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Abstract

Climate models consistently project large increases in the frequency and magnitude of extreme 

precipitation events in the 21st century, revealing the potential for widespread impacts on various 

aspects of society. While the impacts on flooding receive particular attention, there is also 

considerable damage and associated cost for other precipitation – driven phenomena, including soil 

erosion and muddy flooding. Multiple studies have shown that climate change will worsen the 

impacts of soil erosion and muddy flooding in various regions. These studies typically drive erosion 

models with output from a single climate model or a few models with little justification. A blind 

approach to climate model selection increases the risk of simulating a narrower range of possible 

scenarios, limiting vital information for mitigation planning and adaptation. This study provides a 

comprehensive methodology to efficiently select suitable climate models for simulating soil erosion 

and muddy flooding. For a study region in Belgium using the WEPP soil erosion model, we compare 

the performance of our novel methodology against other model selection methods for a future 

period (2081 – 2100). The main findings reveal that our methodology is successful in generating the 

widest range of future scenarios from a small number of models, compared with other selection 

methods. This represents a novel targeted approach to climate model selection with respect to soil 

erosion by water but could be modified for other precipitation – driven impact sectors. This will 

ensure a broad range of climate impacts are simulated so the best- and worst-case scenarios can be 

adequately prepared for.

Key words: soil erosion; muddy flooding; climate modelling; soil erosion modelling; climate change.
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1. Introduction

Climate models provide projections of future climate required for various climate change impact 

studies. These studies inform policymakers on necessary adaptation measures to mitigate climate 

change impacts. Most global and regional climate models (GCMs and RCMs) consistently project 

large increases in the frequency and magnitude of extreme events, while average daily rainfall 

intensities are also projected to rise throughout the 21st century (IPCC, 2013; Zhang, 2013). This is 

because temperatures are expected to increase by between 1.8°C and 4°C by the end of the 21st 

century (IPCC, 2013), leading to an intensified global hydrological cycle (Zhang, 2012). Extreme 

rainfall is highly correlated to changes in temperature, largely because of the Clausius – Clapeyron 

(CC) relation where the saturated vapour pressure of the atmosphere is described to increase at an 

approximate rate of 7% for every 1°C warming or 7% K (Mullan et al., 2019). Furthermore, this rate is

even higher for rainfall intensity (e.g. Sun et al., 2007), with the most extreme precipitation events 

promoting an increase to 14% (Lenderink & Van Meijgaard, 2008).

These climatic changes have caused concern that processes driven by large-scale precipitation 

events, such as global soil erosion, will be exacerbated in future (e.g. Risbey and Entekhabi, 1996; 

Nearing et al., 2005; Scholz et al., 2008; Kundzewicz et al., 2009; Zhang et al., 2009). Soil erosion is 

already identified as one of the major environmental threats to arable land globally (Heitz et al., 

2009; Maeda et al., 2010; Nearing et al., 2005; Panagos et al., 2015). Global soil erosion rates have 

previously been estimated to be around 10.2 ha-1 yr-1 (Yang et al., 2003), with erosion by water 

accounting for the most significant loss of soil (Panagos et al., 2015; Verstraeten et al., 2003; Yang et 

al., 2003), contributing to approximately 55% of global soil erosion totals (Bridges & Oldeman, 1999).

Sediment loads and water discharge were previously found to change by 2% and 1.3%, respectively, 

for every 1% change in precipitation (Lu et al., 2013).

Climate change is therefore expected to continue to pose a serious threat to processes driven by 

large-scale precipitation events, with an increase in associated future financial costs. Consequently, 

there is a vital need to produce climate scenarios to assess how soil erosion and MF will be impacted

by a changing climate. Previous modelling of future soil erosion reveals projected increases in soil 

loss in many parts of the world by 2100. For instance, Li and Fang (2016) gathered 205 available 

results from other soil erosion modelling studies and 136 of these revealed erosion rates to increase 

across the world under future climate scenarios. Of these results, 49 show that soil erosion rates will 

increase by more than 50%. As a symptom of soil erosion by water within a certain geographical 

range, muddy flooding (MF) has also been projected to increase in magnitude (Mullan et al., 2016). 

MF is a term that describes runoff flowing from poorly vegetated arable land carrying large amounts 
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of soil as suspended sediment or bedload (Boardman & Vandaele, 2016) that induces damage to 

public infrastructure and freshwater systems further downstream. Mullan et al. (2019) projected an 

earlier and longer MF season for a hillslope in eastern Belgium, along with an increase in the number

of MF events each year. Total damages to private householders were previously estimated to range 

between €55 million to €165 million each year in Flanders, Belgium (Verstraeten and Poesen, 1999), 

with similar costs to public infrastructure. Total costs induced by water erosion globally are 

astronomically larger. Pimentel (2006) estimated total off-site water erosion costs of $2.3 billion yr-1 

for USA alone.

Despite this importance, there is currently limited methodological emphasis on how climate models 

are selected for modelling soil erosion. It is imperative that a thorough selection process is followed 

to select a manageable number of representative climate models for the study application. The 

Coupled Model Intercomparison Project Phase 5 (CMIP5) archive (Taylor et al., 2012) contains 

outputs from 61 different general circulation models, such that all projections cannot be included for

thoroughly studying the impacts of climate change. Constraints in computational and human 

resources mean that model choice must be limited to a practicable number, while an increase in the 

number of available models corresponds to an increase in the uncertainty remaining over future 

climate simulations. The uncertainty provided by the spread in climate model projections is a 

considerable concern in climate change impact studies, commonly larger than the uncertainty 

associated with model parameterisation and natural variability (Finger et al., 2012; Lutz et al., 2016; 

Minville et al., 2008).

The absence of strategic climate model selection for soil erosion and MF applications has prompted 

a thorough climate model selection process to be developed and followed in this research. This 

methodology is partly inspired by Lutz et al. (2016) to combine two commonly applied selection 

concepts, but modified to become more targeted for specific application to soil erosion and MF. This

is the primary aim of this research – to provide a comprehensive methodology to efficiently select 

suitable climate models for simulating processes driven by future large-scale precipitation events, 

with specific application to MF and soil erosion. It is intended that a wide range of sensible 

projections can be generated from a small number of models, such that the best- and worst-case 

future scenarios can be adequately prepared for without analysing dozens of model outputs. 
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2. Materials and Methods

2.1. Study Area

The Belgian loess belt (Figure 1) is an 8867 km2 plateau that gently slopes north with a mean altitude

of 115m. Belgium has a temperate maritime climate with mild winters and cool summers, influenced

by the North Sea and Atlantic Ocean. As determined from the E-OBS high-resolution (0.25°) gridded 

dataset over Europe (Haylock et al., 2008) between 1986 and 2019, mean annual temperatures 

range from 3.5°C in January to 18°C in July and August for the grid containing the study area 

(http://climexp.knmi.nl)  .   Rainfall has an even distribution throughout the year, with average annual 

rainfall amounts ranging from 520 mm to 960 mm in the study area (~ 55 mm to 75 mm per month). 

Belgium also possesses the highest density of cultivated land in the country (Beckers et al., 2018). 

Summer crops – such as maize, potatoes, and sugar beet – have increased in recent decades and 

now dominate the arable land in place of winter cereals. Cover crops such as mustard and phacelia 

are often encouraged to shield the soil during late spring and early summer while summer crops 

reach maturity (Bielders et al., 2003; Mullan et al., 2016).

This research focuses on a dry valley locally known as the ‘Heulen Gracht’ (50.76° N, 5.12° E) 
located within the 200 km2 Melsterbeek catchment in the Limburg province of Belgium. The Heulen 

Gracht is a prominent landscape for academic and community research on MF problems and 

solutions (e.g., Boardman & Vandaele, 2020; Evrard et al., 2007b, 2008), covering a 3 km2 (300 

hectares (ha)) area. This study focuses on the downstream half of the Heulen Gracht (approximately 

1.3 km2) to allow for precise drone measurements, such that an altitude of between 107 and 140 

metres (m) was determined. Soil sampling in this study revealed a topsoil consisting of an average 

17.5% sand, 75.1% silt, and 7.4% clay. Drone imagery also revealed that cropland covers 61% of the 

catchment surface, while grassland and orchards cover 27% and roads (1%) account for the 

remainder. The study area drains into Velm Village, which has a local reputation as a ‘devastated 

village’ after repeated flooding in recent decades. Two separate hillslopes have been selected for 

analysis in this study and the characteristics of each hillslope are described in Table 1. These 

hillslopes have been selected because they vary in steepness, length, crop management and 

mitigation measures.

2.2. Baseline Soil Erosion Modelling
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The Water Erosion Prediction Project (WEPP) model (Flanagan and Nearing, 1995; v.2008.907) is a 

spatially-distributed continuous simulation model, providing long-term simulations of soil erosion 

and deposition along with other key soil, hydrology, and plant components at hillslope, field and 

small catchment (< 260 ha) scales (Laflen et al., 1991; Ascough et al., 1995; Li et al., 2017). WEPP can

predict soil erosion, sediment transport, and deposition across the landscape by applying a steady-

state continuity equation to predict rill and inter-rill erosion processes. WEPP is widely applied 

within climate change – soil erosion research, with success demonstrated in a range of studies (e.g.

Nearing, 1998; Stolpe, 2005), not least to investigate MF for a hillslope in the Melsterbeek 

catchment in Mullan et al. (2016, 2019).

2.2.1. Soil

A 30 cm bulk soil sample was taken every 10 m at each hillslope using a soil auger, reaching a 

maximum depth of 150 cm (Appendix 1). Lab analysis of the collected soil samples revealed a topsoil

consisting of an average 17.5% sand, 75.1% silt, and 7.4% clay, which is consistent with previous 

topsoil sampling for the Heulen Gracht and other analogous catchments in the Belgian loess belt 

recorded in Evrard (2008). An average organic matter (OM) content of 4% is also consistent with 

results in Mullan et al. (2019) for an analogous catchment < 15 km away. Soil characteristics for the 

hillslopes are provided in Table 2. Critical shear, hydraulic conductivity, and rill and interrill 

erodibility values were estimated by WEPP. Estimated albedo was set at 0.1, CEC (meq/1) at 15, and 

initial soil saturation at 75% for each hillslope.

2.2.2. Slope

Slope profiles were established for both hillslopes following a high-resolution drone survey with an 

average ground sampling distance (GSD) of 2.3 cm. However, WEPP is incapable of processing slope 

data of this resolution for greater than 2 m length. WEPP allows up to 100 data points for both 

cumulative distance (ft) and slope (%), respectively, yet input value totals ≥ 50 tends to generate a 

distorted slope profile that produces misleading results. This limitation had not been previously 

reported in literature, perhaps owing to lower resolution data being used. To manage this, the 

maximum number of input values prior to distortion had been applied to simulate WEPP for each 

hillslope. Given that both hillslopes differ in length, the number of input values used to simulate 

6

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187



WEPP differs between each hillslope, such that the sampling distance is 2.3 m and 6.6 m for 

Hillslopes 1 and 2, respectively.

2.2.3. Land Management

Land use data between 2008 and 2018 had been collected from Geopunt Vlaanderen 

(https://www.geopunt.be/kaart), which is an opensource database provided by the Flemish 

Government. Crop rotation dates had been sourced by the local soil erosion expert, Dr Karel 

Vandaele. Plant growth parameters were calculated by WEPP for each crop without additional 

modifications (Flanagan and Nearing, 1995). The high-resolution imagery (GSD 2.3 cm) captured by 

the drone survey allowed for accurate measurements of the dimensions of certain features, such as 

a grass buffer strip or grassed waterway at the bottom of a given hillslope. Land management details

required to simulate WEPP for both hillslopes are displayed in Appendix 2.

2.2.4. Climate 

Baseline climate data were simulated using the stochastic weather generator CLIGEN (Nicks et al., 

1995), which draws on the statistical properties of observed climate measurements to generate 

long-term daily climate data. All required CLIGEN input parameters are presented in Table 3. 

Previous studies (e.g. Nearing, 1990) have demonstrated that the precipitation variables provide the 

greatest influence on soil loss and runoff projections using WEPP. Mean precipitation per wet day is 

calculated using monthly means, skewness, and standard deviation values. Series of wet and dry 

days are determined from the transitional probabilities of a wet day following a wet day (Pw/w) and 

a wet day following a dry day (Pw/d). Rainfall intensity is calculated from determinations of monthly 

half hour precipitation (MX.5P) and time to peak storm intensity (Time PK). Time PK is a 

dimensionless variable that represents an empirical probability distribution of the time to peak 

storm intensity as a fraction of storm duration, such that this is the only variable that is not 

calculated for each given month (Mullan et al., 2019; Yu, 2003). 

High resolution (0.25°) observed (E-OBS) daily temperature and precipitation data from 1950 - 2019

(Haylock et al., 2008) were downloaded from the Royal Netherlands Meteorological Institute (KNMI) 

Climate Explorer site (http://climexp.knmi.nl) for the grid containing the study area. The Niel-bij-Sint-

Truiden climate station (pinned in Figure 1, less than 3 km from the Heulen Gracht) provided sub-

hourly precipitation data between 2004 and 2014 to determine Time Pk and MX.5P. The remaining 
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parameters – solar radiation, wind speed and direction, and relative humidity – were sourced from 

nearby Maastricht, Netherlands. Equation 1 was used to convert relative humidity to dew point 

temperature (Alduchov & Eskridge, 1996). CLIGEN was simulated for 330 years to represent 30 

cycles of each 11-year crop rotation in WEPP, as recommended by Mullan et al. (2019).

TD=

243.04( ln( RH100 )+
(17.625∗T )

(243.04+T ) )

(17.625− ln(RH100 )−
(17.625∗T )

(243.04+T ) )
where TD = dew point temperature; ln  = natural logarithm; RH  = relative humidity; and T  = mean 

temperature.

2.3. Climate Model Selection

Due to computational and human resource limits, the range of viable soil erosion models is much 

narrower than the range of potential climate models. It is routine in previous climate change – soil 

erosion studies to select a small subset of climate models for impact analysis, yet the reasons for 

selecting specific models are often arbitrary or justified based on some simple statistical information 

relating to the models. We compare three different approaches in this study – each of which will 

now be outlined. The method that yields the widest range in projections for key soil erosion and MF 

diagnostics (while using an equal number of scenarios) will be determined the most desirable 

method for model selection. Although a wide envelope of uncertainty makes adaptation and 

planning decisions difficult, it is important to capture the widest possible spread to account for a 

wide array of potential climate futures – without the need to apply dozens of climate models to soil 

erosion impact studies.

2.3.1. Past – Performance and Envelope (PPE) Method

While climate models are commonly chosen based upon their past-performance (e.g., Pierce et al., 

2009; Biemans et al., 2013) – i.e., their ability to closely simulate present and near-past climate – it is

plausible that potential climate scenarios may be omitted. Alternatively, the ‘envelope approach’ 
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ensures that a broad range of projections for a given climatological variable is represented from a 

selected ensemble of models. However, by neglecting the skill provided by the model in simulating 

present and near-past climate, this approach assumes that all models are equally plausible. It is only 

mean annual changes that define model selection using the envelope approach (Lutz et al., 2016). 

With these limitations in mind, the revised methodology applied in this research (herein referred to 

as the PPE method) is inspired by the concept provided in Lutz et al. (2016) to combine the past-

performance and envelope approaches for selecting a manageable number of the most suitable 

climate models. PPE adapts and departs from the envelope approach in Lutz et al. (2016) to be 

specifically applicable to precipitation driven phenomena, while certain key precipitation 

characteristics necessary to run CLIGEN in WEPP are compared to assess model past – performance. 

Precipitation data (mm/day) from each model were downloaded for both a moderate radiative 

forcing scenario – representative concentration pathway (RCP4.5) – and a high radiative forcing 

scenario – RCP (RCP8.5) for the future period (2081-2100), with E-OBS 1950 – now 0.25° Europe 

observed data (1986-2005) used as a historical baseline. RCP4.5 provided 102 model runs, while 

RCP8.5 provided 77 model runs. For both RCPs, the average ΔP between the future period and the 

observed period was calculated for all models. All available initial condition ensemble members 

were included for all models since each initial condition ensemble member leads to a different 

future.

To avoid selecting outliers, the 10th and 90th percentile values for ∆ P for both RCPs were 

determined. These percentile values represented ‘wet’ (90th percentile) and ‘dry’ (10th percentile) 

sides. All models, irrespective of time step scale, were added to the initial selection of models to 

calculate the percentile values, thereby ensuring that all projected possible scenarios were fully 

represented. However, since all models must provide data at a daily time step for empirical – 

statistical downscaling at a later stage, the number of ‘available’ models for selection was 

subsequently significantly reduced. The three daily time step models with the lowest distance from 

each side were selected by subtracting the precipitation value (% mm/day) from each percentile 

value. The selected wet and dry models for RCP4.5 and RCP 8.5 are provided in Table 4. The reduced 

number of models available at a daily time step rendered overlap in selected models between ‘cold-

dry’ and ‘warm-dry’ models, and ‘cold-wet’ and ‘warm-wet’ models alike. In other words, the 

selection process was unable to explicitly distinguish between ‘cold’ and ‘warm’ models, instead 

providing more simply ‘wet’ and ‘dry’ sides for model selection.

Certain precipitation characteristics necessary to run CLIGEN in WEPP were compared between 

observed and historical modelled data for the selected models (Table 4). Any negative values were 
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converted to positive. The purpose of this step is to further narrow down model choice to models 

that most closely simulate observed metrics of precipitation that are important for MF. These 

metrics are the mean; SDev; skew; P(w/w); P(w/d); and number of wet days (NWD) as introduced in 

Table 3. Table 5 ranks the model performance, with first rank corresponding to least difference. The 

three models with the least difference in values for each RCP were selected, with the final selected 

models provided in Table 6. HADGEM2-AO (Table 4) was excluded from this step since we lacked the

necessary computer memory to extract data for this model.

2.3.2. Equilibrium Climate Sensitivity (ECS) Method

Selecting climate models based on the range of highest and lowest ECS values provided by the IPCC

(Kattsov et al., 2013) is popular in soil erosion research (e.g. Mullan et al., 2016, 2019). ECS considers

changes in water vapour, clouds, lapse rate, and surface albedo to calculate the warming for 

doubling of atmospheric CO2 compared to preindustrial climate once a new climatic equilibrium is 

achieved. Accordingly, ECS has been used to describe the severity of future climatic changes (Knutti 

et al., 2017). 

In keeping with the criteria applied for PPE, ECS values below the 10 th percentile and above the 90th 

percentile of all ECS values for the CMIP5 models were excluded. This provided a pool of 23 different

models. The three models nearest to the 10th percentile and the three models nearest to the 90th 

percentile were selected. Models nearest to the 10th percentile were simulated under RCP4.5, while 

the models nearest to the 90th percentile were simulated under RCP8.5. The selected ECS models are

displayed in Table 6.

2.3.3. Random Selection (RS) Method

Previous climate change impact studies have also included CMIP5 models with little to no 

justification of selection (e.g. Fazeli Farsani et al., 2019; Sardari et al., 2019; Sha et al., 2019). 

Consequently, three iterations of random model selection (herein referred to as RS) have been 

undertaken to determine whether different combinations of models selected at random can provide 

a wider range in soil erosion and MF diagnostics compared to the carefully tuned methodological 

approaches applied for PPE and ECS. Of course, a wider range in projections provided by RS would 

be simply by chance and it does not consider past performance, unlike PPE. The RS models are 

separated into three groups in Table 6 – Random Group 1 (RG1), Random Group 2 (RG2) and 
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Random Group 3 (RG3) - randomly assigned as RCP4.5 or RCP8.5. There is noticeably some overlap in

models selected from the PPE and ECS selection within the RS in Table 6.

2.4. Spatial Downscaling 

Climate information for each model from the Earth System Grid Federation (ESGF) (https://esgf-

node.llnl.gov/search/esgf-llnl/) is provided at GCM/ ESM grid box scale. These models aim to 

represent the full Earth system and use RCP scenarios to produce projections of future climate 

(Hawkins et al., 2013). Spatial downscaling is required to reduce the grid box scale to match the 

observed climate dimensions and this has been applied to all models (Table 6). The original grid box 

scale for each model is provided in Appendix 3.

Observed precipitation (1986-2005) was plotted against the ranked quantiles of the reference period

(1986-2005) for the selected models on a monthly basis using QQ-plots (Mullan et al., 2019). 

Polynomial functions were applied to the precipitation data for each model, and appropriate 

ordering (mostly third order) was applied to each model to avoid clearly anomalous precipitation 

data points. Alternatively, observed TMAX and TMIN were calibrated using the change factor (CF) 

approach, as outlined in Hawkins et al. (2013). The CF method (Equation 2) changes the simulated 

modelled output of mean and daily variance by using the observed daily variability (Arnell et al., 

2003; Gosling et al., 2009). This method was previously found to be more robust than those using 

model variability, such as the bias correction method (Hawkins et al., 2013). While the CF approach 

is widely accepted for calibrating temperature data, the positive definite nature of precipitation 

makes calibration more complex (Hawkins et al., 2013). 

T CF (t )=T RAW+
σT , RAW
σT ,REF

(OREF ( t )−T REF ) ,

where T CF( t) is the change factor for temperature; T RAW  is the raw modelled temperature for a 

future period and T REF is the observed, where the bar above the symbol represents the time mean;

σ T , RAW  indicates the standard deviation of the daily raw model output for the future period and

σ T , REF indicates the standard deviation of the daily model output for the reference period ; OREF  

indicates the daily observations.
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2.5. Temporal Downscaling

Temporal downscaling is also required to generate daily scenarios from monthly scenarios, which is 

necessary to perturb CLIGEN within WEPP. Temporal downscaling was applied to all models in Table 

6. Raw historical (1986-2005) and future (2006-2100) precipitation data from the selected models 

were downscaled to produce daily scenarios. Raw TMAX and TMIN data for the historical and future 

periods were also downscaled to produce daily scenarios, as needed for WEPP simulations. 

Transitional probabilities (Pw/w and Pw/d) were determined by categorising historical precipitation 

into wet months, dry months, and all months. Wet months were defined when monthly 

precipitation totals equalled or exceeded the 90th percentile of the mean monthly precipitation 

totals for each respective month during the reference period (1986-2005). Dry months were defined 

when monthly precipitation totals did not meet this percentile value. Linear relationships were 

established between historical monthly precipitation totals and the transitional probabilities for wet 

months, dry months, and all months. These transfer functions were forced with future monthly 

precipitation totals to calculate future transitional probabilities. Mean P was calculated following the

method in Zhang et al. (2004). Equation 3 was applied to calculate the unconditional probability of 

precipitation occurrence (π):

Π=
Pw ∕ d

1+
Pw
d

−Pw ∕ d

the new MeanP is then calculated using Equation 4:

Mean P=
Rm
Nd π

where Mean P is described previously,Rm is the projected mean precipitation totals for a given 

month, and N d π  is the expected number of wet days in the month.

Table 7 is adapted from Mullan et al. (2019) to detail how the CLIGEN parameters were adjusted to 

represent future climate changes. Aside from Mean P, P(W/W), P(W/D), AV TMAX, and AV TMIN, all 

remaining CLIGEN parameter monthly values were calculated by developing linear relationships 

using the historical data (1986-2005). A summary of all steps described for each model selection 

method is provided in Figure 2.
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3. Results 

3.1. Mean Annual Changes

Figures 3 and 4 demonstrate that PPE provides the widest range in mean annual precipitation 

response projected from six separate CMIP5 models, with ‘dry’ and ‘wet’ models determining the 

soil erosion and MF diagnostic response. 

PPE consistently projects a wider spread in future scenarios compared to ECS at both hillslopes. At 

Hillslope 1, the range (highest minus lowest model value) in sediment yield projections for PPE is 1.9 

t/ha higher (an increase by 271%) than ECS projections, while the range in soil loss is 1 kg/m2 higher 

for PPE compared to ECS (an increase by 243%). Similar observations in sediment yield and soil loss 

are illustrated for Hillslope 2 – the ranges in sediment yield and soil loss projected by PPE are 239% 

and 216%, respectively, higher than ECS. Differences in runoff projections are marginally closer, as 

PPE projects an increase compared to ECS by 39% and 173% at Hillslopes 1 and 2, respectively.

RG1 and RG2 projections are marginally closer to PPE. At Hillslope 1, the range in PPE sediment yield 

is higher than RG1 and RG2 by 26% and 37%, respectively. Observations at Hillslope 2 are similar – 

25% and 23% higher than PPE for RG1 and RG2, respectively. Differences in soil loss projections 

between both methods closely reflect differences in sediment yield observations. While PPE also 

demonstrates the widest range in runoff at Hillslope 2, RG2 provides the widest range at Hillslope 1. 

PPE runoff projections reveal a narrower model spread by 20% compared to RG2 at Hillslope 1.

3.2. Return Periods

Return period analysis reveals important information concerning the frequency and magnitude of 

events. Return period intervals of 2, 5, 10, 20, 25, 50 and 100 years are displayed for each model 

selection method in Table 8. 

As for mean annual projections (Figures 3 and 4), Table 8 reveals that PPE frequently generates the 

widest model response for sediment yield at both hillslopes. While this is typically observed for all 

return period intervals, differences in projections between each selection method are most clearly 

represented at a 1 in 100-year event. For a 1 in 100-year event at Hillslope 2, the range in sediment 

yield for PPE is higher than ECS, RG1, and RG2 by 20.2 t/ha, 18.9 t/ha, and 11.5 t/ha, respectively. 

RG2 sediment yield return periods are closest to PPE, with only marginal decreases from PPE at 
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Hillslope 2. However, unlike for Hillslope 2, PPE is unable to provide the widest spread in sediment 

yield projections for all return periods at Hillslope 1. This is observed for RG1 where the range in 

sediment yield is higher than PPE by 3.7 t/ha, despite RG1 projecting among the lowest sediment 

yield at Hillslope 2 (28.8 t/ha). 

Table 8 also reveals that RG2 generates the widest response in daily precipitation for all return 

period intervals at both hillslopes, closely followed by PPE. The highest difference between these 

methods is observed for a 1 in 50-year event, where daily precipitation for RG2 exceeds PPE by 11.1 

mm. ECS consistently projects the lowest daily precipitation for all return periods at both hillslopes. 

4. Discussion

4.1. PPE Success

As shown in Figures 3 and 4, selecting climate models based on most increased wetness and least 

increased wetness distinctly provides a broader range in projected soil erosion diagnostics compared

to selecting models based on highest and lowest ECS values. PPE also largely demonstrates a wider 

spread in projections compared to almost all random scenarios, with only minor exceptions. To this 

end, PPE is successful in generating the widest range of sensible future scenarios, which has not 

been achieved elsewhere for modelling soil erosion by water. 

4.2. Precipitation Variability Drives Soil Erosion Response

Mullan et al. (2019) previously found that model projections of rainfall intensity (Mx.5 P) correlated 

very strongly with projected sediment yield for a hillslope in Flanders, such that this variable alone 

could confidently explain future sediment yield projected by each model. In this research, 

differences in the range of sediment yield and soil loss for each model selection method is best 

explained by both SDEV P and Skew P together, where Figure 5 closely resembles sediment yield and

soil loss results in Figures 3 and 4. The remaining precipitation variables (e.g., Mx.5 P, Mean P, P(W/

D), P(W/W), Time Pk) make relatively minor contributions in separating the range in projections 

provided by model selection methods. This is consistent with findings in Zhang (2012) where a larger

SKEW P combined with a larger SDEV P typically provide more events with greater magnitudes of 

daily precipitation in WEPP, while the opposite was true with a smaller SKEW P and SDEV P. In 

capturing models that project the most and least increased wetness, PPE returns the widest range in
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SDEV P and Skew P, which in turn provides the widest range in sediment yield and soil loss 

projections. While the impact of SDEV P is less clear for runoff, there also appears to be some 

correlation in runoff distributions when comparing Figures 3 and 4 to Figure 5. These results suggest 

that the variability in the probability of a wet day occurring within a given month largely determines 

the response for key soil erosion diagnostics in WEPP.

Though RG2 narrowly provided a wider runoff distribution than PPE at Hillslope 1, precipitation 

variability also adequately explains the wide range generated by RG2 and PPE compared to other 

methods. While the model difference in RG2 mean annual precipitation is considerably higher 

(80mm) than PPE (Table 9), all remaining model selection groups also provide higher mean annual 

precipitation ranges such that precipitation amount alone cannot explain these results. Instead, 

mean annual precipitation and Skew P together explain this runoff response. Model distributions of 

Skew P for PPE and RG2 are considerably higher than all remaining methods (Table 9). For instance, 

while ECS displays a higher range in mean annual precipitation and a similar SDEV P, a much lower 

Skew P value (Table 9) dictates that model variance in runoff projections is 2.88 mm and 5.52 mm 

lower than PPE and RG2, respectively, at Hillslope 1 (Figure 3). Differences in SKEW P also determine 

the increased range in daily precipitation for RG2 and PPE compared to other selection methods for 

all return periods (Table 9).

4.3. Impact of Hillslope Characteristics

Differences in hillslope characteristics may support explanations for variance in runoff projections 

between PPE and RG2 at both hillslopes. As introduced in Table 1, Hillslope 1 has an average slope 

gradient of 8.1° and a 21 m wide grass buffer strip, while Hillslope 2 has an average slope gradient of 

5° and a 3.1 m wide grassed waterway. It is possible that the steeper slope gradient at Hillslope 1 

accentuates the impact of precipitation amount to determine runoff response. It is also intuitive to 

suggest that the expansive area of grassland is more effective in reducing runoff volumes under 

lower precipitation amounts. The role of grassland in increasing surface roughness has been 

previously discussed for similar studies (Evrard et al., 2008), with runoff reductions of around 90% 

reported elsewhere (Schmitt et al., 1999). Consequently, a higher range in mean annual precipitation

may ensure that RG2 projects a wider model spread in runoff response compared to PPE at Hillslope 

1, despite a narrower range in Skew P. Conversely, the reduced slope gradient at Hillslope 2 may 

decrease the influence of mean annual precipitation in determining runoff response, such that the 
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impact of a higher Skew P range for PPE may become more dominant. The 3.1 m wide grassed 

waterway may be insufficient to play any discernible role in reducing runoff volumes. 

Similar analysis may be attributed to the higher sediment yield projections for a 1 in 100-year event 

at Hillslope 1 for RG1 compared to PPE. RG1 generates the widest response in precipitation amount 

of all methods, while possessing moderately high SDEV P values (Table 9). These values may elicit a 

higher sediment yield response at the steeper sloped Hillslope 1, while the relative influence of a 

moderately low range in Skew P increases at the more gently sloped Hillslope 2 (Table 9). The 

influence of these precipitation variables for different hillslope gradients remains speculative and 

should be further studied to confidently ascertain anomalies observed for RG1 and RG2.

4.4. Addressing Limitations

Unlike PPE, ECS values provided by the IPCC (Kattsov et al., 2013) do not discriminate between 

different ensemble members and the range of initial conditions provided by each model. To this end,

ECS is inherently unlikely to be capable of generating the same range in projections as PPE with a 

smaller pool of available models. However, this caveat does not limit results in this study. Instead, 

this supports PPE for selecting suitable climate models to model geomorphic processes determined 

by precipitation, such as soil erosion on cultivated fields. 

As suggested in Section 4.3, the relative influence of mean annual precipitation amounts and the 

variability in monthly precipitation together with hillslope characteristics (e.g., slope gradient; land 

management) in providing runoff discrepancies between hillslopes in WEPP should be further 

investigated. Results in this study could not conclusively determine the cause for performance 

differences in model selection groups for separate hillslopes.

It should be cautioned that this study only compared ECS and random model selection against PPE, 

considering that the former two methods are commonly chosen for hydrological climate change 

impact studies. Having demonstrated success in this study, it may be worthwhile to compare PPE 

against other popular selection approaches (e.g. Houle et al., 2012; Evans et al., 2013). However, 

since PPE represents a blend of two sensible selection approaches and is carefully tailored for 

processes driven by large scale precipitation events, the wide range provided by the selected models

for PPE can be considered robust.

As noted in several studies (Boardman & Vandaele, 2016; Butler, 2005; Mullan, 2013; Mullan et al., 

2012; Verstraeten et al., 2003), a range of future land use changes should also be included in future 
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research investigating climate change impacts on soil erosion and MF. This will enable adequate 

stress-testing of the resilience and adaptation of current mitigation measures (e.g. Mullan et al., 

2016, 2019), or perhaps identify a need for mitigation where currently absent.

5. Conclusions and Implications

Previous climate change – soil erosion impact studies typically applied a single model or a few 

models to drive erosion models with little justification for selection. This approach to climate model 

selection limits the provision of vital information for mitigation planning and adaptation by 

increasing the risk of simulating a narrow range of possible scenarios. The PPE method devised in 

this study is successful for efficiently selecting suitable climate models to simulate soil erosion and 

MF, which has not been achieved elsewhere for modelling soil erosion by water. The highest range 

in future (2081-2100) mean annual sediment yield and soil loss was projected by PPE, while the 

range in projected runoff was also among the highest of all methods at both hillslopes. Return period

analysis largely reflects mean annual results. 

No single precipitation variable could explain mean annual sediment yield, soil loss, and runoff 

results. Instead, the standard deviation (SDEV P) and skewness (Skew P) of precipitation together 

most closely replicate the distribution statistics of sediment yield and soil loss for all methods at 

both hillslopes. When coupled with mean annual precipitation amounts, mean annual runoff results 

could be reasonably explained by Skew P values for all methods at both hillslopes.

PPE model selection allows for adequate preparation for the worst- and best-case scenarios at the 

study area by generating the broadest range in projections for key soil erosion and MF diagnostics. A

sensible range is generated by PPE, since PPE blends and precisely transforms both envelope-based 

and past-performance approaches for specific application to soil erosion and MF. Relevant impact 

sectors such as soil erosion and MF, and other hydrological phenomena should consider applying 

this method to examine the impact of future climatic changes. 
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Tables

Table 1: Hillslope characteristics.

Slope Length
(m)

Mean Slope
Gradient (°)

Crop Cover Mitigation Measure

Hillslope 1 65.0 8.1 Potatoes; Maize; Sugar Beet (44 m) Grass Buffer Strip (21 m)

Hillslope 2 132.7 5.0 Potatoes; Maize; Sugar Beet (129.6 m) Grassed Waterway (3.1 m)

Table 2: Mean measured soil input parameters at each hillslope. 

Sand (%) Silt (%) Clay (%) OM (%)

Hillslope 1 15.1 76.7 8.3 4.1

Hillslope 2 14.3 78 7.7 3.9

Table 3: Description of CLIGEN input parameters and associated nomenclature (Mullan et al., 2019). 

Parameter Unit
Mean daily precipitation for each wet day for a given month Mean P in

Standard deviation of Mean P for a given month SDev P in

Skewness of Mean P for a given month Skew P in

Conditional probability of a wet day following a wet day for a given month Pw/w %

Conditional probability of a wet day following a dry day for a given month Pw/d %

Mean maximum temperature for a given month AV TMAX °F

Mean minimum temperature for a given month AV TMIN °F

Standard deviation of TMAX for a given month SD TMAX °F

Standard deviation of TMIN for a given month SD TMIN °F

Mean solar radiation for a given month SOL.RAD L/da

Standard deviation of SOL.RAD for a given month SD SOL L/da

Mean maximum half hourly precipitation for a given month MX.5P in

Mean dew point temperature for a given month DEW PT °F

Time to peak storm intensity Time Pk b

Mean percent of time that wind blows from 1 of 16 cardinal directions for a given month % DIR c %

Mean wind speed related to % DIR c for a given month MEAN m/s-1

Standard deviation of MEAN for a given month SDev MEAN m/s-1

Skewness of MEAN for a given month Skew MEAN m/s-1

Mean percent of days that mean wind speed is less than 1 ms-1 for a given month CALM %
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Table 4: Selected models for RCP4.5 and RCP8.5. Models are ordered by distance to percentile, ‘1’ representing least 

distance and ‘3’ most distance. All models are r1i1p1 unless otherwise stated.

RCP4.5 RCP8.5

1 2 3 1 2 3

Wet GISS-E2-R r6i1p3 GISS-E2-R r6i1p1 MRI-CGCM3 IPSL-CM5A-LR r4i1p1 ACCESS1-3 IPSL-CM5A-LR r2i1p1

Dry HADGEM2-AO CNRM-CM5 HADGEM2-ES r2i1p1 CanESM2 r3i1p1 HADGEM2-ES r2i1p1 HADGEM2-ES 

Table 5: Variance between observed and historical modelled data for models selected in Section 2.3.1. April to September 
are selected for analysis since these months were previously considered as key months for MF (e.g. Mullan et al., 2016). A 
rank of 1 equals closest performance to observed.

April to September

  Mean SDev Skew P(w/w)
P(w/

d)
NWD Sum Rank

MRI-CGCM3 -0.88 -0.01 -0.40 0.17 0.21 3.40 5.08 1

IPSL-CM5A-LR
r2i1p1

-1.51 -0.98 -0.41 0.18 0.12 2.99 6.20 2

HADGEM2-ES-r2i1p1 -2.19 -1.07 0.21 0.16 0.19 3.03 6.86 3

HADGEM2-ES-r1i1p1 -2.04 -1.04 -0.10 0.19 0.17 3.34 6.87 4

IPSL-CM5A-LR
r4i1p1

-2.34 -1.75 -0.33 0.13 0.10 2.29 6.93 5

ACCESS1-3 -1.61 0.00 0.30 0.24 0.33 4.71 7.18 6

GISS-E2-R p3 r6i1p3 -1.07 0.31 -0.57 0.30 0.38 5.66 8.29 7

GISS-E2-R p1 r6i1p1 -0.96 0.57 -0.45 0.30 0.40 5.73 8.41 8

CNRM-CM5 -1.46 -0.70 1.51 0.24 0.30 4.58 8.78 9

CanESM2 r3i1p1 -2.40 -1.18 0.81 0.26 0.33 4.82 9.80 10
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Table 6: Selected models from the PPE, ECS, and RG 1-3. Models are separated by RCP 4.5 and 8.5, selected randomly for 
RG 1-3. Otherwise, the order of the selected models within each RCP grouping displayed is random. Unless otherwise 
stated, all models are r1i1p1.

RCP4.5 RCP8.5

PPE

MRI-CGCM3 IPSL-CM5A-LR r2i1p1

HADGEM2-ES-
r2i1p1

HADGEM2-ES-r1i1p1

GISS-E2-R p3 r6i1p3 IPSL-CM5A-LR r4i1p1

ECS

GFDL-ESM2G GFDL-CM3

GFDL-ESM2M ACCESS1-0

GISS-E2-H CSIRO-Mk3-6-0

RG1

GISS-E2-R p3 r6i1p3 IPSL-CM5A-LR r4i1p1

HADGEM2-ES-
r2i1p1

HADGEM2-ES-r1i1p1

IPSL-CM5B-LR CanESM2 r3i1p1

RG2

MRI-CGCM3 ACCESS1-0

GFDL-ESM2M GFDL-CM3

IPSL-CM5A-MR CNRM-CM5

RG3

GISS-E2-H MIROC5

IPSL-CM5A-MR IPSL-CM5A-LR r2i1p1

GFDL-ESM2G CSIRO-Mk3-6-0

Table 7: Details of modifications required for key CLIGEN parameters to represent future climate changes.

CLIGEN Parameter Derivation Method

Mean P Equations 3 and 4

SDev P Calculated from future Mean P

SKEW P Calculated from future Q99 

P(W/W) See Section 2.5.

P(W/D) See Section 2.5.

AV TMAX Modified from future AV TMAX

AV TMIN Modified from future AV TMIN

TMAX SD Calculated from future AV TMAX

TMIN SD Calculated from future AV TMIN

SOL.RAD Linear regression – plotted against future AV TMAX

SD.SOL Linear regression – plotted against future AV TMAX

MX.5P Linear regression – plotted against future AV TMIN

DEW PT Linear regression – plotted against future AV TMIN

Time PK Linear regression – plotted against future SDev P
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Table 8: Comparing the range (highest minus lowest model value) in sediment yield (SY) and daily precipitation (Pr.) 
projected by each model selection method at Hillslopes 1 and 2 for different return period intervals. The highest projected 
range for each return period interval has been coloured red.

  Hillslope 1 Hillslope 2

Return Period SY Range (t/ha) Pr. Range (mm) SY Range (t/ha) Pr. Range (mm)

PPE 

2 1.7 17.6 9.1 18.7

5 3.3 27.2 16.0 28.0

10 5.1 34.8 23.0 35.1

20 8.0 45.6 31.0 45.6

25 9.3 53.8 33.8 53.8

50 12.8 64.4 37.0 64.4

100 14.2 85.1 47.7 85.1

ECS

2 0.4 6.0 2.8 6.6

5 1.4 9.0 5.8 9.4

10 1.9 13.0 7.9 13.0

20 2.0 15.7 11.0 16.3

25 2.7 20.0 11.3 20.3

50 3.4 22.8 16.9 22.8

100 10.2 30.5 27.5 30.5

RG
1

2 1.5 13.2 7.3 10.1

5 2.6 20.0 10.9 16.0

10 4.1 23.3 16.2 20.1

20 6.5 29.0 23.9 29.6

25 7.7 32.0 26.8 33.4

50 10.3 32.3 25.4 31.6

100 17.9 33.4 28.8 38.9

RG
2

2 1.2 19.9 8.1 20.9

5 2.8 28.8 15.1 29.6

10 3.9 37.0 19.2 37.2

20 5.3 48.6 22.6 48.6

25 5.7 57.6 23.1 57.6

50 8.9 75.5 36.9 75.5

100 12.0 89.8 47.5 89.8

RG
3

2 0.4 10.6 2.8 9.5

5 1.4 14.2 6.7 13.3

10 2.3 16.8 9.9 18.2

20 2.8 20.0 13.9 23.5

25 3.2 20.5 14.7 28.4

50 4.8 24.8 22.6 34.7

100 6.7 38.0 36.2 44.9

Table 9: Ranges (highest minus lowest model value) in mean annual precipitation, SDEV P and Skew P for all model 
selection groups. SDEV P and Skew P are dimensionless. While the PPE and RG2 models possess among the lowest SDEV P, 
the higher Skew P appears to separate runoff response for these latter models relative to the remaining models. 

Precipitation (mm) SDEV P Skew P

PPE 97.2 0.06 1.92
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ECS 184.8 0.06 1.01

RG
1

204.5 0.07 1.58

RG
2

176.9 0.06 1.70

RG
3

159.0 0.08 1.56
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Figures

Figure 1: The location of the study area within the Belgian loess belt
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Gathering Precipitation Records for All Available CMIP5 Models

Calculating Delta Changes

Annual precipitation sums calculated. Mean annual precipitation 
sum for the reference period (1986 - 2005) subtracted from the 

future period (2081 - 2100) for each model.

Changes in Climatic Means

Model choice narrowed down to those that project the 
most increased wetness and least increased wetness 

using 10th and 90th percentile of all delta changes.

Comparing Precipitation Characteristics

Model choice narrowed down to those that most closely 
simulate relevant metrics of precipitation to observations.

Spatial and Temporal Downscaling

All model precipitation data temporally downscaled to produce daily 
scenarios using transitional probabilities, while temperature data 

spatially downscaled using change factor (CF) method to reduce the 
grid box scale to match observed climate dimensions.

WEPP Simulation

Bias corrected precipitation and temperature outputs 
used to develop necessary .PAR file to simulate the soil 

erosion model (WEPP) for future climate scenarios.

Monthly precipitation records downloaded for the grid square overlying the 
study area from all available climate models under RCP4.5 and RCP8.5.

Gathering and Ranking ECS Values

ECS values ≥ 10th percentile and ≤ 90th 
percentile of all ECS values for CMIP5 

models (Kattsov et al., 2013) included. 

Selecting Extreme ECS Values

The three models closest to the 10th 
percentile simulated under RCP4.5 and 

the three models closest to the 90th 
percentile simulated under RCP8.5.

RS

CMIP5 models selected at random, with 
three models simulated under RCP4.5 and 

three models simulated under RCP8.5. 
This was completed three times to form 

three separate groups of randomly selected 
models, containing six models each.

ECS Selection

PPE Selection

Figure 2: Summary of steps provided for all model selection methods to project climatic conditions for the future period (2081-2100) and simulate in a soil erosion model.
Figure 3: Projected ranges in sediment yield, soil loss, and runoff provided by each climate model selection method at Hillslope 1 between 2081 – 2100. The median value

is represented by the horizontal line inside the box; ‘x’ marks the mean value; the circular dots represent Q1 (lower dot) and Q3 (upper dot); and the maximum and 

minimum values are denoted by the top and bottom whiskers, respectively.
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Figure 4: Same as for Figure 3, but for Hillslope 2.
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Figure 5: Skew P and SDEV P summed together for each climate model selection method. The 
distribution of these results closely compares to the sediment yield and soil loss model selection 
method distributions in Figures 3 and 4.
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