REFERENCES
Alejo, A., Matamoros, T., Guerra, M., and Andrés, G. (2018). A Proteomic
Atlas of the African Swine Fever Virus Particle. J. Virol . 92,
e01293-18. doi: 10.1128/jvi.01293-18
Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano,
J. M., et al. (2018). ICTV Virus Taxonomy Profile: Asfarviridae.J. Gen. Virol . 99, 613-614. doi: 10.1099/jgv.0.001049
Bao, J., Wang, Q., Lin, P., Liu, C., Li, L., Wu, X., et al. (2019).
Genome comparison of African swine fever virus China/2018/AnhuiXCGQ
strain and related European p72 Genotype II strains. Transbound.
Emerg. Dis . 66, 1167-1176. doi: 10.1111/tbed.13124
Barrado-Gil, L., Del Puerto, A., Muñoz-Moreno, R., Galindo, I.,
Cuesta-Geijo, M., Urquiza, J., et al. (2020). African Swine Fever Virus
Ubiquitin-Conjugating Enzyme Interacts With Host Translation Machinery
to Regulate the Host Protein Synthesis. Front. Microbiol . 11,
622907. doi: 10.3389/fmicb.2020.622907
Bergeron, H. C., Glas, P. S., and Schumann, K. R. (2017). Diagnostic
specificity of the African swine fever virus antibody detection
enzyme-linked immunosorbent assay in feral and domestic pigs in the
United States. Transbound. Emerg. Dis . 64, 1665-1668. doi:
10.1111/tbed.12717
Cappai, S., Rolesu, S., Feliziani, F., Desini, P., Guberti, V., and Loi,
F. (2020). Standardized Methodology for Target Surveillance against
African Swine Fever. Vaccines . 8, 723. doi:
10.3390/vaccines8040723
Chen, X., Yang, J., Ji, Y., Okoth, E., Liu, B., Li, X., et al. (2016).
Recombinant Newcastle disease virus expressing African swine fever virus
protein 72 is safe and immunogenic in mice. Virol. Sin . 31,
150-159. doi: 10.1007/s12250-015-3692-2
Costard, S., Wieland, B., de Glanville, W., Jori, F., Rowlands, R.,
Vosloo, W., et al. (2009). African swine fever: how can global spread be
prevented? Philo. Trans. R. Soc. Lon. B. Biol. Sci . 364,
2683-2696. doi: 10.1098/rstb.2009.0098
Cubillos, C., Gómez-Sebastian, S., Moreno, N., Nuñez, M. C.,
Mulumba-Mfumu, L. K., Quembo, C. J., et al. (2013). African swine fever
virus serodiagnosis: a general review with a focus on the analyses of
African serum samples. Virus Res . 173, 159-167. doi:
10.1016/j.virusres.2012.10.021
Fan, X., Li, L., Zhao, Y., Liu, Y., Liu, C., Wang, Q., et al. (2020).
Clinical Validation of Two Recombinase-Based Isothermal Amplification
Assays (RPA/RAA) for the Rapid Detection of African Swine Fever Virus.Front. Microbiol . 11, 1696. doi: 10.3389/fmicb.2020.01696
Fernández-Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gómez, C.,
Bishop, R., et al. (2013). Molecular diagnosis of African Swine Fever by
a new real-time PCR using universal probe library. Transbound.
Emerg. Dis . 60, 48-58. doi: 10.1111/j.1865-1682.2012.01317.x
Franzoni, G., Dei Giudici, S., Loi, F., Sanna, D., Floris, M., Fiori,
M., et al. (2020). African Swine Fever Circulation among Free-Ranging
Pigs in Sardinia: Data from the Eradication Program. Vaccines . 8,
549. doi: 10.3390/vaccines8030549
Gallardo, C., Nieto, R., Soler, A., Pelayo, V., Fernández-Pinero, J.,
Markowska-Daniel, I., et al. (2015). Assessment of African Swine Fever
Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern
European Union Countries: How To Improve Surveillance and Control
Programs. J. Clin. Microbiol . 53, 2555-2565. doi:
10.1128/jcm.00857-15
Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D., and
Richt, J. A. (2020). African Swine Fever Virus: An Emerging DNA
Arbovirus. Front. Vet. Sci . 7, 215. doi: 10.3389/fvets.2020.00215
Hakizimana, J. N., Nyabongo, L., Ntirandekura, J. B., Yona, C.,
Ntakirutimana, D., Kamana, O., et al. (2020). Genetic Analysis of
African Swine Fever Virus From the 2018 Outbreak in South-Eastern
Burundi. Front. Vet. Sci . 7, 578474. doi:
10.3389/fvets.2020.578474
Hampl, J., Hall, M., Mufti, N. A., Yao, Y. M., MacQueen, D. B., Wright,
W. H., et al. (2001). Upconverting phosphor reporters in
immunochromatographic assays. Anal. Biochem . 288, 176-187. doi:
10.1006/abio.2000.4902
Hübner, A., Petersen, B., Keil, G. M., Niemann, H., Mettenleiter, T. C.,
and Fuchs, W. (2018). Efficient inhibition of African swine fever virus
replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L).Sci. Rep . 8, 1449. doi: 10.1038/s41598-018-19626-1
Jackman, J. A., Hakobyan, A., Zakaryan, H., and Elrod, C. C. (2020).
Inhibition of African swine fever virus in liquid and feed by
medium-chain fatty acids and glycerol monolaurate. J. Anim. Sci.
Biotechnol . 11, 114. doi: 10.1186/s40104-020-00517-3
Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., and Zhang, J. (2017). Roles of
African Swine Fever Virus Structural Proteins in Viral Infection.J. Vet. Res . 61, 135-143. doi: 10.1515/jvetres-2017-0017
Kazakova, A. S., Imatdinov, I. R., Dubrovskaya, O. A., Imatdinov, A. R.,
Sidlik, M. V., Balyshev, V. M., et al. (2017). Recombinant Protein p30
for Serological Diagnosis of African Swine Fever by Immunoblotting
Assay. Transbound. Emerg. Dis . 64, 1479-1492. doi:
10.1111/tbed.12539
Le, V. P., Jeong, D. G., Yoon, S. W., Kwon, H. M., Trinh, T. B. N.,
Nguyen, T. L., et al. (2019). Outbreak of African Swine Fever, Vietnam,
2019. Emerg. Infect. Dis . 25, 1433-1435. doi:
10.3201/eid2507.190303
Lei, X., Xu, X., Liu, L., Kuang, H., Xu, L., Hao, C., et al. (2020).
Rapid quantitative determination of fentanyl in human urine and serum
using a gold-based immunochromatographic strip sensor. J. Mater.
Chem B . 8, 8573-8584. doi: 10.1039/d0tb01509a
Liu, H., Xiu, Y., Xu, Y., Tang, M., Li, S., Gu, W., et al. (2017).
Development of a colloidal gold immunochromatographic assay (GICA) for
the rapid detection of Spiroplasma eriocheiris in commercially exploited
crustaceans from China. J. Fish Dis . 40, 1839-1847. doi:
10.1111/jfd.12657
Liu, X., Xiang, J. J., Tang, Y., Zhang, X. L., Fu, Q. Q., Zou, J. H., et
al. (2012). Colloidal gold nanoparticle probe-based
immunochromatographic assay for the rapid detection of chromium ions in
water and serum samples. Anal. Chim. Acta . 745, 99-105. doi:
10.1016/j.aca.2012.06.029
Lopez, E., van Heerden, J., Bosch-Camós, L., Accensi, F., Navas, M. J.,
López-Monteagudo, P., et al. (2020). Live Attenuated African Swine Fever
Viruses as Ideal Tools to Dissect the Mechanisms Involved in
Cross-Protection. Viruses . 12, 1474. doi: 10.3390/v12121474
Mee, P. T., Wong, S., O’Riley, K. J., da Conceição, F., Bendita da Costa
Jong, J., Phillips, D. E., et al. (2020). Field Verification of an
African Swine Fever Virus Loop-Mediated Isothermal Amplification (LAMP)
Assay During an Outbreak in Timor-Leste. Viruses . 12, 1444. doi:
10.3390/v12121444
Miao, F., Zhang, J., Li, N., Chen, T., Wang, L., Zhang, F., et al.
(2019). Rapid and Sensitive Recombinase Polymerase Amplification
Combined With Lateral Flow Strip for Detecting African Swine Fever
Virus. Front. Microbiol . 10, 1004. doi: 10.3389/fmicb.2019.01004
Neilan, J. G., Zsak, L., Lu, Z., Burrage, T. G., Kutish, G. F., and
Rock, D. L. (2004). Neutralizing antibodies to African swine fever virus
proteins p30, p54, and p72 are not sufficient for antibody-mediated
protection. Virology . 319, 337-342. doi:
10.1016/j.virol.2003.11.011
Olasz, F., Mészáros, I., Marton, S., Kaján, G. L., Tamás, V., Locsmándi,
G., et al. (2019). A Simple Method for Sample Preparation to Facilitate
Efficient Whole-Genome Sequencing of African Swine Fever Virus.Viruses . 11, 1129. doi: 10.3390/v11121129
Petrovan, V., Yuan, F., Li, Y., Shang, P., Murgia, M. V., Misra, S., et
al. (2019). Development and characterization of monoclonal antibodies
against p30 protein of African swine fever virus. Virus Res . 269,
197632. doi: 10.1016/j.virusres.2019.05.010
Portugal, R., Martins, C., and Keil, G. M. (2012). Novel approach for
the generation of recombinant African swine fever virus from a field
isolate using GFP expression and 5-bromo-2’-deoxyuridine selection.J. Virol. Methods . 183, 86-89. doi:
10.1016/j.jviromet.2012.03.030
Ros-Lucas, A., Correa-Fiz, F., Bosch-Camós, L., Rodriguez, F., and
Alonso-Padilla, J. (2020). Computational Analysis of African Swine Fever
Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble.Pathogens . 9, 1078. doi: 10.3390/pathogens9121078
Safenkova, I. V., Zherdev, A. V., and Dzantiev, B. B. (2010).
Correlation between the composition of multivalent antibody conjugates
with colloidal gold nanoparticles and their affinity. J. Immunol.
Methods . 357, 17-25. doi: 10.1016/j.jim.2010.03.010
Sastre, P., Gallardo, C., Monedero, A., Ruiz, T., Arias, M., Sanz, A.,
et al. (2016). Development of a novel lateral flow assay for detection
of African swine fever in blood. BMC Vet. Res . 12, 206. doi:
10.1186/s12917-016-0831-4
Sun, Y., Li, Z., Liang, W., Zhang, Y., Song, W., Song, J., et al.
(2020). A novel immunochromatographic strips assay for rapid and simple
detection of systemic lupus erythematosus. Sci. Rep . 10, 14178.
doi: 10.1038/s41598-020-71137-0
Teklue, T., Sun, Y., Abid, M., Luo, Y., and Qiu, H. J. (2020). Current
status and evolving approaches to African swine fever vaccine
development. Transbound. Emerg. Dis . 67, 529-542. doi:
10.1111/tbed.13364
Wang, N., Zhao, D., Wang, J., Zhang, Y., Wang, M., Gao, Y., et al.
(2019). Architecture of African swine fever virus and implications for
viral assembly. Science . 366, 640-644. doi:
10.1126/science.aaz1439
Wang, Z. L., Song, X. H., Chen, X. Z., and Chen, G. S. (2004). The
research of gold-immunochromatography for CPV diagnostic. Chin. J.
Prev. Vet. Med . 26, 62-66.
Wu, P., Lowe, A. D., Rodríguez, Y. Y., Murgia, M. V., Dodd, K. A.,
Rowland, R. R., et al. (2020). Antigenic regions of African swine fever
virus phosphoprotein P30. Transbound. Emerg. Dis . 67, 1942-1953.
doi: 10.1111/tbed.13533
Yang, F., Li, Y., Jin, X., Xu, Q., Cheng, F., and Wang, X. (2020a).
Immunosensor-based rapid quantitative detection of Newcastle disease
virus antibodies using innovative gold immunochromatographic assay.J. Appl. Microbiol . 129, 1751-1757. doi: 10.1111/jam.14688
Yang, F., Xiao, Y., Chen, B., Wang, L., Liu, F., Yao, H., et al.
(2020b). Development of a colloidal gold-based immunochromatographic
strip test using two monoclonal antibodies to detect H7N9 avian
influenza virus. Virus Genes . 56, 396-400. doi:
10.1007/s11262-020-01742-8
Zhang, S., Sun, A., Wan, B., Du, Y., Wu, Y., Zhang, A., et al. (2020).
Development of a Directly Visualized Recombinase Polymerase
Amplification-SYBR Green I Method for the Rapid Detection of African
Swine Fever Virus. Front. Microbiol . 11, 602709. doi:
10.3389/fmicb.2020.602709
Zhu, Y. S., Shao, N., Chen, J. W., Qi, W. B., Li, Y., Liu, P., et al.
(2020a). Multiplex and visual detection of African Swine Fever Virus
(ASFV) based on Hive-Chip and direct loop-mediated isothermal
amplification. Anal. Chim. Acta . 1140, 30-40. doi:
10.1016/j.aca.2020.10.011
Zhu, Z., Chen, H., Liu, L., Cao, Y., Jiang, T., Zou, Y., et al. (2020b).
Classification and characterization of multigene family proteins of
African swine fever viruses. Brief. Bioinform . bbaa380. doi:
10.1093/bib/bbaa380