise, a noise constraint term is added to the objective function, and the
minimized cost function is as follows:

min
W,H,S,U,V ,K

∥X – WH – S∥2,1

+
c∑

i=1

n∑
j=1

um
ij ∥hj – vi∥2 + α ∥G⊙ S∥2

F

+βtr(HTK),

s.t. 0 ≤ uij ≤ 1,
c∑

i=1

uik = 1, W, H, U, V ≥ 0

(12)

where G = e–ξS, the first term is the L2,1 NMF with noise residual, the second term is the FCM on the low-dimensional subspace
obtained by NMF, the third term is the noise constraint term, and the fourth term is the local constraint term.

3.1.2 Optimization Algorithm

Obviously, optimization problem (12) is non-convex, and solving all variables is NP hard. To solve this problem, a method
similar to one in18. Next, the optimal solution is solved by alternating iterative optimization.

(1) Firstly, fixed W, H, S, K and V , according to FCM, we can get the iterative formula of U as

uij =

 c∑
k=1

(
∥hj – vi∥
∥hj – vk∥

) 2
m–1

–1

(13)

(2) Then, When W, S, K, U and V are fixed, let X̂ = X – S, then (12) can be reduced to

min
H≥0

Jm =
∥∥X̂ – WH

∥∥
2,1 +

n∑
i=1

∥∥(hi1T – V
)
Λ1/2

i

∥∥2
F

+βtr(HTK)

(14)

where 1 is the all 1-column vector of dimension, Λi =


u1i

u2i
. . .

uci

. Let ϕij be the Lagrange multiplier of constraint hij,

and Φ =
[
ϕij
]

; The Lagrangian function corresponding to the above formula is

L =
∥∥X̂ – WH

∥∥
2,1 +

n∑
i=1

∥∥(hi1T – V
)
Λ1/2

i

∥∥2
F

+βtr(HTK) + tr(ΦHT ).

(15)
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Taking the partial derivative of (15) with respect to H is calculated, and then the formula is obtained as follows:

∂L
∂H

= –WT X̂D + WTWHD – V(Um)

+H ⊙ [1 ∗ sum(Um)] + βK + Φ,
(16)

According to the Karush – Kuhn – Tucker (KKT) condition, the complementary slackness condition ϕijhij = 0 and zero gradient
condition ∂L

∂H =0, we get (
–WT X̂D + WTWHD – V(Um)

)
ijhij

+(H ⊙ [1 ∗ sum(Um)] + βK + Φ)ijhij = 0,
(17)

Therefore,update the variables H, which can be given as follows

Hij ← Hij

(
WT X̂D + V (Um)

)
ij(

WTWHD + H ⊙ (1 ∗ sum (Um)) + βK
)

ij

. (18)

where D is a diagonal matrix with the diagonal elements given by

Dii = 1/

√
m∑

j=1
(
∧
X –WH)2

ji = 1∥∥∥∧
x i–Whi

∥∥∥ .

(3) Next, when S, K, U, V and H are fixed, we update the variables W by L2,1NMF.

Wij ← Wij
(X̂DHT )ij

(WHDHT + βQ)ij
. (19)

(4) Similar to16, we also use filtering techniques
Let δi =

∥∥∥v(t+1)
i – v(t)

i

∥∥∥ be displacement of the cluster center v(t)
i (1 ≤ i ≤ c). For any hj, the distances between hj and the current

cluster centers V (t) are l(t)
ij =

∥∥∥hj – v(t)
i

∥∥∥ (1 ≤ i ≤ c) These are rearranged in ascending order and denoted as L(1)
j , L(2)

j , · · · , L(c)
j ,

that is, L(1)
j ≤ L(2)

j ≤ · · · ≤ L(c)
j ,its nearest cluster center v(t)

I∗j

(
I∗j = arg min1≤i≤c

{
l(t)i,j

})
does not change after another update, if

L(2)
j – max

1≤i≤c
δi ≥ L(1)

j + δI∗j (20)

That is, arg min
1≤i≤c

{
l(t+1)
i,j

}
= I∗j holds in this case. In addition, the label HQt =

{
hj | j ∈ Qt

}
is a sample filtered through inequality

(20).
(5) Membership degree scaling scheme

For HQt , the membership degrees to the cluster centers V (t) are the vector u(t)
j =

(
u1,j, · · · , uc,j

)⊤
. If i = I∗j , u(t)

I∗j ,j is increased to

u(t+1)
I∗j ,j in the next iteration, otherwise, the value of u(t)

i,j is decreased. Among them, we scale the value of the degree of membership
similar to the literature16. The update rule of the membership degree is as follows:

u(t+1)
i,j =


Mj, j ∈ Qt, i = I∗j
βju

(t)
i,j , j ∈ Qt, i ̸= I∗j

u(t)
i,j , j /∈ Qt, 1 ≤ i ≤ c,

(21)

where

Mj =

1 + (c – 1)

(
L(1)

j

L(c)
j

) 2
m–1
–1

, βj =
1 – Mj

1 – u(t)
Ij,j

(22)

.
(6) When W, H, S, K and U are fixed, according to FCM, we can get the iterative formula of V as

vi =

∑n
j=1

(
uij
)m

hj∑n
j=1

(
uij
)m . (23)
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(7) Finally,When W, H, K, U and V are fixed,let X̃ = X – WH, then the problem (12) can be reduced to

min
S≥0

Jm =
∥∥X̃ – S

∥∥
2,1 + α ∥G⊙ S∥2

F , (24)

Let ψij be the Lagrange multiplier of constraint sij, and Ψ =
[
ψij
]

; The Lagrangian function corresponding to the above formula is

L =
∥∥X̃ – S

∥∥
2,1 + α ∥G⊙ S∥2

F + tr(ΨS), (25)

Taking the partial derivative of (25) with respect to H is calculated, and then the formula is obtained as follows:

∂L
∂S

= –(X – WH – S)D1 + αN + Ψ, (26)

According to the Karush – Kuhn – Tucker (KKT) condition, the complementary slackness condition ψijsij = 0 and zero gradient
condition ∂L

∂S =0, we get
(–(X – WH – S)D1 + αN)ijsij + ψijsij = 0, (27)

Sij ← Sij
(XD1)ij

((WH + S)D1 + αN)ij
, (28)

where D1 is a diagonal matrix with the diagonal elements given by

D1ii = 1/

√
p∑

j=1
(X̃ – S)2

ji = 1
∥x̃–si∥ .

Algorithm 1 RFCM-L2,1NMF
Input: Dataset X = [x1, x2, · · · , xn], initial membership degree matrix W(0), H(0), U(0), K(0), S(0), cluster number c, fuzzy exponent m, and
convergence threshold ε

Output: Membership degree matrix U and cluster center matrix V;
1: Compute the cluster center V (1) by the initial membership degree matrix U(0) according to 23, Set t := 1 ;
2: Compute U(t) by (13);
3: Compute H(t) by (18);
4: Compute W(t) by (19);
5: Compute K(t) by (11);
6: Compute S(t) by (28);
7: Compute V̄ (t) by (23);

8: Compute δi =
∥∥∥v̄(t)

i – v(t–1)
i

∥∥∥;

9: Filter out the subset HQt according
to (20);

10: Update U(t+1) with the new scheme
according to (21);

11: Update H(t+1) by (18);
12: Update W(t+1) by(19);
13: Compute K(t+1) by (11);
14: Compute S(t+1) by (28);
15: Update V (t+1) by(23);
16: if

∥∥V (t+1) – V (t)
∥∥ ≤ ε then

return U = U(t+1), V = V (t+1)

else
Set t := t + 1, Go to Step 2

end if

4 EXPERIMENT

In this section, we conduct experiments on seven benchmark data sets to evaluate the performance of RFCM-L2,1 NMF . First of
all, to illustrate the effectiveness of the proposed RFCM-L2,1 NMF method in clustering tasks, we make a comparison between
RFCM-L2,1 NMF and four related methods, which are L2,1 NMF21, FCM4, LFCM13, MSFCM16. L2,1 NMF is a robust NMF
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T A B L E 1 Description of these datasets.

Datasets Samples Dimensions Classes

Iris 150 4 3
Wine 178 13 3
satimage 2310 36 6
Yale 165 1024 15
USPS 9298 256 10

†Example for a first table footnote.

clustering algorithm. FCM is a classic fuzzy clustering algorithm. LFCM is an FCM algorithm for big data. MSFCM has a great
correlation with the two algorithms proposed in this article.

4.1 Datasets and Evaluation Measures

In our experiments, five benchmark data sets are used, i.e., satimage, Wine, Iris, USPS and Yale. Yale is a dataset of face images,
the USPS data set is from28, while the other three data sets are from the UCI machine learning repository16. The detailed
information of the benchmark data sets is given in Table 1.

To quantitatively evaluate the clustering results, three widely used evaluation measures are adopted, namely, the overall
F-measure for the entire data set (F∗)29, normalized mutual information (NMI)30 and adjusted Rand index (ARI)31. Note that
large values of F∗, NMI and ARI indicate better clustering results.

Let n be the total number of samples, {C1, C2, · · · , Cc} be the partition of the ground truth, and
{
Ĉ1, Ĉ2, · · · , Ĉĉ

}
be the

partition by an algorithm. Denote that n̂i =
∣∣∣Ĉi

∣∣∣ is the number of samples in Ĉi, nl =
∣∣Cl
∣∣ is the number of samples in Cl, and

nl
i =
∣∣∣Cl ∩ Ĉi

∣∣∣ is the number of the common objects in Cl and Ĉi, where 1 ≤ i ≤ ĉ and 1 ≤ l ≤ c.

Then the measure F(l, i) = 2nl
i

nl+n̂i
is the harmonic mean of the precision and recall of Cl and its potential prediction Ĉi. Therefore,

the overall F-measure F∗ , NMI , and ARI are defined as the following equations:

F∗ =
c∑

l=1

nl

n
max{F(l, i) | i = 1, · · · , ĉ}, (29)

ARI =

ĉ∑
i=1

c∑
l=1

(
nl

i
2

)
– K

1
2

(
ĉ∑

i=1

(
ti
2

)
+

c∑
l=1

(
sl

2

))
– K

, (30)

where K =
ĉ∑

i=1

(
ti
2

)
c∑

l=1

(
sl

2

)
/
(

n
2

)
.

NMI =

ĉ∑
i=1

c∑
l=1

nl
i log

(
n·nl

i
n̂i·nl

)
√(

ĉ∑
i=1

n̂i log
( n̂i

n

))( c∑
l=1

nl log
( nl

n

)) . (31)

4.2 Parameter analysis

In this subsection, for fair comparisons, parameters in related methods are the same as original papers. For all datasets, δ is set as
1. Meanwhile, in RFCM-L2,1NMF, the parameters that affect the experimental result are α, β ,m and ξ, where α is used to control
noise constraint term, β is used to control local constraint term and ξ is a positive parameter used to control the rate of change of
the noise weight. The fuzziness parameter m is a key parameter that can affect the result of the FCM clustering. Bezdek and
Hathaway30 analyzed the convergence of the FCM algorithm and found that the value of m was related to the number of samples
n, and the value of m is recommended to be greater than n

n–2 .
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In order to evaluate the sensitivity of α, β and ξ on the performance of RFCM-L2,1NMF, we tune α, β and ξ in the range
of
{

10–3, 10–2, 10–1, 1, 10, 102}, the parameters m is selected from {1.2, 1.4, 1.6, 1.8, 2, 2.1}. The parameter selection will be
analyzed from the experimental results.

we discuss the selection of the parameters α, β, m and ξ for RFCM-L2,1NMF on data sets, and the experimental results are
shown in Figs. 1-2. For our proposed algorithms, the convergence condition is set empirically to 10–6.

The clustering results determined by parameters α and β are in Fig. 1. It is observed from Fig. 1 that when the values of α
and β are too large or too small, it is not conducive to the clustering effect of RFCM-L2,1NMF. For data sets with less noise
disturbance and simple data structure, such as: for datasets Iris, Wine and Yale, the values of parameters α and β are selected
on the interval

[
10–3, 10–2]. For data sets with more noise and more complex data structure, such as: staimage and USPS , the

values of parameters α and β are selected on the interval [10–1, 1], this is because when the data set contains more noise, the
noise control item will play a greater role, and the corresponding control parameters will also become larger. The clustering
results determined by parameters m and ξ are in Fig. 2, where α and β are set to optimal values. We can observe that the overall
trend is relatively stable in Fig. 2, which means that when α and β are optimal, m and ξ have little influence on the effect of the
experiment, the value ranges of parameters m and ξ are [1.4, 1.8] and

[
10–1, 1

]
respectively.

T A B L E 2 Experimental results on seven data sets for the different algorithms,and the best results are shown in boldface.

Data sets Evaluate criteria FCM LFCM MSFCM L2,1 NMF RFCM-L2,1NMF

Iris

F∗ 0.8852 0.8753 0.8917 0.8389 0.9654
ACC 0.8867 0.7989 0.8933 0.8420 0.9557
NMI 0.7419 0.7513 0.7581 0.6912 0.8642

Wine

F∗ 0.7099 0.6993 0.7149 0.7898 0.9154
ACC 0.6966 0.7089 0.3898 0.8633 0.9257
NMI 0.4213 0.4501 0.4288 0.5823 0.6510

satimage

F∗ 0.5533 0.5533 0.6228 0.3977 0.8324
ACC 0.2917 0.2917 0.3898 0.3923 0.7143
NMI 0.4501 0.4501 0.4912 0.3213 0.6510

yale

F∗ 0.1697 0.1681 0.1784 0.4385 0.4821
ACC 0.1273 0.1247 0.1201 0.4060 0.4903
NMI 0.1279 0.1379 0.1367 0.4449 0.4408

USPS

F∗ 0.3971 0.4043 0.3946 0.1905 0.5903
ACC 0.3585 0.4185 0.3606 0.2064 0.5854
NMI 0.3021 0.2955 0.3095 0.1514 0.4408

4.3 Experimental analysis

As can be seen from Table 2, the experimental results of RFCM-L2,1NMF in the five data sets have good clustering performance.
The mean value of the performance are reported in Table 2 ,of which the best results are highlighted in boldface. From the
experimental results, we have the following findings.

First, the results in the last column indicate that, under the above-mentioned settings, RFCM-L2,1NMF outperforms the other
algorithms on almost all data sets in terms of F∗, ACC, and NMI. Hence, RFCM-L2,1NMF algorithm achieves higher clustering
quality. Second, compared with FCM and MSFCM methods, the RFCM-L2,1NMF algorithm demonstrates better performance
in the F∗, NMI, and ARI measurement. This is because of the L2,1NMF and noise constraint terms in our method, which can
better remove noise in the data sets. Compared with L2,1NMF, our method utilizes local constraints to capture more precise
local geometry, resulting in better clustering results.For example, the accuracy of RFCM-L2,1NMF is 11.3% higher than that of
L2,1NMF on Iris and the NMI of RFCM-L2,1NMF is 15.98% higher. than that of MSFCM on satimage.

5 CONCLUSIONS

Based on L2,1NMF and FCM, Robust denoising FCM clustering via L2,1 NMF and local constraint (RFCM-L2,1NMF) is proposed
in this paper. First, RFCM-L2,1NMF combines L2,1NMF and FCM, and makes up for the shortcomings of FCM by using the
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advantages of column L2,1NMF. Second, fuzzy clustering is used in the low-dimensional subspace of the original data, which
avoids the FCM being affected to some extent by the initial value. At the same time, the L2,1NMF with residual and noise
constraint reduce the interference of noise. In addition, in order to strengthen the connection with the structural features of
the data set, we construct a new local constraint term, in which an entropy-like divergence is used for the replacement of the
commonly used Euclidean distance metric to further reduce the disturbance of noise, making the low-dimensional representation
more efficient accurate.
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