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Abstract

In this paper, it is shown that discrete equations with Hilbert ma-
trix operator, circulant matrix operator, conference matrix operator,
banded matrix operator and sparse matrix operator are ill-posed in
the sense of Hadamard. These ill-posed problems cannot be regular-
ized by Gauss Least Square Method (GLSM), QR Factorization Method
(QRFM), Cholesky Decomposition Method (CDM) and Singular Value
Decomposition (SVDM). To overcome the limitations of these meth-
ods of regularization, an Eigenspace Spectral Regularization Method
(ESRM) is introduced which solves ill-posed discrete equations with
Hilbert matrix operator, circulant matrix operator, conference matrix
operator, banded matrix operator and sparse matrix operator. Unlike
GLSM, QRFM, CDM, and SVDM, the ESRM regularizes such a sys-
tem. In addition, the ESRM has a unique property, the norm of the
eigenspace spectral matrix operator x(K) = ||[K~!K|| = 1. Thus, the
condition number of ESRM is bounded by unity unlike the other regu-
larization methods such as SVDM, GLSM, CDM, and QRFM.
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1 Introduction

Many mathematical problems are classified to be ill-posed problems, for in-
stance, the discretization of linear ill-posed problems like the Fredholm integral
equations of the first kind with a smooth kernel is ill-posed, hence referred to
as a linear discrete ill-posed problem [1]. Moreover, image processing problems
are mostly ill-posed, that is, when a blurred text or image is produced. In such
cases, the image need to be reconstructed to produce a clear image. This study
is concerned with regularization of such linear discrete systems.

Given a system of linear equations A : X — Y defined by
Ax = b, (1)

where A is a matrix operator R™ x R"™ from a domain set X into a codomain
set Y, x C X is a column vector R™ x 1 and b € Y is also a column vector
R™ x 1 is well-posed in the sense of Hadamard if
1) A is an surjective operator. Thus, the solution to the discrete equation (1)
exists.
2) A is injective operator. Thus, there is a unique solution to the discrete
equation (1).
3) The inverse, A™' :' Y — X is continuous. Thus, the solution to the
equation (1) is stable. [2]

Although Hadamard provided the criteria for detecting ill-posed problem
but he did not provide any method of solving such a problem. The question of
restoration of well-posedness of an equation was problem at heart of Mathe-
maticians in the beginning of the 20th century. Lavrentiev observed well-posed
discrete equations as a system whose solution is sought on a compact subspace
of a topological space which maps to another compact topological space. This
type of well-posedness is generally termed as conditionally well-posed discrete
equations [14].

Based on the varying definitions of well-posedness of discrete equations,
Tikhonov defines the solution space M as a compact set which is a subset
of the Euclidean space but there is no restriction on the data function, the
vector that appears on the right hand side of equation (1). The Tikhonov and
Lavrentiev observations of well-posedness are generics definition of Hadamard
definitions. On the other hand, if one or more of the conditions stated above is
violated by a discrete equations then the equation is said to be ill-posed [15].
Equation (1) may have either no solution, or infinitely many solutions, or a
unique solution.
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In 1944, Tikhonov first constructed an iterative method which involves a
regularization parameter for regularizing ill-posed discrete equations. There is
no unique choice of value of this parameter of even the same set of problems.
In addition, Tikhonov regularization method cannot restore well-posedness of
a discrete equation which does not have a solution. Ill-posed discrete equa-
tions can be regularized either by a direct approach or an iterative approach.
Some direct regularization methods like Gauss Least Square Method (GLSM)
8], QR factorization Method (QRFM) [13], Singular Value Decomposition
Method (SVDM) [16] and Cholesky Decomposition method (CDM) [10].

Theorem 1.1 (Gauss Least Square Method) If A is an m X n matriz
with rankA = n, then AT A is nonsingular and the discrete equation (1) has a
unique least squares solution given by

7= (ATA)ATD
[3]

The GLSM fails to solve the problem of stability and also performs poorly
when solving underdetermined discrete equations. The GLSM though reg-
ularise the system but the operator maintain to be unstable which fails to
satisfy the stability condition for a well-posed system. In the work of [17, 19]
the GLSM has been extended to meet the lipchitz condition to satisfy the
boundedness condition.

Theorem 1.2 (QR Factorization Method) Let A be a m x n matriz
with entries in F' and linearly independent columns. Then there exist a n X n
matriz R and m X n matriz Q), both having entries in F', such that

1) A=QR

2) QQ =1,

3) R is a nonsingular upper triangular matriz with ri; > 0
4) The columns of Q are an orthonormal basis for R(A).
6) Q and R are unique. [7]

In the work of [21], the QR decomposition has been merged with the
Cholesky decomposition method to provide a more faster algorithm in com-
putations. The matrix operator R, the upper triangular matrix, is closed in
R™. We can see that theorem (1.2) dwells on the existence of the solution to
a discrete equation. QRFM restores only the existence and the uniqueness of
the discrete equation. Also, the QRFM requires the matrix operator of the
discrete equation given to be a linearly independent matrix operator [12]
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Theorem 1.3 (Singular Value Decomposition Method) Let A be an
m X n matrixz. There exixts an integer r,oq > sigmasg > - -+ > sigma, > 0, an
m x m unitary matriz U, an n X n unitary matriz V', and an m X n matriz S,
all of whose entries are 0 except S;; = 04,1 =1,2,---,r such that

A=USvH 4]

In the work of [20], the SVDM has been applied in a correspondence anal-
ysis using R. On the other hand, the SVDM do not produce a stable results
dealing with discrete equations with Rank(A) < n or infinitely many solution
or no no solution. The SVDM mostly have problems with the loss of small
singular values thereby giving undesirable solutions in a functional space [9, 13].

Theorem 1.4 (Cholesky Factorization Method) Given a symmetric pos-
itive definite matriz A, there exists a lower triangular matriz L such that
A= LLT, where L is the lower triangular matriz (Cholesky factor) and LT is
the Cholesky factorization of A.  [11]

the Cholesky decomposition do not have a unique Cholesky decomposition
for matrices that are not hermitian and positive definite in nature. Also, the
CDM requires the matrix operator to be a symmetric positive definite matrix
operator [10, 18]. This therefore suffices that the Cholesky method is unable
to regularize some matrix operators and hence may still be ill-posed in the
sense of Hadamard.

All these regularization methods in restoring the well-posedness of the dis-
crete equation (1), fail to restore the well-posedness of a discrete equation [3].
Even a discrete equation with a sparse matrix operator, these existing methods
of regularization fail to restore the stability of the solution of the equation. In
numerical analysis, matrix operators with large condition number are prone to
large numerical errors and also very sensitive to variations in either the right
hand side or even the matrix operator of equation (1) [5].

In addition, the stability of the discrete equation with Hilbert matrix, cir-
culant matrix, conferences matrix, banded matrix could not be resolved by
GLSM, QRM, SVDM, and CDM on the grounds that, after the applications
of these methods to the discrete equation, the regularized matrix operator
is nearly singular and generally attributed to large condition numbers. This
makes these existing methods not reliable for approximating solution of dis-
crete equations.

In the area of application, the GLSM, QRFM, SVDM, and CDM have not
been much consistently used to regularize a discrete equation with perturbed
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right hand side b in equation (1) [15]. Nothwithstanding, the populous matrix
operators like Hilbert matrix operator, Conference matrix operator, Circulant
matrix operator, and Banded matrix operator occurring in a discrete equation
have not been looked at and then even talk about their regularization process
visa-vis regularization method. The Sparse matrix operator occurring in a
discrete equation which is commonly studied many authors accross the globe,
when solved with SVDM, GLSM, CDM, and QRFM, do not yield the desired
solution in functional space.

In order to overcome the myraids of ill-posed discrete equations raised in
the method of regularization which solves these problems is paramount. A
method devoid of computational errors or little computational errors is inter-
esting and must be focus point of regularizing discrte equations. This paper
seeks to Introduce a new regularization method, ”the Eigenspace Spectral Reg-
ularization Method (ESRM)” for solving ill-posed discrete equations and check
how efficient the ESRM is compared to the existing regularization methods.

The paper is organized in this order. Section 1 contains a background to ill-
posed problems. Also, in section 2 we present the drawbacks of GLSM, QRFM,
SVDM, and CDM when they are applied in regularizing discrete equations.
Section 3 introduces the Eigenspace Spectral Regularization Method (ESRM)
and apply it to regularize discrete equations in which the GLSM, QRFM,
SVDM, and CDM can not solve. In addition, we also compare ESRM with
GLSM, QRFM, SVDM, and CDM. Finally, section 4 contains the conclusion
of this paper.

2 The IllI-Posed Linear Discrete Equations and
Drawbacks of Some Existing Methods

In this section, the highlights definitions that are relevant to establishing ill-
posed discrete equation and regularization of such ill-posed discrete equation.
In the next section, the rigorous proofs for ill-posed discrete equation are pro-

vided.

2.1 IllI-Posed Discrete Equations

In this subsection a number of discrete equations are discussed. We in this
case prove the type of ill-posedness of the discrete equations in the Hadamard
sense.
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Example 2.1 Consider the discrete equations below

r+y =1
r—y =3 (2)
—r+ 2y = -2

To determine there is a solution to equation (2), the The augumented
matrix of equation (2) is

[A|b] = 1 —-191 3

and its corresponding reduced row-echelon form is

1 of 2
Al =10 1]-1
0 0f 2

By the Rouche-Capelli theorem, the discrete equation (2) does not have a
solution in R? since the rank of the matrix A = 2, which is less than the rank
of the extended matrix, k = 3. Hence the discrete equation (2) is ill-posed in
the sense of Hadamard.

Example 2.2 Also, consider the discrete equattion
r+3y+22=1
20 +8y +62 =6 (3)
r+2y+z=1
Similarly, the discrete equation in (3) does not have a solution in R, on the

grounds that, the rank of the matrix is » = 2, which is less than the extended
matrix. Hence the discrete equation (3) is ill-posed in the sense of Hadamard.

Example 2.3 consider the discrete equation below

T+2y+z4+w =8
r+2y+2z—w=12 (4)
20 +4y + 6w =4
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Similarly, the discrete equation in (4) does not have a solution in R®. Hence
the discrete equation is ill-posed equation in the sense of Hadamard.

Example 2.4 consider the discrete equation below

—3x — 5y + 362 =10
—xr+T72z =5 (5)
r+y—10z =—-4

The reduced row-echelon of the discrete equation in (5) is

1 0 —701-5
[Ap] =] 0 1 =3} 1
00 oo

Here, the z is arbitrarily. This implies that the discrete equation in (5)
has a solution but not unique (infinitely many solutions). Hence, the discrete
equation in (5) is ill-posed in the sense of Hadamard.

Example 2.5 consider the discrete equation

.T1+.’L'4:4
2{L‘3+JZ6:6 (6)
21’4:2

Imilarly, the discrete equation in (6) has no unique solution in R®. Hence,
the discrete equation is ill-posed in the sense of Hadamard.

Example 2.6 Let us again consider the discrete equation with Hilbert ma-
trix operator.

P
TTY T
11 1
Crd syt —z=2 7
2x+3y+4z (7)
(SR U S
T+ -y+-z=
37T YT

The discrete equation (7) has a unique solution but not stable because it
has cond(A) = 504. Hence, the discrete equation is ill-posed in the sense of
Hadamard.
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Example 2.7 Considering also the discrete equation with banded matrix

operator

z—8y+0z4+0w =3
20 —2y — T2+ 0w = =5 (8)
Ox+7y+3z—6w =1
0Oz +0y+8z—T7Tw =6

The discrete equation (7) has a unique solution but not stable since it has
cond(A) = 12.6139. Hence, the discrete equation is ill-posed in the sense of

Hadamard.

Example 2.8 A discrete equation with conference matriz operator

Oz+y+z2z4+w=4
r+0y+z—w=>5 (9)
r4+y+0z4+w=3
r—y+z+0w=2

Similarly, we can see that although the discrete equation in (9) has unique
solution but not stable as cond(A) = 2.2361. Hence it is ill-posed in the sense

of Hadamard.

Example 2.9 let us consider the discrete equation with a sparse matrix

operator

1.1z, +0.527 =3

1.9z + 0.5, =2

2.6x3+0.5207 =5

7.8x3+ 0.624 = —1 (10)
1.5x4+2.7Tx5 =6

1.6x1 + 0.425 = —4

0926+ 1.72; =9

Similarly, we realize that the discrete equation in (10) has unique solution
but not stable as cond(A) = 44.4164. Hence it is an ill-posed discrete equation

in the sense of Hadamard.

Example 2.10 Finally we also consider the discrete equation with circulant

matriz operator

r+2y+3z+4w = -1
20 +y+42+3w =1 (11)
r+4dy+224+w =3
dr+3y+2+2w =5
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Similarly, the discrete equation in (11) also has unique solution but not
stable as cond(A) = 16.4375. Hence it is ill-posed in the sense of Hadamard.

2.2 Drawbacks of Existing Methods of Regularizing Dis-
crete Equations

In this subsection the shortcomings of GLSM, QRFM, SVDM and CDM are
showed. Firstly, the shortcomings of GLSM is discussed in detail.

2.2.1 Gauss Least Square Method

Applying the GLSM to the discrete equation (2), we observed that the GLSM
operator is

—2
ATA =
-2 6

The GLSM operator AT A yields a unique solution, that is x = 1.7143y =
—0.4286, on the grounds that |AT A| = 14, which is nonsingular. On the other
hand, cond(AT A) = 3.5, which is far from one. This implies that the solution
of the discrete equation in (2) is not stable when solved, using the GLSM.
Hence, the GLSM does not restore the well-posedness of the discrete equation
in (2).

Also in (3), the existence and uniqueness of solution to this equation is met
but
cond(AT A) = 227037379566481184

and also
|ATA] = —0.000000000000011657341758565503671

We can see that not only the condition number is very large (far from
unity) but also the determinant of GLSM operator is nearly singular. This
implies instability of the solution of discrete equation in (3), when solved by
GLSM. Hence, the GLSM does not yield well-posed equation when applied to
the discrete equation in (3).

Similarly the discrete equation in (4), the

cond(AT A) = 76509541981751072

Also it has
|ATAl =0
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thus, could not restore the uniqueness condition of well-posedness, and
again, the condition number is large and fails to meet the third requirement of
well-posedness. Hence the GLSM fails to regularize the discrete equation in (4).

Moreso, given the discrete equation in (5), it has
cond(AT A) = 1822.2651

which is large and fails to meet the third requirement of well-posedness.
Hence the GLSM fails to regularize the discrete equation in (5).

Similarly given the discrete equation in (6), the
cond(AT A) = oo

Also it has
|ATA| =0

thus, fails to restore the uniqueness condition of well-posedness, and again,
the condition number is very large and hence fails to meet the third requirement
of well-posedness. Hence the GLSM fails to regularize the discrete equation in

(6)-
Also, given the discrete equation in (7), it has
cond(AT A) = 274635.5061

thus, a large condition number which fails to meet the third condition of
well-posedness. Hence the GLSM fails to regularize the discrete equation in (7).

Again, in equation (8), the
cond(AT A) = 93955.72

which is large and fails to meet the third condition of well-posedness. Hence
the GLSM fails to regularize the discrete equation in (8).

Considering also, equation (9), we realize that
cond(ATA) =5

which is large and fails to meet the third condition of well-posedness. Hence
the GLSM fails to regularize the discrete equation in (9).
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Again, in equation (10), the
cond(AT A) = 1972.8151

which is also large and fails to satisfy the third condition of well-posedness.
Thus, the GLSM fails to regularize the discrete equation in (10).

Finally, given the discrete equation in (11), the

cond(AT A) = 50

which is large and fails to satisfy the third condition of well-posedness.
Thus, the GLSM fails to regularize the discrete equation in (11).

2.2.2 QR Factorization Method

In this subsection the concentration is on the regularization of discrete equa-
tions discussed in previous section using the QRFM.
Using the QRFM, we observed that

—1.7321 1.1547
R = 0 2.1602
0 0

)

which is not feasible to proceed with this method. Hence, the QRFM fails
to regularize the discrete equation in (2). Similar observations were made when
applying the QRFM to the discrete equations in (3), (4), and (6).

Applying the QRFM to the discrete equation in (5), the computed

3.3166 4.8242 —37.6889

R= 0 —1.6514  4.9543
0 0 —0.0000
and the unique solution x = —4, y = 2 and z = 0. However, the stability

of this solution of equation (5) is determined by

cond(R) = 231004359338148256
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which is very large and far from unity. Moreover, the determinant of the
operator in the QRFM is

|R| = 0.000000000000007008

which is nearly singular. All these results imply instability of the solution
of equation (5) yield by the QRFM. Hence, QRFM cannot regularize the dis-
crete equation in (5) in the sense of Hadamard.

Similar trends are observed on the stabilities of solutions of discrete equa-
tions in (7), (8), (9), (10) and (11) when solved by the QRFM. From the
foregoing analysis, the QRFM cannot regularize the discrete equations in (2)
to (11).

2.2.3 Cholesky Decomposition method

We apply CDM on the discrete equations in (2) - (11) in this subsection of the
paper. Applying this method to discrete equation in (2) the operator R could
not be computed since matrix A is not a positive definite matrix operator.
Similar challenge was encountered when applying the CDM to the discrete
equations (3), (4), (5), (6), (8), (9), (10), and (11).

Now Applying the CDM to the discrete equation in (7) gives the matrix
operator

1.0000 0.5000 0.3333
R = 0 0.2887 0.2887
0 0 0.0745

it was observed that

cond(R) = 22.8923

b

This implies that the CDM fails to restore the stability condition. There-
fore the discrete equation in (7) remains an ill-posed discrete equation in the
sense of Hadamard.

2.2.4 Singular Value Decomposition

The SVDM presents similar results, thus, it is able to resolve the existence and
uniqueness conditions of the discrete equations (2) - (11), but fails to satisfy
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the stability condition of well-posedness in the sense of Hadamard.

All these preliminary results signifies that the GLSM, SVD, QR factorisa-
tion and Cholesky decomposition all fails to restore the stability of the Hilbert
and banded matrix operator. They also fail to regularize discrete equations
with a conference matrix operator and also circulant matrix operator. Thus
in the sense of Hadamard all of these regularization methods produces an
ill-posed discrete equation.

3 Main Results

This section introduces the Eigenspace Spectral Regularization Method (ESRM)
and also proved. Then the ESRM is applied to regularize the discrete equa-
tions in (2) - (11). We discuss in detail the three conditions of well-posedness
are restored using the ESRM.

Theorem 3.1 (The Eigenspace Spectral Regularization Method) Suppose
a discrete equation (1) where A is the matrixz operator, X is an m x 1 vector
and b 1s also an m x 1 vector. The eigenspace spectral matrixz operator, K =
eigenspace of Ay, where Ay = A*A. Then a discrete equations in (1) has a
stable unique solution given by

= (K*K)'K*A, (12)
where N\ is the spectrum of Ay

Proof: Given a discrete equation (1), setting eigenspace of K = eigenspace of A;
and A the corresponding spectrumof Ay, where A; = A*A. Replacing A and b
in equation (1) by K and A respectively, we have:

Kz =An

Multiplying both sides of the above equationby its adjoint operator of K*
yields

K*'Kx = K*A

Since the columns of K are linearly independent, thus, ||K|| # 0, it implies
that K ! exists. This suffices that

(K*K)'K'"Kz = (K*K) ' K*B
implies

X = (K*K)"'K*B
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This is a stable unique solution. In matrix theory A* = AT, where AT is the
transpose of the matrix operator A.

Applying the ESRM to a disceret equation (2), we observed that

Ay = ATA = (13)
-2 6
and
—0.8944 —0.4472
= , (14)
—0.4472  0.8944
and
2.0000
= (15)
7.0000

We can see that ESRM matrix operator is

o 1.0000 0
(KTK) " =
0 1.0000
and
—4.9193
KTA =
5.3666
The solution is
—4.9193
:)j g
5.3666

this implies that using the ESRM x = —4.9193 and y = 5.3666. There is a
solution to the discrete equation in equation (2). Since the determinant of the
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operatot in ESRM is nonzero, it implies that the above solution is unique.
Also, the condition number is

cond(K) =1

This implies that the above solution is stable. Hence, the ESRM regular-
izes a discrete equation in (2). Thus, all the three conditions of well-posedness
are met. Hence, solution of a discrete equation in (2) is well-posed using ESRM.

Also applying the ESRM to a discrete equation (3), we observed that yields

—0.5774 —0.7878 0.2145
K= 0.5774 —0.2081 0.7895
—0.5774 0.5797  0.5750

and

—0.0000
N = 0.5102
123.4898

therefore, the solution to the discrete equation (3) will be computed simi-
larly as;
—71.0023
r=| 71.4800
71.4092

this implies that using the ESRM z = —71.0023. and y = 71.4800 and
z = 71.4092. Thus there is a solution to the discrete equation in equation (3).
Since | K| = 1, it implies that the above solution is unique.

Also, the condition number is

cond(K) =1

This implies that the above solution is stable. Hence, the ESRM regular-
izes a discrete equation in (3). Thus, all the three conditions of well-posedness
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are met. Hence, solution of a discrete equation in (3) is well-posed using ESRM.
Applying the ESRM to the discrte equation in (4)
0.2301  0.8944 —0.2466 0.2937

0.4602 —0.4472 —0.4932 0.5874
—0.7670 —0.0000 —0.6384 0.0648

—0.3835 0 0.5370 0.7514
and
—0.0000
—0.0000
A =
11.6354
61.3646

the solution to the discrete equations (4) then becomes

—32.4562
—0.0000
25.5248
46.8624

So by the ESRM, the discrete equation (4) satisfies the existence condition
of well-posedness in the sense of Hadamard.

By the ESRM, it was observed that |K| = 1. Thus, the solution of the
discrete equation in (4) is unique.

Also, by the ESRM

cond(K) =1

b

Thus, the discrete equation is stable. Hence, the discrete equation (4) is a
well-posed system in the sense of Hadamard by the ESRM.
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Similarly, applying the ESRM to the discrete Equation (5) with the ESRM
matrix operator

—0.9113 —-0.4027 —0.0854
K =1 -0.3906 0.9114 —0.1300
—0.1302 0.0851  0.9878

yields a nondegenrate system, on the grounds that |K| = —1.

Also
cond(K) =1

)

that is, a stable solution. Therefore by the ESRM the discrete equation (5)
is homeomorphic system of linear equation in the Hadamard sense.

We also realised that example 2.20 whose matrix operator is a sparse matrix
failed to satisfy the second and third conditions of well-posedness in the sense
of Hadamard. All existing regularization methods also failed to restore the
well-posedness of example 2.20. We observed that the ESRM whose matrix
operator is given by

Moreover, applying the ESRM to the discrete equation (6) with the ESRM
matrix operator

0 0 0 0.9732 0 0.2298

0 1.0000 0 0 0 0

K- 0 0 0.4472 0 0.8944 0
0 0 0 —0.2298 0 0.9732

1.0000 0 0 0 0 0

0 0 —0.8944 0 0.4472 0

The ESRM matrix operator has |K| = —1, thus the discrete equation has
a unique solution

Also,

cond(K) =1
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Thus, the ESRM has a stable solution. Hence, the discrete equation (6) is
a homeamorphic system of linear equation in the sense of Hadamard.

Applying the ESRM to the discrete equation (7), we obtain the ESRM
matrix operator as

—0.1277 0.5474 0.8270
K = 0.7137  —0.5283 0.4599
—0.6887 —0.6490 0.3233

we observed that the ESRM matrix operator has |K| = —1, thus, the dis-
crete equation (7) has a unique solution.

Also,

cond(K) =1

)

thus, the discrte equations (7) has a stable solution. Hence the discrete
equation (7) is a homeomorphic discrete equation in the Hadamard sense.

Again, applying the ESRM to the discrete equation (8), the ESRM matrix
operator is given as

—0.9305 0.3564 —0.0401 0.0739
—0.1198 —0.1134 0.8504 —0.4996
—0.2295 —0.5170 —0.4907 —0.6628
—-0.2590 —-0.7699 0.1857  0.5528

Using the ESRM, we observed that |K| = —1, thus the discrete equation
(8) has a unique solution.

Also,

cond(K) =1

b

thus the discrete equation (8) has a stable solution. Therefore, the discrete
equation (8) is a well-posed discrete equuation in the Hadamard sense.
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In addition, applying the ESRM to the discrete equation (9), we obtain the
ESRM matrix operator as

—0.7071 0 0 —0.7071
0 0.7071  0.7071 0
K —
0.70710 0 —0.7071
0 —0.7071 0.7071 0
we observed K has |K| = —1 implies that the discrete equation (9) has a
unique solution.
Also,
cond(K) =1

b

Thus the discrete equation has a stable solution. Hence the discrete equa-
tion (9) is homeomorphic in the Hadamard sense.

Moreover, applying the ESRM to the discrete equation (10), we obtain the
ESRM matrix operator as

0.0582 —0.0866 0.3457  0.8704  0.3210  0.0943 0.0002
—0.0366 —0.1091 0.7128 —0.4766 0.5016  0.0001  0.0003
—0.0601 0.0103  0.0125 0.0085 —0.0124 —0.0383 0.9972
K= 0.8299 —0.2611 —0.0353 —0.1027 —-0.0437 0.4737 0.0717
—0.4582 0.1510 —-0.0174 —-0.0378 —0.0119 0.8748 0.0048
—0.2720 —0.8517 —0.3541 —0.0266 0.2729  0.0001 0.0005

0.1379  0.4051 —0.4953 —0.0504 0.7541  0.0004 0.0202

It is again observed that |K| = 1 implies that the discrete equation (10)
has a unique solution.

Also,

cond(K) =1
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Thus the discrete equation also satisfies the third condition of well-posedness.
Hence the discrete equation (10) is homeomorphic in the Hadamard sense.

Last but not the least, applying the ESRM to the discrete equation (11),
we obtain the ESRM matrix operator

—0.5478 —0.4471 —0.5000 0.5000
0.5478  0.4471 —0.5000 0.5000
0.4471 —0.5478 0.5000 0.5000
—0.4471 0.5478  0.5000  0.5000

We observed that |K| = 1, which implies that the discrete equation (11)
has a unique solution.

Also,

cond(K) =1

bl

thus an inversely bounded solution. Thus the discrete eqution (11) is a
homeomorphic system of linear equation in the Hadamard sense.

3.1 Main Findings in this Paper

We therefore represent the performance of the ESRM against the GLSM,
QRFM, SVDM, and CDM in regularizing the above discussed discrete equa-
tions in the tables below.

4 Conclusion

We observed that only ESRM is able to regularize discrete equations (2), (3),
(4), (5), (6), (7), (8), (9), (10), and (11). Thus, all three conditions of well-
posedness are restored in the sense of Hadamard. However, the existing meth-
ods of regularization: GLSM, QRFM, SVDM, and CDM failed to regularize
discrete equations (2 - 11). In addition, we observed that ESRM has a unique
property, the norm of k(K) = ||[K'K|| = 1. Thus, the condition number of

ESRM is bounded by unity unlike the other regularization methods such as
SVDM, GLSM, CDM, and QRFM.
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Table 1: Shows comparison of ESRM and GLSM, QRFM, SVDM, and CDM
for regularizing ill-posed discrete equations.

Matrix ESRM GLSM QRFM SVDM CDM
It Fail Fail Fail Fail
Reg- to to to to
r+y =1 ular- regu- regu- regu- regu-
rT—y = izes larize larize larize larize
—r+2y =-2
It Fail Fail Fail Fail
Reg- to to to to
r+3y+2z=1 ular- regu- regu- regu- regu-
20 + 8y + 62 =6 izes larize larize larize larize
r+2y+z2=1
It Fail Fail Fail Fail
Reg- to to to to
r+2y+z+w =38 ular- regu- regu- regu- regu-
rT+2y+2z—w=12 izes larize larize larize larize
20 +4y + 6w =4
It Fail Fail Fail Fail
Reg- to to to to
—3z — 5y + 36z =10 ular- regu- regu- regu- regu-
—r 472z =5 izes larize larize larize larize
r+y—10z2 = -4

References

[1] S.I. Kabanikhin, and I.V. Sergey, Inverse and ill-posed problems:theory
and applications, Walter De Gruyter, 55 (2011).

[2] S. V Sizikov and P. P. Yu, Well-posed, ill-posed, and intermediate prob-




22

Wireko, Barnes, Sebil and Ackora-Prah

Table 2: Continuation of Table 1
Matrix ESRM GLSM QRFM SVDM CDM
It Fail Fail Fail Fail
Reg- to to to to
1 +xy =4 ular- regu- regu- regu- regu-
2034+ 16 =6 izes larize larize larize larize
2:['4 =2
It Fail Fail Fail Fail
1 1 Reg- to to to to
T+ 2Y + 3% = 3 ular- regu- regu- regu- regu-
1 1 1 izes larize larize larize larize
- - 2.9
2:1: + 3y + 4z
= + = + ! 5
x4+ - —z =
37 T4V 7T 5
It Fail Fail Fail Fail
Reg- to to to to
r—8y+0z+0w =3 ular- regu- regu- regu- regu-
20 =2y — Tz 4+ 0w = =5 izes larize larize larize larize
Ox + 7y + 32z — 6w =1
Oz +0y+82—Tw =6
It Fail Fail Fail Fail
Reg- to to to to
Oz +y+z+tw=4 ular- regu- regu- regu- regu-
r+0y+2z—w=>5 izes larize larize larize larize
r+y+0z4+w=3
r—y+z+0w=2




Wireko et al. 2021

Table 3: Continuat

ion of Table 1

23

3r+4y+2z4+w =3
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