References:
1. Anderegg, L.D. & HilleRisLambers,
J. (2019). Local range boundaries vs. large‐scale trade‐offs: Climatic
and competitive constraints on tree growth. Ecol. Lett. , 22,
787-796.
2. Augusto, L., Davies, T.J., Delzon, S. & De Schrijver, A. (2014). The
enigma of the rise of angiosperms: can we untie the knot? Ecol.
Lett. , 17, 1326-1338.
3. Babst, F., Bodesheim, P., Charney, N., Friend, A.D., Girardin, M.P.,
Klesse, S. et al. (2018). When tree rings go global: Challenges and
opportunities for retro-and prospective insight. Quat. Sci. Rev. ,
197, 1-20.
4. Bazzaz, F.A. (1979). The physiological ecology of plant
succession. Annu. Rev. Ecol. Syst. , 10, 351-371.
5. Beniston, M., Diaz, H.F. & Bradley, R.S. (1997). Climatic change at
high elevation sites: an overview. Clim. Change , 36, 233-251.
6. Bloom, A.J., Chapin III, F.S. & Mooney, H.A. (1985). Resource
limitation in plants-an economic analogy. Annu. Rev. Ecol. Syst. ,
16, 363-392.
7. Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm
dominance and gymnosperm persistence. Biol. J. Linn. Soc. , 36,
227-249.
8. Brodribb, T.J., Pittermann, J. & Coomes, D.A. (2012). Elegance
versus speed: examining the competition between conifer and angiosperm
trees. Int. J. Plant Sci. , 173, 673-694.
9. Buechling, A., Martin, P.H., & Canham, C.D. (2017). Climate and
competition effects on tree growth in Rocky Mountain forests. J.
Ecol. , 105, 1636-1647.
10. Bunn, A.G. (2008). A dendrochronology program library in R
(dplR). Dendrochronologia , 26, 115-124.
11. Canham, C.D., LePage, P.T. & Coates, K.D. (2004). A neighborhood
analysis of canopy tree competition: effects of shading versus crowding.Can . J. For. Res. , 34, 778-787.
12. Charrier, G., Cochard, H. & Ameglio, T. (2013). Evaluation of the
impact of frost resistances on potential altitudinal limit of
trees. Tree Physiol. , 33 , 891-902.
13. Clark, J.S., Bell, D.M., Hersh, M.H. & Nichols, L. (2011). Climate
change vulnerability of forest biodiversity: climate and competition
tracking of demographic rates. Glob. Change Biol. , 17, 1834-1849.
14. Cochard, H., Lemoine, D., Améglio, T. & Granier, A. (2001).
Mechanisms of xylem recovery from winter embolism in Fagus
sylvatica. Tree Physiol. , 21, 27-33.
15. Coomes, D.A. & Allen, R.B. (2007). Effects of size, competition and
altitude on tree growth. J. Ecol., 95, 1084-1097.
16. del Río, M., Vergarechea, M., Hilmers, T., Alday, J. G., Avdagić,
A., Binderh, F., et al. (2020). Effects of elevation-dependent climate
warming on intra-and inter-specific growth synchrony in mixed mountain
forests. For . Ecol . Manag ., 479, 118587.
17. Després, T., Vítková, L., Bače, R., Čada, V., Janda, P., Mikoláš, M.
et al. (2017). Past disturbances and intraspecific competition as
drivers of spatial pattern in primary spruce forests. Ecosphere ,
8, e02037.
18. Dirnböck, T., Essl, F. & Rabitsch, W. (2011). Disproportional risk
for habitat loss of high‐altitude endemic species under climate
change. Glob . Change Biol ., 17, 990-996.
19. Duncan, R.P. (1989) An evaluation of errors in tree age estimates
based on increment cores in kahikatea (Dacrycarpus dacrydioides).New Zealand Natural Sciences , 16, 3 1-37.
20. Ettinger, A.K., Ford, K.R. & HilleRisLambers, J. (2011). Climate
determines upper, but not lower, altitudinal range limits of Pacific
Northwest conifers. Ecology , 92, 1323-1331.
21. Fanta, J., 1997. Rehabilitating degraded forests in Central Europe
into self-sustaining forest ecosystems. Ecol . Eng . 8,
289-297.
22. Friedman, J. H. (1984). A variable
span smoother (No. LCS-TR-5). Stanford Univ CA lab for computational
statistics.
23. Fritts, H. (1976). Tree rings and climate . Academic Press.
London.
24. Grime, J.P. (1977). Evidence for the existence of three primary
strategies in plants and its relevance to ecological and evolutionary
theory. Am. Nat. , 111 , 1169-1194.
25. Hanewinkel, M., Cullmann, D.A., Schelhaas, M.J., Nabuurs, G.J. &
Zimmermann, N.E. (2013). Climate change may cause severe loss in the
economic value of European forest land. Nat . Clim .Change , 3, 203-207.
26. Holmes, R.L. (1983). Computer-assisted quality control in tree-ring
dating and measurement. Tree-Ring Bulletin , 43, 69-78
27. Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O.
& Coomes, D.A. (2016). Climate modulates the effects of tree diversity
on forest productivity. J. Ecol. , 104, 388-398.
28. Jump, A.S., Hunt, J.M. & Penuelas, J. (2006). Rapid climate
change‐related growth decline at the southern range edge of Fagus
sylvatica . Glob. Change Biol. , 12 , 2163-2174.
29. Kahle, D. & H. Wickham. (2013). ggmap: Spatial Visualization with
ggplot2. The R Journal, 5, 144-161.
30. Körner, C. (2003). Carbon limitation in trees. J .Ecol ., 91, 4-17.
31. Larsson, L. (2015). CooRecorder and Cdendro Programs of the
CooRecorder/Cdendro Package Version 7.8. Retrieved from
http://www.cybis.se/forfun/dendro/
32. Louthan, A.M., Doak, D.F. & Angert, A.L. (2015). Where and when do
species interactions set range limits? Trends Ecol. Evo. , 30,
780-792.
33. Luo, Y., McIntire, E.J., Boisvenue, C., Nikiema, P.P. & Chen, H.Y.
(2020). Climatic change only stimulated growth for trees under weak
competition in central boreal forests. J .Ecol. , 108 , 36-46.
34. McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H.,
Bond-Lamberty, B., Chini, L. et al. (2020). Pervasive shifts in forest
dynamics in a changing world. Science , 368, 1-10.
35. Mikolaš, M., Svitok, M., Bollmann, K., Reif, J., Bace, R., Janda, P.
et al. (2017). Mixed-severity natural disturbances promote the
occurrence of an endangered umbrella species in primary
forests. For. Ecol. Manag. , 405, 210-218.
36. Mori, A.S. (2018). Environmental controls on the causes and
functional consequences of tree species diversity. J .Ecol ., 106, 113-125.
37. Mori, A.S. (2019). Local and biogeographic determinants and
stochasticity of tree population demography. J. Ecol. , 107,
1276-1287.
38. Nakagawa, S. & Schielzeth, H. (2013). A general and simple method
for obtaining R2 from generalized linear mixed‐effects models.Methods Ecol. Evol. , 4, 133-142.
39. Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel,
J. et al. (2010). Comparison between the productivity of pure and mixed
stands of Norway spruce and European beech along an ecological gradient.Ann . For . Sci ., 67, 712-724.
40. Primicia, I., Camarero, J.J., Janda, P., Čada, V., Morrissey, R. C.,
Trotsiuk, V. et al. (2015). Age, competition, disturbance and elevation
effects on tree and stand growth response of primary Picea abies forest
to climate. For . Ecol . Manag ., 354, 77-86.
41. Reich, P.B., Wright, I. J., Cavender-Bares, J., Craine, J. M.,
Oleksyn, J., Westoby, M. et al. (2003). The evolution of plant
functional variation: traits, spectra, and strategies. Int. J.
Plant Sci. , 164 , S143-S164.
42. Rollinson, C.R., Kaye, M.W. & Canham, C. D. (2016). Interspecific
variation in growth responses to climate and competition of five eastern
tree species. Ecology , 97, 1003-1011.
43. Saulnier, M., Schurman, J.,
Vostarek, O., Rydval, M., Pettit, J., Trotsiuk, et al. (2020). Climatic
drivers of Picea growth differ during recruitment and interact
with disturbance severity to influence rates of canopy
replacement. Agric. For. Meteorol. , 287, 1-15.
44. Schimper, A.F.W. (1888). Die epiphytische vegetation amerikas. No.
2, G. Fischer.
45. Schurman, J.S., Babst, F., Björklund, J., Rydval, M., Bače, R.,
Čada, V. et al. (2019). The climatic drivers of primary Piceaforest growth along the Carpathian arc are changing under rising
temperatures. Glob. Change Biol. , 25, 3136-3150.
46. Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda,
P. et al. (2018). Large‐scale disturbance legacies and the climate
sensitivity of primary Picea abies forests. Glob. Change
Biol. , 24, 2169-2181.
47. Shestakova, T.A., Gutiérrez, E.,
Kirdyanov, A.V., Camarero, J.J., Génova, M., Knorre, A.A. et al. (2016).
Forests synchronize their growth in contrasting Eurasian regions in
response to climate warming. PNAS , 113, 662-667.
48. Sperry, J.S., Hacke, U.G. & Pittermann, J. (2006). Size and
function in conifer tracheids and angiosperm vessels. Am .J . Bot ., 93, 1490-1500.
49. Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z.,
Nagy, A. et al. (2015). Climate of the Carpathian Region in the period
1961–2010: climatologies and trends of 10 variables. Int. J.
Climatol. , 35, 1322-1341.
50. Svoboda, M., Janda, P., Bače, R., Fraver, S., Nagel, TA, Rejzek, J.
et al. (2014). Landscape‐level variability in historical disturbance in
primary Picea abies mountain forests of the Eastern Carpathians,
Romania. J. Veg. Sci. , 25, 386-401.
51. Teets, A., Fraver, S., Weiskittel, A.R. & Hollinger, D.Y. (2018).
Quantifying climate–growth relationships at the stand level in a mature
mixed‐species conifer forest. Glob. Change Biol. , 24, 3587-3602.
52. Tyree, M.T. & Ewers, F.W. (1991). The hydraulic architecture of
trees and other woody plants. New Phytol ., 119, 345-360.
53. Wardlaw, I.F. (1990). Tansley Review No. 27: The control of carbon
partitioning in plants. New Phytol. , 116, 341-381.
54. Weigel, R., Muffler, L., Klisz, M., Kreyling, J., van der
Maaten‐Theunissen, M., Wilmking, M., et al. (2018). Winter matters:
Sensitivity to winter climate and cold events increases towards the cold
distribution margin of European beech (Fagus sylvaticaL.). J. Biogeogr. , 45, 2779-2790.
55. Weiner, J. (1990). Asymmetric competition in plant
populations. Trends Ecol. Evo. , 5, 360-364.
56. West, P.W. (1980). Use of diameter increment and basal area
increment in tree growth studies. Can. J. For. Res. , 10, 71-77.
57. Yamaguchi, D. K. (1991). A simple method for cross-dating increment
cores from living trees. Can. J. For. Res. , 21, 414-416.