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ABSTRACT

The Africanized honey bee (AHB) is a New World amalgamation of several subspecies of the western

honey bee (Apis mellifera), a diverse taxon grouped into four major biogeographic lineages: A (African),

M (western European),  C (eastern European),  and O (Middle Eastern).  In 1956,  accidental  release of

experimentally bred “Africanized” hybrids from a research apiary in Sao Paulo, Brazil initiated a hybrid

species expansion that now extends from northern Argentina to northern California (U.S.A.). Here, we

assess nuclear admixture and mitochondrial ancestry in 15 bees from each of four regions across this

expansive range: the Isthmus of Panamá; Guanacaste, Costa Rica, Tapachula, Mexico; and San Diego,

U.S.A to assess ancestry of AHB several decades following initial introduction and test the prediction that

African ancestry decreases with increasing latitude. We find that AHB nuclear genomes from Central

America and Mexico have majority African ancestry (Mexico, 79%; Costa Rica 90%; and Panamá 94%)

with varying contributions from western and eastern European lineages. AHB from San Diego (CA) show

markedly lower African ancestry (40%) with substantial genomic contributions from all four major honey

bee lineages. The mitochondria of all bees sampled in Costa Rica and Panamá originated in Africa. The

majority (11) of bees sampled in Mexico carried African mitochondria with the remainder carrying eastern

European mitochondria. In the San Diego population, mitochondria from all four lineages are present.

Genetic diversity measures from all New World populations are similar and exceed those of ancestral

forms. The unique genetic makeup of the San Diego honey bee population makes it  a rich source of

genetic material for honey bee breeding.

Keywords

Africanized honey bees, Apis mellifera, admixture, genetic diversity, hybridization
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INTRODUCTION

Hybridization,  the interbreeding of distinct  genetic  lineages,  has  long complicated  taxonomic

boundaries and challenged the perception of species as discrete taxonomic and evolutionary units.

Many early evolutionary biologists considered hybridization an infrequent and abnormal event of

limited evolutionary importance, resulting from the breakdown of natural isolating mechanisms

(Dobzhansky,  1936;  Mayr,  1942;  reviewed  in  Barton,  2001).  This  was  an  attitude  largely

espoused  by  animal  researchers  while  plant  biologists,  conscious  of  the  high  frequency  of

hybridization leading to viable offspring in plants, viewed introgression as a creator of genetic

novelty upon which selection could act (Stebbins, 1950; Grant, 1981; Suarez-Gonzalez, Lexer, &

Cronk, 2018). 

Advances in sequencing technology and ancestry estimation have facilitated the identification of

introgression, exposing heretofore undiscovered hybridization with unexpected high frequency.

The  recombination  of  distinct  genetic  lineages  generates  novel  mosaic  genomes  on  which

selection can act (Anderson & Stebbins, 1954; Hedrick, 2013). At times, advanced generation

admixture can be detrimental, resulting in hybrid breakdown with fitness loss due to nuclear-

nuclear or nuclear-mitochondrial incompatibilities (Dobzhansky, 1936; Muller, 1942; Burton &

Barreto,  2012). However,  hybridization and recombination also have the potential  to produce

evolutionary  novelty  and  may  lead  to  the  creation  of  new  evolutionary  units  (reviewed  in

Dittrich-Reed & Fitzpatrick, 2013). Hybridization in the animal kingdom is now recognized as a
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common and creative evolutionary force in processes of adaptation and diversification (Barton,

2001; Abbott et al., 2013).

Admixture as a driver of adaptation and diversification has been widely studied across diverse

taxonomic groups. Sunflower (Helianthus)  hybrids can colonize and thrive in habitats  neither

parental  species  can  occupy  (Rieseberg  et  al., 2003;  Whitney  et  al., 2015).  Admixture

jumpstarted the spectacular diversification and adaptive radiation recognized in African cichlids

(Cichlidae)  (Seehausen,  2004).  Admixture  between  extinct  Denisovans  and  ancient  Homo

Sapiens facilitated the transfer of high-altitude adaptation genes found in contemporary Tibetan

peoples (Huerta-Sanchez et al., 2014), an adaptation apparently paralleled in admixture between

highland  wolves  and  domesticated  highland  dogs  (e.g.  Tibetan  mastiffs)  (VonHoldt,  Fan,

Vecchyo, & Wayne, 2017). Of particular interest here, are the evolutionary dynamics that emerge

from human-mediated hybridization (HMH), a  phenomenon of increasing frequency resulting

from either accidental  or intentional introductions of biota to geographical areas beyond their

native ranges (reviewed in Grabenstein & Taylor, 2018). 

The Africanized honey bee (AHB) is  one of the most well-documented examples  of human-

mediated hybridization. The western honey bee (Apis mellifera), well-known for its critical role

as a pollinator  in commercial  agriculture,  was first  introduced from Europe to  the American

continents  in  the  early  1500s.  Apis  mellifera is  a  diverse  taxon,  comprised  of  over  thirty

recognized  subspecies  clustering  into  four  major  lineages  based  on genetic,  geographic,  and

morphometric data: A (African), M (western European), C (eastern European), and O (Middle

Eastern)  (Ruttner,  1988).  Substantial  variation  in  behavior,  morphology,  and  genetics  exists
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across  subspecies,  even  within  the  overarching  clades.  The  eastern  European  subspecies  are

particularly favored in modern beekeeping due to their gentle nature and high fecundity while the

African subspecies A. m. scutellata is disfavored due to the intensity of its nest defense behavior

and propensity to abscond (abandon the nest en masse and move to another) (Ruttner, 1988).

Early honey bee importations were largely western European (M) and eastern European (C) in

origin; the former dominating the 16th to 18th century introductions while the latter dominated

later  introductions  (reviewed in Schneider,  DeGrandi-Hoffman,  & Smith, 2004).  Honey bees

from these clades are often generalized as European honey bees (EHB). Eastern European (Clade

C) honey bees are now the variety of choice in commercial  agriculture in the U.S.A., where

pollination services of honey bees are valued at an estimated $14.5 billion (Morse & Calderone,

2000). Middle Eastern honey bees (Clade O) were introduced to the United States in the late

1880s and 1890s in much more limited quantities and their importation was phased out by the

end of the 19th century in favor of other subspecies (Sheppard, 1989). Surprisingly, mitochondria

of Middle Eastern  origin continue  to persist  in  the feral  honey bee gene pool  in  the U.S.A.

(Magnus & Szalanski, 2010; Kono & Kohn, 2015). African (A) subspecies were largely excluded

from importation  with  the  exception  of  the  Egyptian  subspecies  A.  m.  lamarkii which  was

introduced to North America at low frequency (Schiff & Sheppard, 1993).  

In 1956, 47 queens of the African subspecies (A. m. scutellata) were imported to Sao Paulo,

Brazil for experimental breeding in an effort to create a honey bee better adapted to the tropical

conditions (reviewed in Schneider  et al.,  2004). Researchers hoped to forge a honey bee that

combined the tropical hardiness of  A. m. scutellata  with the honey production capabilities and
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gentleness of the popular European subspecies. Admixed “Africanized” honey bees (AHB) were

accidently released from the experimental apiary and spread into the surrounding countryside

(reviewed in Schneider et al., 2004). Their subsequent expansion across the American continents

over the past 60+ years is considered one of the “most spectacular biological invasions of all

time” (Pinto, Rubink, Patton, Coulsen, & Johnston, 2005).  

Africanized  honey  bees  spread  across  South  and  Central  America,  hybridizing  with  and

displacing pre-existing populations of European honey bees, resulting in a rapid replacement of

European ancestry by African ancestry in honey bee populations (Lobo, Del Lama, & Mestriner,

1989; Smith, Taylor, & Brown, 1989; Hall & McMichael, 2001; reviewed in Schneider  et al.,

2004). AHBs reached their southern range limit in Argentina in the 1970s at approximately 34°

south  latitude;  presumably  stopped  from advancing  further  by  the  colder  climate  (Taylor  &

Spivak, 1984). The AHB reached Panamá by 1982, Costa Rica by 1986, Mexico by 1989, Texas

by 1990, and California  by 1994 (Kim & Oguro, 1999).  Currently,  honey bees with African

mitochondria  have been reported as far north as Sacramento and Solana counties in northern

California, albeit at low frequencies (Kono & Kohn, 2015; Lin, McBroome, Rehman, & Johnson,

2017),  while  genomic  African  ancestry  is  likewise  low or  absent  in  bees  from these  higher

latitudes (Calfee, Agra, Palacio, Ramirez, & Coop, 2020). 

Replacement  by  AHB  of  pre-existing  feral  populations  of  European  origin  suggests  strong

ecological advantages for this hybrid form in the habitats it now occupies. Many aspects of the

AHB’s behavior are largely consistent with that of its African ancestor and may contribute to its

ecological advantage.  Generally, AHB exhibit greater reproductive rates than EHB; converting
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pollen into brood at more rapid rates and dedicating more comb area to brood rearing (McNally

& Schneider, 1992a, 1992b, 1996; reviewed in Fewell & Bertram, 2002). In the Neotropics, AHB

colonies can increase 16-fold per year compared to 3- to 6-fold by EHB colonies (Otis 1991). In

addition, AHB exhibit lower susceptibility to Varroa mite infestation of both brood and workers

(Guzman-Novoa, Sanchez,  Page Jr.,  & Garcia,  1996; Fewall  & Bertram, 2002). Of particular

public safety concern is the high degree of AHB nest defense. The AHB deposits more stings on

a target, responds faster and in greater numbers, and pursues any perceived threat further than

European forms (Collins, Rinderer, Harbo, & Bolten, 1982; DeGrandi-Hoffman, Collins, Martin,

Shcmidt, & Spangler, 1997;). This elevated level of nest defense has motivated the popular press

to brand the AHB as the “killer bee”. (Winston, 1992; reviewed in Breed, Guzmán-Novoa, &

Hunt, 2004). 

The genomes of AHB are thought to be predominantly African in origin; except at the northern

and southern range limits in Argentina and California, where the proportion of African ancestry

decreases (Whitfield et al., 2006; Nelson et al., 2017; Calfee et al., 2020). Early studies assessing

Africanization  used  either  mitochondrial  or  limited  numbers  of nuclear  markers  to  assess

admixture (Del Lama, Lobo, Soares, & Del Lama, 1990; Schiff, Sheppard, Loper, & Shimanuki,

1994; Quezada-Euan & Hinsull, 1995).  The level of African ancestry in honey bee populations

has been assessed by next generation sequencing (NGS) analyses utilizing thousands of single

nucleotide polymorphisms (SNPs) only in Brazil, Argentina, and the southern and western U.S.A.

(Whitfield  et al.,  2006; Nelson, Wallberg, Simoes, Lawson, & Webster, 2017; Cridland  et al.,

2017; Calfee et al, 2020).  
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Similar to NGS assessments from Brazilian populations, feral honey bees in Texas and Arizona

reached high levels (63 – 75%) of African ancestry in just a few years after arrival of the first

AHB (Rubink, Luévano-Martinez, Sugden, Wilson, & Collins, 1996; Pinto et al., 2005; Rabe et

al., 2005; Whitfield et al., 2006; Rangel et al., 2016; Bozek et al., 2018). In Southern California,

Africanization is widespread in feral honey bees, although African genomic content is reported to

be lower (30-40%) (Kono & Kohn, 2015; Cridland et al., 2017; Lin  et al., 2017; Calfee  et al.,

2020.

To date there are no whole-genome ancestry estimates for AHB between Brazil and the southern

United States. In addition, previous genomic studies have usually not assessed the contribution of

the Middle Eastern (O) lineage to the genomes of AHB (but see Whitfield et al,. 2006), despite

the fact that the O mitochondrial type is known to persist in the population of at least some feral

bee  populations  including  Southern  California  (Kono  & Kohn,  2015;  Magnus  &  Szalanski,

2010).  Whether  and  how  AHB  ancestry  varies  across  geographic  space  (and  time  since

hybridization),  requires  a  comprehensive  examination  of  AHB  admixture  throughout  its

geographic range and would shed light on admixture dynamics in a human-mediated invasive

expansion event of great breadth. Here we sequence 60 whole genomes of Africanized honey

bees  collected  from four  regions  separated  across  a  distance  of  ~6,000  km:  the  isthmus  of

Panamá; Guanacaste NP, Costa Rica; Chiapas, Mexico; and San Diego County, CA, U.S.A. To

our knowledge this is the first time that contributions from the four major clades of the western

honey bee have been estimated for both nuclear and mitochondrial genomes in AHBs across a

broad geographic range. The varied sampled sites offer an interesting temporal dimension as each

site also reflects a distinct time since initial contact between resident European and advancing
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Africanized forms. The AHB offers a unique opportunity to study a massive hybrid invasion and

the patterns of genomic admixture and genetic diversity that emerge across both space and time. 

MATERIALS AND METHODS

Sample Collection 

We collected western honey bees (n = 15/country) from sites in each of four countries: Panamá;

Guanacaste National Park, Costa Rica; Chiapas, Mexico; San Diego county, California, U.S.A.

(Table 1). All samples were collected in June 2015 – August 2016 by hand-netting. Honey bees

in Panamá were collected with an insect net while they foraged either on natural vegetation in

rural areas, or on street vendor syrup dispensers in urban areas. Honey bees were collected across

the isthmus of Panamá from five sites, each separated by > 5 km: Panamá City, Gamboa, Barro

Colorado Island (BCI), Santa Rita Arriba, and Cólon. Individuals from Costa Rica were collected

from the Santa Rosa sector of Guanacaste National Park in northwestern Costa Rica. These bees

were collected from a localized region and likely originate from a small number of feral colonies.

Honey bees from Mexico were collected from an apiary in the southern state of Chiapas, with

each bee collected from a different hive. Honey bees from San Diego County, California, U.S.A.

were workers collected while foraging on flowers. San Diego bees were collected across 15 sites

each separated by > 5 km so that each likely represents a worker from a different colony. The

furthest collection sites were separated by 65 km. Collection sites ranged from urban to rural

settings. Due to the presence of hobbyist and agricultural  beekeeping we do not rule out the
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possibility that the captured honey bees were from managed rather than feral hives. However,

most honey bee foragers in San Diego are from feral hives (Kono & Kohn, 2015, and see results).

Reference Honey Bee Genomes

Reference honey bee genomes were obtained by downloading genomes sequenced by Wallberg

et al., (2014) and deposited in the NCBI (Project ID: PRJNA236426). Reference genomes were

generated by whole genome sequencing on a SOLiD 5500xl platform to produce 75-bp reads

with an average coverage of 4.4X  ±1.5X per individual (Wallberg  et al., 2014 supplementary

material). For the African (A) clade, we downloaded 10 genomes of the subspecies Apis mellifera

scutellata, the sub-Saharan subspecies imported to Brazil.  For the western European (M) clade,

we downloaded 20 genomes: Apis mellifera mellifera (n = 10) and Apis mellifera iberiensis (n =

10). For the eastern European clade (C) we downloaded 20 genomes: Apis mellifera carnica (n =

10) and Apis mellifera ligustica (n = 10). For the Middle Eastern (O) clade, we downloaded 20

genomes:  Apis mellifera anatoliaca  (n = 10) and  Apis mellifera syriaca  (n = 10) (see Table 1,

S1). In total we used a panel of 70 reference honey bee genomes representing the four major

honey bee clades and spanning 7 subspecies. 

DNA Extraction & Sequencing 

We extracted DNA from crushed heads of sampled honey bees using the standard protocol of the

Qiagen DNAeasy Blood & Tissue extraction kit. DNA purity and appropriate concentration for

sequencing were validated with a Qubit fluorometer prior to submission for library preparation.

The DNA was submitted for DNA KAPA library construction and whole-genome sequencing at

the Institute for Genomic Medicine (IGM) at UC San Diego. Individuals were multiplexed and
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sequenced across three lanes of an Illumina HiSeq4000 platform using 100-bp paired end reads.

Average genomic coverage per individual was 29X ±1.2x. 

Sequence Filtering & Alignment

Raw reads generated from sequencing, and those downloaded from NCBI, were trimmed and

filtered for quality and length using a PoPoolation (Kofler et al., 2011) perl script (trim-fastq.pl)

(settings: –fastq-type sanger --quality-threshold 25 --min-length 40). Filtered reads were aligned

to  the  Amel_4.5  reference  genome  assembled  by  The  Honey  Bee  Genome  Sequencing

Consortium (2006) using the BWA v0.7.12 bwa mem algorithm under default  settings (Li &

Durban, 2009). Reads were then sorted, merged, and filtered again for mapping quality (quality

score < 20 were discarded) using Samtools (Li, 2011).

Variant Calling and Genotype Likelihood Estimation 

 We used the program ANGSD v0.930 (Kornliussen et al., 2014) to call variant sites and estimate

genotype likelihoods (settings: --doGlf 2 --doMajorMinor 1 --SNP_pval 1e-6 --doMaf 1). All

reference and sample honey bee genomes were analyzed together (total genomes = 130) using

14,705,135 variant sites. Genotype likelihoods have been shown to be robust to low-coverage

sequencing data (Skotte, Korneliussen, & Albrechtsen, 2013; Kornliussen  et al., 2014) such as

those of the Wallberg et al., (2014) reference genomes.

Admixture and Principal Components Analysis (PCA)

For admixture  analysis  we used the  program NGSadmix (Skotte  et  al.,  2013),  which  uses  a

genotype-likelihood based approach that factors in uncertainty associated with next-generation
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sequencing and has been shown to have good performance even with low-coverage data. We ran

NGSadmix using  the  BEAGLE genotype likelihood  files  created  by  ANGSD with  K values

ranging from 2 to 6 (K = number of assumed genetic clusters). Here we focus on the results from

K =  4  genetic  clusters  because  we  are  interested  in  assessing  the  contributions  of  the  four

ancestral lineages (A, M, C, and O) historically imported into the Americas. We used R (R Core

Team 2014)  to  graph  admixture  estimates.  We used PCAngsd (Kornliussen  et  al., 2014)  to

conduct a principal components analysis of all SNPs, and graphed the resulting PCA using the

eigen function in R (R Core Team, 2014). 

Mitochondrial Sequence Assembly and Phylogenetic Analysis 

Filtered  reads  (described  previously)  of  all  60  sampled  honey  bees  were  aligned  to  a

mitochondrial  reference  genome  from  an  individual  of  subspecies  Apis  mellifera  ligustica

sequenced by Crozier & Crozier (1993). We then called variants using samtools v1.10v (mpileup

function)  and used  bcftools  v1.10.2  (Li  & Durbin,  2009;  Li  2011)  to  extract  the  consensus

sequence  and  convert  to  FASTQ  with  the  vcfutils.pl  script.  We  downloaded  12  previously

assembled  mitochondrial  sequences  from  A.  mellifera subspecies  representing  all  four  major

lineages from NCBI to compare with our samples (listed in Table 2).  

FASTQ files of mitochondrial sequences from all 73 honey bees (13 reference honey bees and 60

AHB  samples)  were  aligned  using  MAFFT  (Katoh,  Rozewicki,  &  Yamada,  2019),  on  the

XSEDE via Cipres 2.0 Science Gateway. We used MEGAX (Kumar,  Stecher,  Li,  Knyaz,  &

Tamura,  2018) and complete  deletion  of  gaps  and missing data  to  create  a  neighbor-joining
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phylogeny under a Kimura 2-parameter model to compute evolutionary distances. We then ran

2000 bootstrap replicates to estimate confidence in the resulting phylogeny. 

Measures of Genetic Diversity 

To assess allelic diversity, we calculated estimations of both pairwise theta  (❑̂),  based on the

number of mean pairwise differences between sequences, and Watterson’s theta  (❑̂w),  based on

the measure of segregating sites for each sampled and reference population using ANGSD v.928

(Kornliussen et al., 2014). Using only sites in which at least 50% of individuals in a population

provided data, we estimated the folded site frequency spectrum (SFS) across the entire genome

using the reference honey bee genome as the ancestral state. We then calculated and averaged

thetas per site, including invariant sites, using ANGSD’s realSFS program. To ensure that our

diversity estimates were not overly affected by the difference in coverage between our reference

and  newly-sequenced  genomes,  we  calculated  an  additional  measure  of  pairwise  nucleotide

diversity (❑̂) using only higher-confidence SNPs with >5% minor allele frequency (MAF) in the

total  sample,  following a pipeline described in Calfee  et al.,  (2020). Using ANGSD, we first

identified a set of SNPs with > 5% minor allele frequency in the total sample and inferred the

major and minor alleles at those SNPs using observed base counts (-doMajorMinor 2 -doCounts

1 -doMaf 8 –minMAF 0.05). We excluded SNPs where more than half of individuals in the total

sample  did  not  have  coverage.  Using  this  list  of  SNPs  (n  =  5,588,252)  as  a  reference,  we

calculated allele frequencies for each population based on observed base counts in ANGSD (-

doMajorMinor 3 -doCounts 1 -doMaf 8). From these population allele frequencies, we calculated

the  average  pairwise  diversity  per  SNP,  correcting  for  small  sample  sizes.  To  account  for
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invariant sites in our estimate of nucleotide diversity () we weighted our measure of  per-SNP

by the genome SNP density (total number of SNPs / total positions in the genome). For each

measure of genome-wide nucleotide diversity, we estimated standard errors by using a block-

jackknife procedure, treating each chromosome as a block and re-computing nucleotide diversity

with sequential exclusion of each chromosome. 

RESULTS

Global genomic ancestry in Africanized honey bee samples 

As expected, K = 4 clustering clearly separates the 70 reference honey bees from Wallberg et al.,

(2014) into four major honey bee lineages (A, C, M & O) with limited evidence of admixture

between these groups (Figure 1).  Apis mellifera syriaca (O) is an exception, with ~20% of its

ancestry attributed to the African clade, consistent with results found by Wallberg et al., (2014).

For additional analyses (K = 2 - 6), see Figure S1. Two individuals from the western European

clade (M) (one from subspecies A. m. mellifera and one from subspecies A. m. iberiensis) showed

significant ancestry from other clades (Clades C and O, respectively), a finding also consistent

with Wallberg  et  al., (2014)  (Figure 1).  We also observed a small  proportion of  O ancestry

(~10%) across all A. m. scutellata.

The nuclear genomes of honey bees from Central America and Mexico were heavily Africanized.

Honey bees from Panamá averaged 94% (SE 0.23%) African (A) ancestry with the remaining 6%
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(SE 0.20%) of their genomes derived from the western European (M) lineage. In Costa Rica,

honey bees averaged 90% (SE 1.1%) African (A), 6% (SE 0.059%) western European (M) and

4% (SE 0.57%) eastern European (C). In Mexico, honey bees averaged 79% (SE 0.62%) African

(A), 12% (SE 0.41%) western European (M) and 8% (SE 0.35%) eastern European (C) (Figure 1,

Table 2). 

In contrast  to the honey bees of Central  America and Mexico,  genomes of all  15 honeybees

sampled from San Diego (California,  U.S.A.) exhibited a diverse admixture of all four major

clades (A, M, C, and O). Ancestry of San Diego bees averaged 40% (SE 1.2%) African (A), 16%

(SE 0.43%) western European (M), 35% (SE 1.2%) eastern European (C) and 9% (SE 0.22%)

Middle Eastern (O) (Figure 1). African (A) ancestry of San Diego bees averaged was far lower

than that found in bees from any of the other sampled sites and contributions from the eastern

European  (C)  lineage  were  higher  than  all  other  populations  sampled.  All  San  Diego  bees

possessed substantial Middle Eastern (O) ancestry while all other sites sampled had negligible or

no ancestry from this clade (Figure 1, Table 2).

Principial Component Analysis (PCA)

The principal components analysis of the 70 reference honey bees representing the four major

honey bee clades (A, M, C, O) and the 60 honey bees we sampled from Panamá to San Diego

separated populations by clade and sampling site (Figure 2). The ancestral honey bee lineages

were widely separated from each other on the first two principal component axes. Bees from the

four sampled sites (Panamá; Costa Rica; Mexico; San Diego, CA, U.S.A.) separated into distinct

clusters with the exception of partial overlap among the bees from Panamá and Costa Rica. Bees
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from Mexico, Costa Rica, and Panamá clustered near African (A clade) honey bees. San Diego

bees formed a more distant cluster relative to bees from Mexico, Costa Rica, and Panamá, falling

more equidistantly between the A, M, C, and O groups, consistent with their ancestry drawing

more evenly from all four groups. 

Mitochondrial Ancestry in Africanized honey bee samples 

Each  mitochondrial  sequence  from  our  sampled  honey  bees  groups  strongly  with  reference

mitochondria  from  one  of  the  four  ancestral  lineages  (A,  M,  C,  O)  in  a  midpoint  rooted

phylogeny  (Figure  3,  Table  3).  Notably,  mitochondrial  sequences  from  subspecies  A.  m.

anatoliaca (Clade O) grouped loosely with subspecies A. m. ligustica and A. m. carnica (both C).

A. m. anatoliaca has previously been shown to possess C type mitochondria although it remains

characterized as an O clade honey bee due to similarities of morphological characters and nuclear

markers (Smith, Slaymaker, Palmer, & Kaftanoglu, 1997; Palmer, Smith, & Kaftanoglu, 2000;

Wallberg et al., 2014). 

Genetic Diversity 

All four sampled populations have similar  levels of genetic  diversity and values for admixed

AHB populations are consistently higher than those estimated in reference populations (Table 5).

Among  ancestral  lineages,  the  African  lineage  is  the  most  diverse,  followed  by  the  Middle

Eastern (O) lineage, the Western European (M) lineage and lastly, the Eastern European lineage

(C). 
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DISCUSSION

Africanized  honey  bee  populations  exhibit  distinct  genomic  admixture  profiles  across  their

Central  and North American range,  with African ancestry decreasing with increasing latitude

(Figures  1  & 2;  Table  2).  Despite  considerable  differences  among  populations,  within  each

population there is little variation in ancestry among individuals. Thus, AHB populations within

countries appear to be well-mixed hybrid swarms. Honey bees from Panamá (x̄ = 94 % ± 0.23%)

and Costa Rica (x̄ = 90% ± 1.1%) were the most similar in terms of African ancestry, differing

primarily by the presence of small amounts of eastern European (C) ancestry in the Costa Rica

sample. While lower than that found in our Costa Rica and Panamá samples, African ancestry in

our Mexico sample is  also substantial  (x̄  = 79% ± 0.62%), but unlike the Central  American

samples, these honey bees possess increased levels of C (x̄ = 8% ± 0.35%) and M ancestry (x̄ =

12% ± 0.41). Middle Eastern ancestry (O) accounts for only 1% of the ancestry in Mexico (x̄ =

1% ± 0.36%). 

The  substantial  amount  of  C  ancestry  persisting  in  honey  bees  in  Mexico  suggests  that

insufficient time may have passed since the arrival of Africanized honey bees (AHB) for honey

bees to reach the high African ancestry levels seen in lower latitudes. However, AHB first arrived

in southern Mexico in the late 1980s, and studies have shown that levels of African ancestry can

reach high, apparently stable, levels in less than a decade (Pinto et al., 2005). Alternatively, the

substantial  EHB population  that  existed throughout  Mexico prior  to  AHB arrival  could have

provided a genetic buffer and allowed for the persistence of C-type despite ample time since
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contact with AHB (Clarke, Rinderer, Franck, Quezada-Euán, & Oldroyd, 2002). Beekeeping with

C-lineage  honey  bees  was  widespread  across  Mexico  prior  to  the  arrival  of  AHB,  with  an

estimated 1.5 million managed colonies present throughout the country (Winston et al., 1979; Gu

et al., 2002). In contrast, Costa Rica and Panamá both had modest managed beekeeping activity

prior to AHB arrival and feral EHB colonies were quite rare, particularly in the rainy lowlands

(Roubik & Boreham,  1990;  Lobo, 1995).  Additionally,  many beekeepers  in  Central  America

abandoned the trade after AHB arrival and the importation and maintenance of European honey

bees diminished substantially (van Veen, Calderon Fallas, Cubero Murillo, & Arce Arce, 1998).

Thus, AHB likely encountered a much smaller population of EHB in Central America than in

Mexico, allowing for a rapid and extensive Africanization of the honey bee gene pool.

In striking contrast to the honey bees from Mexico and Central America, African ancestry in

honey bees collected in San Diego County, California  (U.S.A.) is relatively low (x̄  = 40% ±

1.2%) with substantial ancestry traceable to all four major honey bee genetic lineages (Figure 1 &

2). Surprisingly, all honey bees from the San Diego sample possessed Middle Eastern ancestry

(O) (x̄ = 9% ± 0.22%). Honey bees from Middle Eastern lineages were only imported to the

United States during the last  two decades  of the 19th century and these limited importations

stopped by the beginning of the 20th century (Magnus & Szalanski, 2010). Nevertheless, surveys

of ancestry in honey bees in the United States have continued to report the presence of O-clade

ancestry in feral honey bees more than a century since their importation ceased (Whitfield et al.,

2006; Magnus & Szalanski, 2010; Kono & Kohn, 2015, Figures 1 & 2). 
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In addition, representation of eastern European (C) ancestry (x̄ = 35% ± 1.2%) in San Diego bees

is  substantially  higher  than  that  found in  Mexican and  Central  American  samples  while  the

contribution of the M lineage (x̄ = 16% ± 0.43%) is also somewhat elevated (Figure 1, Table 2).

The large contribution of eastern European (C) ancestry is perhaps indicative of the fact that

honey bees from this clade are preferred for agricultural  use in the United States.  In regions

inhabited by feral AHB, European purity of managed honey bee colonies is actively maintained

via consistent requeening of colonies with queens from desirable lineages (Schiff & Sheppard,

1995,  1996).  In  the  United  States,  AHB  are  generally  considered  unmanageable  due  to

undesirable  characteristics  such  as  a  higher  propensity  to  sting  and  to  abandon  their  nests

(reviewed in Schneider  et al., 2004). In contrast, in Mexico, Central and South America, AHB

have been largely accepted  as the new normal for beekeeping and have been integrated into

agricultural work (Ratnieks & Visscher, 1996; Guzman-Novoa & Page, 1999). 

Our findings in San Diego, largely agree with recent WGS studies that assessed African (A),

western  European  (M)  and  eastern  European  (C)  ancestry  in  feral  honey  bees  in  Southern

California (Cridland et al., 2017; Calfee et al., 2020). However, we provide the first assessment

of  Middle  Eastern  (O)  ancestry  in  Southern  California  honey  bees  using  whole  genome

sequencing (WGS). If the Southern California bees sampled in these previous studies contained

unassessed genomic content from the O lineage, it was likely assigned as C-type in their analysis,

as these clades are the most genetically similar.

Of particular interest in all of our samples is the persistence of substantial western European (M)

ancestry  despite  African  dominance.  Studies  that  have  tracked  the  process  of  Africanization
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elsewhere  have  shown that  African  genetic  material  largely  or  completely  replaces  genomic

content from the eastern European (C) lineage,  while the contribution from the M lineage to

genomes of AHB remains substantial and is never completely eliminated (Clarke  et al., 2002;

Pinto et al., 2005; Whitfield et al., 2006; Cridland et al., 2017; Nelson et al., 2017). All of our

sampled honey bee genomes from San Diego to Panamá possess moderate levels of M ancestry

while C ancestry content declines precipitously from north to south and is nearly totally absent in

samples  from Costa Rica  and Panamá.  This  pattern suggests that  the M-lineage content  that

persists in highly Africanized populations may be selected for while C-lineage content is selected

against except where A-lineage contribution declines at higher latitudes (Whitfield et al., 2006).

Alternatively, small amounts of M ancestry may be neutrally hitchhiking within predominantly

African genomes. 

Previous studies have identified some regions of M ancestry that appear to be under selection, in

particular a region on Chromosome 13 which is associated with a QTL for worker ovary size

(Calfee et al., 2020; Nelson et al., 2017). In addition, some regions associated with nest defense

behavior were found to be of western European origin, suggesting that M ancestry is contributing

in some way to AHB nest defense, a behavior which has been historically associated with African

ancestry (Harpur, Kadri, Orsi, Whitfield, & Zayed, 2020). Future work is needed to determine

whether these regions of M ancestry are under selection in our sampled populations. 

Despite differences in sampling methods, bees within each sample population were remarkably

homogeneous  with  respect  to  inferred  ancestry.  In  both  Costa  Rica  and  Mexico,  bees  were

sampled from a  single  site,  either  a  small  area  of  a  reserve  (Costa  Rica)  or  a  single  apiary
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(Mexico).  This  limited  geographic  breadth  of  sampling  could  have  contributed  to  the

homogeneity of ancestry observed in these sites. However, in Panamá and San Diego, bees were

sampled across  many tens  of  kilometers,  representing many different  colonies,  and exhibited

similar homogeneity in ancestry. 

Mitochondrial analysis of these 4 New World populations is largely consistent with findings from

nuclear genomes (Figure 3; Table 4). All  bees sampled from Panamá and Costa Rica,  where

nuclear genomes were predominantly African, carried mitochondria of African origin. In Mexico,

the  majority  of  honey  bees  carried  the  African  mitotype  while  a  few  carried  the  C-type

mitochondria. San Diego honey bees harbored a more diverse selection of mitochondrial lineages

(A, M and O) with only the C-lineage mitochondria absent in our current sample. However, a

previous study of mitochondrial diversity in San Diego County honey bees (Kono & Kohn, 2015)

used a larger sample and found mitotypes representing all four clades, with the African mitotype

the  most  frequent  (65%)  and  mitochondria  from the  other  three  lineages  present  in  similar

proportions. Failure to uncover any mitochondria from the C lineage in the present study likely

results from the small number of non-A mitochondria analyzed. 

Estimates of genetic diversity among sampled populations are quite similar to one another, but

higher than those from Old World reference populations, as has been previously reported for

AHBs from other portions of their range (Harpur, Minaei, Kent, & Zayed, et al., 2012; Calfee et

al., 2020; Espregueira-Themudo et al., 2020). The African lineage has previously been shown to

be more diverse than the European M and C lineages (Harpur et al., 2012; Calfee et al., 2020),

and we find that the O lineage harbors levels of genetic diversity intermediate between African
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(A) and European (M and C) lineages (Table 3). Surprisingly, given that the majority of their

genomes do not derive from the African lineage, estimates of genetic diversity in our San Diego

sample are not markedly lower than those of Mexican and Central American samples. Previous

work has shown that admixture between managed European honey bee subspecies increases total

genetic diversity beyond that seen in contributing lineages (Harpur  et al.,  2012). Perhaps the

diverse mixture of all four lineages found in San Diego increases the level of genetic diversity—

offsetting the effects  of reduced African ancestry.  Because of their diverse ancestry, the feral

honey  bee  population  of  San  Diego  likely  contains  genes  adapted  to  many  different

environmental challenges.  Their genomes could provide a valuable resource for future attempts

to breed desirable traits into managed honey bee populations.

The  complex  ancestry  of  San  Diego  honey  bees  results  from  repeated,  human-mediated,

introductions  of  Apis  mellifera to  the  New  World  followed  by  admixture.  This  complex

admixture may be one factor underlying the tremendous ecological success of feral honey bees in

Southern California. Honey bees in San Diego County are responsible for 75% of floral visits to

natural vegetation, even at sites within large preserves far from any source of managed honey

bees (Hung et al., 2018, 2019). This occurs despite the fact that the native bee fauna of Southern

California is very diverse with > 600 species recorded in San Diego County alone. While we can

find no comparative data on honey bee importance as pollinators in Southern California prior to

Africanization, it is at least possible that AHB’s diverse genomic ancestry plays a role in their

success, as has been suggested for other invasive taxa (Smith et al., 2020).
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Honey bees sampled in San Diego, CA (and Southern California, more generally) have relatively

low African genomic content  in comparison to honey bees  assessed elsewhere in the United

States.  In  Both  Texas  and  Arizona,  levels  of  African  ancestry  in  feral  honey  bees  are

approximately 75% (Whitfield et al., 2006; Bozek et al., 2018) similar to levels reported here for

Mexico (Figure 2). Potentially, San Diego County possesses a climate more favorable to honey

bees of reduced African genomic ancestry in comparison to other regions where African genomic

content  has  been assessed.  Models  built  from climate  data  at  the southern  AHB range limit

predict that colder winter weather plays a considerable role in halting AHB expansion. (Taylor &

Spivak,  1984; Southwick,  Roubik,  & Williams,  1990;  Harrison,  Fewell,  Anderson,  & Loper,

2006). Western San Diego County has a mild Mediterranean climate featuring dry summers with

a mean high temperature of 25°C (August). The coldest winter month (January) has an average

minimum of 8°C (NOAA - National Weather Service Forecast Office). In contrast, AHB from

Texas sampled in Pinto et al., (2005) and reexamined by Whitfield et al., (2006) were collected

from the Welder  Wildlife  Refuge (WWR),  a reserve that  has  a  hot  and humid summers,  on

average  reaching  35°C in  August  (Rangel  et  al., 2016;  NOAA -  National  Weather  Service

Forecast Office) and experiences cool winters similar to San Diego with average lows of 7°C in

January.  The  greater  penetrance  of  African  (A lineage)  genes  in  south  Texas,  where  winter

temperatures are, if anything, slightly cooler than San Diego implies that, while climate may be

important in limiting the penetrance of African genomic material, simple measures of winter cold

temperatures  are  unlikely  to  be  the  only  determining  factor.  Perhaps  African  ancestry  is

advantageous in regions that experience much higher summer temperatures and humidity levels.

If so, we might expect an increase in Africanization of feral (non-managed) bees with increasing

temperatures under climate change. 
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Gene flow from managed European honey bee populations could restrain the introgression of

genes of African origin in San Diego County. Policies throughout the United States are meant to

keep managed honey bees as free as possible from Africanization, but such practices have failed

to noticeably inhibit the Africanization of feral bees in Texas and Arizona (Pinto  et al., 2005;

Whitfield et al., 2006, Bozek et al., 2018. San Diego County, CA (USA) may differ from other

areas in the U.S.A. where AHB ancestry has been assessed in that it has a substantial agricultural

component: ~230,000 acres of planted crops, many of which (e.g. avocados and citrus) use honey

bees for pollination services and honey production (San Diego County Crop Statistics Annual

Report, 2019). San Diego county may harbor higher densities of managed, European honey bees

and gene flow from European managed hives could counter Africanization. Genetic swamping by

managed honey bees, however, would require that a substantial fraction of the honey bees in San

Diego County come from managed, genetically European, hives. Our finding that all 15 foraging

workers examined here have substantial African and Middle Eastern ancestry—lineages not used

in managed colonies—argues against this. We found no purely European bees in our sample, as

would be expected  if  sampled honey bees came from hives  managed in accord with current

policies. This is consistent with the hypothesis, supported by previous mitochondrial data (Kono

&  Kohn,  2015),  that  most  bees  foraging  in  San  Diego  County,  whether  in  urban  or  non-

agricultural rural settings, derive from feral, Africanized colonies. This high frequency of feral

Africanized bees in the total honey bee population reduces the possibility that continued gene

flow from managed population is a major force responsible for the low levels of African ancestry

observed. The homogeneity of ancestry among sampled bees also suggests that gene flow from
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managed EHB is relatively rare. We observed little variation indicative of recent introgression

events between managed EHB and feral AHB.

Alternatively, insufficient time may have elapsed since the introduction of the AHB to San Diego

county for  African  ancestry  to  reach levels  comparable  to  those seen elsewhere.  This  seems

unlikely given the speed with which Africanization has occurred elsewhere. For instance, Pinto et

al., (2005) used nuclear microsatellite data to show that the transition to high African ancestry in

feral  bees of southern Texas took only about 5 years after  the arrival  of AHB into Texas,  a

finding later  confirmed using genomic methods (Whitfield  et al., 2006). AHB arrived in San

Diego county in 1994 and our bees were sampled more than two decades later, suggesting either

that Africanization is taking much longer than in Texas, or differences in conditions in San Diego

relative to Texas lead to reduced penetration of genetic material of African origin. It appears that

none of these three hypotheses (limited time, gene flow from managed hives, nor low winter

temperature)  can  easily  explain  lower  African  content  in  the  genomes  of  AHB of  Southern

California. More work is needed to examine whether low African ancestry persists over the long

term and what its causes are.

The  introduction  of  African  honey  bees  to  the  New  World  in  1956,  and  their  subsequent

introgression and rapid expansion throughout much of the Americas, has captured the attention

and imagination of both the scientific world and the public. The Africanization of New World

honey bees has been one of the largest and best-documented biological invasions resulting from

human-mediated  hybridization.  The  increasing  amount  of  genomic  and  computational  tools

available  to  assess  ancestry  in  hybrid  individuals,  as  well  as  the  ever-decreasing  costs  of
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sequencing, have facilitated our ability to study Africanization in unprecedented detail. Here we

assessed global ancestry of 60 admixed honey bee genomes collected from four distinct regions,

many assessed for the first time using whole genome sequences. Future work to determine local

ancestry could investigate whether there are particular genomic regions that consistently come

from  African  versus  European  lineages  across  the  northern  geographic  range  of  the  AHB

expansion. Such regions, and the genes they contain, are critical to understanding the genetic

changes that explain the ecological dominance of Africanized bees over much of the American

continents, as well as the continued prevalence of bees of European descent at higher latitudes.

Such analyses could also shed light on the locations and origins of genomic regions useful for

breeding  managed  honey  bees  that  are  more  resistant  to  environmental  challenges  currently

harming the honey bee industry.
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FIGURES

Figure  1:  NGSadmix  barplot  of  ancestry.  Each  vertical  bar  is  one  honey  bee  genome  and  colors  represent  the  estimated
proportion  of  ancestry  derived  from each  genetic  cluster  (K=4).  The  70  reference  genomes  belonging  to  the  four  major
evolutionary lineages of Apis mellifera (A, M, C, O) are grouped and labeled beginning with the African clade. The 60 admixed
AHB genomes are arranged north to south by geographic origin, beginning with San Diego, CA and followed by the honey bees
from Mexico, Costa Rica, and Panamá. 
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Figure 2: Principal Component Analysis (PCA) of the 70 reference honey bees and 60 admixed honey bee genomes. 
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Figure  3:  Midpoint-rooted  neighbor  joining  phylogeny  constructed  from  the  mitochondrial
genomes of 60 admixed honey bees collected from San Diego, Mexico, Costa Rica, and Panamá
(n=15, per population) and 12 reference mitochondrial  sequences obtained from NCBI:  A. m.
mellifera (n=1), A. m. syriaca (n=2), A. m. carnica (n=1), A. m. scutellata (n=3), A. m. ligustica
(n=4), and A. m. anatoliaca  (n=1). NCBI mitochondrial sequences denoted by an asterisk (*).
Values on each node represent the percent bootstrap support (n = 2000 bootstraps).

TABLES 

Table  1:  Summary  of  all  130  genomes  included  in  this  ancestry  analysis,  including  (A)  70
reference  honey bee  genomes  downloaded from NCBI from Wallberg  et  al., (2014).  (B) 60
admixed honey bee genomes collected from four distinct sampling sites. 

A

B

Clade Subspecies (n
)

Source Country

A A. m. scutellata 10 South Africa

M A. m. mellifera 10 England
A. m. iberiensis 10 Ireland

C A. m. carnica 10 Italy
A. m. ligustica 10 Greece

O A. m. syriaca 10 Syria
A. m. anatoliaca 10 Lebanon

Location (n) Coordinates
San Diego, CA, U.S.A. 15 32.7° N, 117° W
Chiapas, Mexico 15 16.7° N, 93.1° W
Santa Rosa National Park, Costa Rica 15 10.8° N, 85.7° W
Panamá 15 8.98°N, 79.5° W
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Table 2: Mean percentage (SE) of genomic contributions from the four major honey bee lineages in each sampled population (n 
= 15 bee genomes per sample). 

San Diego, CA Mexico Costa Rica Panamá

African (A) 39.7 % ± 1.22 % 79.2% ± 0.618 % 90.2 % ± 1.10 % 93.5 % ± 0.233 %
Western European (M) 16.3 % ± 0.427 % 11.7%± 0.414 % 6.23 % ± 0.586 % 6.46 % ± 0.196 %
Eastern European (C) 35.0 % ± 1.17 % 8.07% ± 0.347 % 3.61 % ± 0.566 % 0.0744 % ± 7.44e-02 %
Middle Eastern (O) 9.03 % ± 0.217 % 1.08% ± 0.359 % 1.46e-03 % ± 1.14e-03 % 0.00 % ± 8.01e-19 %
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Table  3:  Whole  mitochondrial  genome  sequences  representing  A/C/M/O  honey  bee  clades
downloaded from NCBI and used in mtDNA haplotype analysis. 

GenBank
Accession
Number

Subspecies Clade

KJ601784.1 A. m. scutellata A
MG552702.1 A. m. scutellata A
MG552701.1 A. m. scutellata A
KY926884.1 A. m. mellifera M
MN250878.1 A. m. carnica C
KX908209.1 A. m. ligustica C
MH341408.1 A. m. ligustica C
MH341407.1 A. m. ligustica C
L06178.1 A. m. ligustica C
MT188686.1 A. m. anatoliaca O
KP163643.1 A. m. syriaca O
KY926882.1 A. m. syriaca O
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Table  4:  Number  of  honey  bees  sampled  from each  admixed  population  (San  Diego  (CA),
Mexico, Costa Rica, Panamá) found to carry mitochondria from each of the four clades (A, M, C,
O). 

San Diego, CA Mexico Costa Rica Panamá

African (A) 9 11 15 15

Western European (M) 2 0 0 0

Eastern European (C) 0 4 0 0

Middle Eastern (O) 4 0 0 0
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Table 5: Genetic diversity measures (mean ± SE) for admixed and reference populations. 

Pairwise Estimator (❑̂
)

Pairwise Estimator (❑̂)
using called SNPs only 
(minor allele frequency 
> 0.05) 

Watterson’s Estimator (❑̂w)

San Diego 0.0101 ±0.00139 0.00724  5.40e-05 0.0115 ±0.00145
Mexico 0.0115 ±0.00241 0.00767  7.04e-05 0.0132 ±0.00178
Costa Rica 0.0111 ±0.00180 0.00745  7.43e-05 0.0117 ±0.00194
Panamá 0.0109 ±0.00186 0.00737  7.21e-05 0.0121 ±0.00149
African (A) 0.00842 ±0.000543 0.00468  3.10e-05 0.0111 ±0.00252

Western European (M) 0.00438 ±0.000258 0.00308  1.33e-05 0.00469 ±0.000387
Eastern European (C) 0.00346 ±0.000195 0.00269  1.48e-05 0.00369 ±0.000176
Middle Eastern (O) 0.00642 ±0.000345 0.00419  1.91e-05 0.00714 ±0.000266
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