References:
1. Anderegg, L.D. & HilleRisLambers, J. (2019). Local range boundaries vs. large‐scale trade‐offs: Climatic and competitive constraints on tree growth. Ecol. Lett. , 22, 787-796.
2. Augusto, L., Davies, T.J., Delzon, S. & De Schrijver, A. (2014). The enigma of the rise of angiosperms: can we untie the knot? Ecol. Lett. , 17, 1326-1338.
3. Babst, F., Bodesheim, P., Charney, N., Friend, A.D., Girardin, M.P., Klesse, S. et al. (2018). When tree rings go global: Challenges and opportunities for retro-and prospective insight. Quat. Sci. Rev. , 197, 1-20.
4. Bazzaz, F.A. (1979). The physiological ecology of plant succession. Annu. Rev. Ecol. Syst. , 10, 351-371.
5. Beniston, M., Diaz, H.F. & Bradley, R.S. (1997). Climatic change at high elevation sites: an overview. Clim. Change , 36, 233-251.
6. Bloom, A.J., Chapin III, F.S. & Mooney, H.A. (1985). Resource limitation in plants-an economic analogy. Annu. Rev. Ecol. Syst. , 16, 363-392.
7. Bond, W.J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. , 36, 227-249.
8. Brodribb, T.J., Pittermann, J. & Coomes, D.A. (2012). Elegance versus speed: examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. , 173, 673-694.
9. Buechling, A., Martin, P.H., & Canham, C.D. (2017). Climate and competition effects on tree growth in Rocky Mountain forests. J. Ecol. , 105, 1636-1647.
10. Bunn, A.G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia , 26, 115-124.
11. Canham, C.D., LePage, P.T. & Coates, K.D. (2004). A neighborhood analysis of canopy tree competition: effects of shading versus crowding.Can . J. For. Res. , 34, 778-787.
12. Charrier, G., Cochard, H. & Ameglio, T. (2013). Evaluation of the impact of frost resistances on potential altitudinal limit of trees. Tree Physiol.33 , 891-902.
13. Clark, J.S., Bell, D.M., Hersh, M.H. & Nichols, L. (2011). Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Glob. Change Biol. , 17, 1834-1849.
14. Cochard, H., Lemoine, D., Améglio, T. & Granier, A. (2001). Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol. , 21, 27-33.
15. Coomes, D.A. & Allen, R.B. (2007). Effects of size, competition and altitude on tree growth. J. Ecol.,  95, 1084-1097.
16. del Río, M., Vergarechea, M., Hilmers, T., Alday, J. G., Avdagić, A., Binderh, F., et al. (2020). Effects of elevation-dependent climate warming on intra-and inter-specific growth synchrony in mixed mountain forests. For . Ecol . Manag ., 479, 118587.
17. Després, T., Vítková, L., Bače, R., Čada, V., Janda, P., Mikoláš, M. et al. (2017). Past disturbances and intraspecific competition as drivers of spatial pattern in primary spruce forests. Ecosphere , 8, e02037.
18. Dirnböck, T., Essl, F. & Rabitsch, W. (2011). Disproportional risk for habitat loss of high‐altitude endemic species under climate change. Glob . Change Biol ., 17, 990-996.
19. Duncan, R.P. (1989) An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides).New Zealand Natural Sciences , 16, 3 1-37.
20. Ettinger, A.K., Ford, K.R. & HilleRisLambers, J. (2011). Climate determines upper, but not lower, altitudinal range limits of Pacific Northwest conifers. Ecology , 92, 1323-1331.
21. Fanta, J., 1997. Rehabilitating degraded forests in Central Europe into self-sustaining forest ecosystems. Ecol . Eng . 8, 289-297.
22. Friedman, J. H. (1984). A variable span smoother (No. LCS-TR-5). Stanford Univ CA lab for computational statistics.
23. Fritts, H. (1976). Tree rings and climate . Academic Press. London.
24. Grime, J.P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory.  Am. Nat.111 , 1169-1194.
25. Hanewinkel, M., Cullmann, D.A., Schelhaas, M.J., Nabuurs, G.J. & Zimmermann, N.E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nat . Clim .Change , 3, 203-207.
26. Holmes, R.L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin , 43, 69-78
27. Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O. & Coomes, D.A. (2016). Climate modulates the effects of tree diversity on forest productivity. J. Ecol. , 104, 388-398.
28. Jump, A.S., Hunt, J.M. & Penuelas, J. (2006). Rapid climate change‐related growth decline at the southern range edge of Fagus sylvaticaGlob. Change Biol.12 , 2163-2174.
29. Kahle, D. & H. Wickham. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5, 144-161.
30. Körner, C. (2003). Carbon limitation in trees. J .Ecol ., 91, 4-17.
31. Larsson, L. (2015). CooRecorder and Cdendro Programs of the CooRecorder/Cdendro Package Version 7.8. Retrieved from http://www.cybis.se/forfun/dendro/
32. Louthan, A.M., Doak, D.F. & Angert, A.L. (2015). Where and when do species interactions set range limits? Trends Ecol. Evo. , 30, 780-792.
33. Luo, Y., McIntire, E.J., Boisvenue, C., Nikiema, P.P. & Chen, H.Y. (2020). Climatic change only stimulated growth for trees under weak competition in central boreal forests. J .Ecol.108 , 36-46.
34. McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L. et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science , 368, 1-10.
35. Mikolaš, M., Svitok, M., Bollmann, K., Reif, J., Bace, R., Janda, P. et al. (2017). Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For. Ecol. Manag. , 405, 210-218.
36. Mori, A.S. (2018). Environmental controls on the causes and functional consequences of tree species diversity. J .Ecol ., 106, 113-125.
37. Mori, A.S. (2019). Local and biogeographic determinants and stochasticity of tree population demography. J. Ecol. , 107, 1276-1287.
38. Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed‐effects models.Methods Ecol. Evol. , 4, 133-142.
39. Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J. et al. (2010). Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient.Ann . For . Sci ., 67, 712-724.
40. Primicia, I., Camarero, J.J., Janda, P., Čada, V., Morrissey, R. C., Trotsiuk, V. et al. (2015). Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For . Ecol . Manag ., 354, 77-86.
41. Reich, P.B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M. et al. (2003). The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci.164 , S143-S164.
42. Rollinson, C.R., Kaye, M.W. & Canham, C. D. (2016). Interspecific variation in growth responses to climate and competition of five eastern tree species. Ecology , 97, 1003-1011.
43. Saulnier, M., Schurman, J., Vostarek, O., Rydval, M., Pettit, J., Trotsiuk, et al. (2020). Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agric. For. Meteorol. , 287, 1-15.
44. Schimper, A.F.W. (1888). Die epiphytische vegetation amerikas. No. 2, G. Fischer.
45. Schurman, J.S., Babst, F., Björklund, J., Rydval, M., Bače, R., Čada, V. et al. (2019). The climatic drivers of primary Piceaforest growth along the Carpathian arc are changing under rising temperatures. Glob. Change Biol. , 25, 3136-3150.
46. Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda, P. et al. (2018). Large‐scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Change Biol. , 24, 2169-2181.
47. Shestakova, T.A., Gutiérrez, E., Kirdyanov, A.V., Camarero, J.J., Génova, M., Knorre, A.A. et al. (2016). Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. PNAS , 113, 662-667.
48. Sperry, J.S., Hacke, U.G. & Pittermann, J. (2006). Size and function in conifer tracheids and angiosperm vessels. Am .J . Bot ., 93, 1490-1500.
49. Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A. et al. (2015). Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables. Int. J. Climatol. , 35, 1322-1341.
50. Svoboda, M., Janda, P., Bače, R., Fraver, S., Nagel, TA, Rejzek, J. et al. (2014). Landscape‐level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J. Veg. Sci. , 25, 386-401.
51. Teets, A., Fraver, S., Weiskittel, A.R. & Hollinger, D.Y. (2018). Quantifying climate–growth relationships at the stand level in a mature mixed‐species conifer forest. Glob. Change Biol. , 24, 3587-3602.
52. Tyree, M.T. & Ewers, F.W. (1991). The hydraulic architecture of trees and other woody plants. New Phytol ., 119, 345-360.
53. Wardlaw, I.F. (1990). Tansley Review No. 27: The control of carbon partitioning in plants. New Phytol. , 116, 341-381.
54. Weigel, R., Muffler, L., Klisz, M., Kreyling, J., van der Maaten‐Theunissen, M., Wilmking, M., et al. (2018). Winter matters: Sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (Fagus sylvaticaL.). J. Biogeogr. , 45, 2779-2790.
55. Weiner, J. (1990). Asymmetric competition in plant populations. Trends Ecol. Evo. , 5, 360-364.
56. West, P.W. (1980). Use of diameter increment and basal area increment in tree growth studies. Can. J. For. Res. , 10, 71-77.
57. Yamaguchi, D. K. (1991). A simple method for cross-dating increment cores from living trees. Can. J. For. Res. , 21, 414-416.