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ABSTRACT: Installation of feral pig (Sus scrofa) exclusion fences to conserve and 

rehabilitate coastal floodplain habitat for fish production and water quality services remains 

untested.  Twenty-one floodplain and riverine wetlands in the Archer River catchment (north 

Queensland) were surveyed during post-wet (June-August) and late-dry season (November-

December) in 2016, 2017 and 2018, using a fyke net soaked overnight (~14-15hrs) to  test: 1) 

whether the fish assemblage are similar in wetlands with and without fences; and 2) whether 

specific environmental conditions influence fish composition between fenced and unfenced 

wetlands.  A total of 6,353 fish representing twenty-six species from 15 families were captured.

There were no wetland differences in fish assemblages across seasons, years and for fenced 

and unfenced (PERMANOVA, Pseudo-F <0.589, P<0.84).  Interestingly the late-dry season 

fish were far smaller compared to post-wet season fish: a strategy presumably in place to 

maximise rapid disposal following rain and floodplain connectivity.  In each wetland a 

calibrated Hydrolab was deployed (between 2-4 days, with 20min logging) in the epilimnion 

(0.2m) and revealed distinct diel water quality cycling of temperature, dissolved oxygen and 

pH (conductivity represented freshwater wetlands), which was more obvious in the late-dry 

season survey because of extreme summer conditions.  Water quality varied among wetlands in

terms of the daily amplitude and extent of daily photosynthesis recovery, which highlights the 

need to consider local conditions and that applying general assumptions around water quality 

conditions for these types of wetlands is problematic for managers.  Though many fish access 

wetlands during wet season connection, the seasonal effect of reduced water level conditions 

seems more over-improvised when compared to whether fences are installed, as all wetlands 

supported few, juvenile, or no fish species because they had dried completely regardless of the 

presence of fences.
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Wetlands (palustrine and lacustrine) that are located on floodplains away from riverine 

channels support rich aquatic plant and fauna communities (Ambrose & Meffert, 1999; Jiang et

al., 2015; Brandolin and Blendinger, 2016).  However, after peak flood connection, aquatic 

organisms occupying these wetlands face a moving land-water margin until connection is 

broken, at which point wetlands have been shown to support a non-random assortment of 

aquatic species, including fish (Arrington & Winemiller, 2006; Pander et al., 2018).  The 

duration, timing and frequency that off channel wetlands maintain lateral pulse connection with

primary rivers is an important determining factor in broader contribution to coastal fisheries 

production – higher floodplain connection results in more fish production is the overwhelming 

conclusion (Bennett & Kozak, 2016; Górski et al., 2016; Hurd et al., 2016; Galib et al., 2018).  

In addition to connection, environmental conditions become important on floodplains, 

including water quality (Waltham & Schaffer, 2018), but also access to shelter to escape 

predation and available food resources (Jardine et al., 2012; Blanchette et al., 2014).  Although 

optimism about coastal floodplain restoration is building (Waltham et al., 2020), efforts by 

managers to restore wetland services and values is increasing, though data delineating success 

are limited.  This lack of data becomes important when attempting to quantify biodiversity 

returns for the funding investment made by government or private investor organisations 

(Elliott et al., 2016; Weinstein & Litvin, 2016; Zedler, 2016; Waltham & Fixler, 2017).

At some point after floodplain connection, the waters begin receding and progressively 

disconnect from the main river channel, forming smaller and shallower off channel 

wetland/swamp refugia (McJannet et al., 2014; Pettit et al., 2012; Pusey & Arthington, 2003; 

Abbott et al., 2020).  In tropical north Australia, formation and persistence of seasonal off 

channel wetland are more pronounced owing to high evaporation rates, loss to groundwater 

(Petheram et al., 2008), and in many situations the water quickly retracts away from the banks 

and riparian shade (Pusey & Arthington, 2003).  After floodplain disconnection from primary 
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rivers, they become more prone to reduced water quality conditions - most notably reduced 

water depth (Pettit et al., 2012), high water temperatures (Wallace et al., 2017), and suffer 

extended low oxygen periods (Waltham & Schaffer, 2018).  This reduced state of water quality

(or habitat) increases aquatic fauna exposure risks to acute and chronic thresholds (Burrows & 

Butler, 2012; Wallace et al., 2015).  In the late-dry season, fish confined to these isolated 

wetlands on floodplains therefore have very limited avoidance choices (Waltham & Schaffer, 

2018), and must exploit available habitat opportunities (Phelps et al., 2015; Love et al., 2017), 

which are specific to each wetland depending on orientation and location (Schomaker & 

Wolter, 2011), depth and vegetation cover (Wallace et al., 2017).  Floodplain fish must deal 

with these vagaries at least until the monsoonal rain again reconnects overbank coastal 

floodplains.  

Across northern Australia, feral pigs (Sus scrofa) have been shown to contribute wide-scale 

negative impacts on wetland vegetation assemblages, water quality, biological communities 

and wider ecological processes (Baber & Coblentz, 1986; Krull et al., 2013).  Feral pigs utilise 

an omnivorous diet supported by foraging or digging plant roots, bulbs and other below ground

vegetation material over terrestrial or wetland areas (Ballari & Barrios García, 2014).  This ‐

feeding strategy has a massive impact on wetland aquatic vegetation communities (Doupé et 

al., 2010), giving rise to soil erosion and benthic sediment re-suspension, reduced water clarity 

and eutrophication which becomes particularly critical late-dry season.  The fact that limited 

data exits on the impact that feral pigs contribute to wetlands (Mitchell & Mayer, 1997; Doupe 

et al., 2010; Steward et al., 2018; Waltham & Schaffer, 2018), places a strain on the ability for 

land managers to quantify the consequences of pig destruction (Commonwealth of Australia, 

2017).  Conversely, a lack of baseline data means quantifying success following expensive 

mitigation efforts is problematic.
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Strategies focused on reducing or removing feral pigs from the floodplain landscape have been 

employed since their introduction to Australia (Fordham et al., 2006).  Control strategies have 

included poison baiting, aerial shooting, and trapping using specially constructed mesh cages 

(that are baited sometimes) (Ross et al., 2017).  Attempts have also included installing 

exclusion fencing that border the wetland of interest.  While advantages of installing fencing 

around wetlands has been examined only recently in Australia (Doupe et al., 2010), those 

authors claim fencing might well be less effective particularly in situations where wetlands 

would normally dry before the next wet season rainfall and reconnection.  Fencing is expensive

to construct and maintain (Ross et al., 2017), but at the same time prevents other non-target 

terrestrial fauna from accessing wetlands, which becomes imperative late-dry season where 

wetlands become regional water points for many mobile fauna (Commonwealth of Australia, 

2017).  

The aims here were twofold: 1) what is the spatial and temporal variability of fish assemblages 

in waterbodies with and without feral pig fencing, and 2) does this pattern correlate to water 

quality variables?.  These data are important and necessary given increasing government 

funding investment planned in northern Australia for restoration of wetlands impacted by feral 

animals (including pigs) (Waltham & Schaffer, 2018).  

2. Methods

2.1 Description of Study System

The Archer River catchment is located on Cape York Peninsula, north Queensland (Fig 1).  

The head waters of the river rise in the McIlwraith range on the eastern side Cape York, where 

it flows and then enters Archer Bay on the western side of the Gulf of Carpentaria; along with 

the Watson and Ward Rivers.  The catchment area is 13,820 km2, which includes 
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approximately 4% (510 km2) of wetland habitats 

(https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/basin-archer/), such as estuarine 

mangroves, salt flats and saltmarshes, wet heath swamps, floodplain grass sedge, herb and tree 

Melaleuca spp. swamps and riverine habitat.  The lower region of the catchment includes part 

of the Directory of Internationally Important Wetland network (i.e. nationally recognised status

for conservation and cultural value) that extends along much of the eastern Gulf of Carpentaria,

including the Archer Bay Aggregation, Northeast Karumba Plain Aggregation and Northern 

Holroyd Plain Aggregation.  Two national parks are located in the catchment (KULLA 

(McIlwraith Range) National Park, and Oyala Thumotang National Park).  Land use is 

predominately grazing with some mining activities planned in the next few years on the 

northern bank of the river (not within the area of this study).

Rainfall is tropical monsoonal, strongly seasonal, with between 60% and 90% of total annual 

rain occurring between November and February.  Rainfall records for the catchment reveal 

highest wet season rainfall occurred in 1989/1999 (2515 mm), while lowest was 1960/1961 

(563.5 mm) (Waltham & Schaffer, 2017).  Total antecedent rainfall for the wet season prior 

(Nov 2014 to Feb 2015) to this survey was 1081 mm, which is below the 10th percentile for 

historical records.  The wet seasons experienced through the years prior to this study (2010 to 

2015) were among the wettest on record, within the 95th percentile of the long-term data 

records.  The low rainfall during this study may have contributed to a short flood duration, and 

thereby connection between wetlands and the main Archer River, when compared to average or

above average rainfall years where connection is presumed to be far longer (Fig 2).

Twenty-one wetlands were sampled including both floodplain and riverine wetlands that were 

not on the main flow channels, but on anabranches and flood channels that connect to the main 
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channels only during high flow conditions.  All wetlands have been historically damaged by 

pigs (and cattle to a lesser extent) for up to 160 years (Gongora et al., 2004; Lopez et al., 2014),

and there is no background data on the wetland condition before introduction of feral pigs in 

the region.  In response to the obvious and widespread impact in the region, a small number 

were fenced to prevent feral pig and cattle from accessing wetlands, in accordance with the 

feral animal research and management program (to meet the objectives of traditional owners in 

the region) of both Kalan enterprises and Aak Puul Ngangtam, and their partners.  

The characteristics of each wetland are summarised in Table S1.  Here, sampling focused on 

two periods: 1) immediately following the wet season after disconnection between the river 

and wetlands (hereafter referred to as post wet season); and 2) late-dry season (hereafter late-

dry) in 2016, 2017 and 2018.  Each sampling campaign was completed over 14 days with six 

total campaigns (post-wet and late-dry season in 2016, 2017 and 2018). 

2.2 Field Methods

In each wetland, a calibrated high frequency Hydrolab multi-parameter logger (OTT Hydromet

USA) was deployed (0.2m depth) for between 2 and 4 days to record epilimnion (0.2m) water 

temperature, dissolved oxygen (%), electrical conductivity and pH every 20mins - logging at 

this frequency provides explicit insight into diel changes in environmental water processes 

(Wallace et al., 2015; Wallace et al., 2017).  Weather conditions were fine with all surveys 

occurring on the falling limb of the hydrograph.  

Fish were collected in wetlands using a fyke net (0.8m opening, double 4m wing panels, 1mm 

stretch mesh) that was soaked overnight (approximately 14:00 to 09:00).  Wetlands 

substantially impacted by feral pigs; secchi disk depth < 0.1m, no submerged or floating 

aquatic plants exist, while the fenced wetlands were generally deeper (up to 1.5m), and had 
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submerged aquatic vegetation (Fig. 1).  Fish were placed in a tub (~150L) temporarily, 

identified, measured (standard length, mm) and returned to the wetland alive in accordance 

with Australian laws (except for a small number that were kept for food web studies, data not 

shown here).   

2.3 Data Analysis

There are two main biases in the sampling method here: 1) that the technique will capture large

numbers of schooling fish along the wetland margins; and 2) the fact that predatory aquatic 

fauna including fish, snakes (macleays watersnakes, Pseudoferania polylepis), file snakes 

(Acrochordus arafurae)) and freshwater turtles (Chelodina oblonga, Chelodina canni and 

Emydura s. worrelli) were periodically trapped for hours means that they could consume fish 

caught in nets.  To overcome these uncertainties, analyses were based on presence/absence of 

species.  Presence/absence provide robust data when relative abundance are of doubtful 

validity because it deals with species with a diversity of behaviours, trophic functions, and 

spatial distribute in a more equivalent way than fully quantitative techniques (Quinn & 

Keough, 2002).

Multivariate differences were examined using PERMANOVA using the Bray-Curtis 

similarities measure (Clarke, 1993) with significance determined from 10,000 permutations of 

presence/absence transformation.  Multivariate dispersion were tested using PERMDISP, 

however, homogeneity of variance could not be stabilised with transformation, and therefore 

untransformed data were used.  Three factors where included: years (fixed), season (fixed); and

fenced/unfenced (random).  These factors were determined a-prior during study design – in 

addition, the 2016 late dry season only had a single fenced wetland site; this data point was 

removed in the PERMANOVA.  Spatial patterns in multivariate fish assemblage structure and 

the importance of explanatory data sets were analysed using a multivariate classification and 
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regression tree (mCARTs) (De'Ath, 2002) package in R (version 3.4.4).  Analysis was 

conducted using presence/absence transformed fish data for the 10 species that occurred in 

>20% of wetland sites (to remove rare species).  Selection of the final tree model was 

conducted using 10-fold cross validation, with a 1-SE tree; the smallest tree with cross 

validation error within 1 SE of the tree with the minimum cross validation error (Sheaves & 

Johnston, 2009).  The relative importance of the explanatory variables were assessed to 

determine those with a high overall contribution to tree node split, with the best overall 

classifier being given a relative importance of 100%.  

Kolmogorov-Smirnov (K-S) two-sample tests determined differences in the overall shape of 

fish body size distribution using a Bonferroni correction for multiple comparisons. K-S tests 

take into account differences between the location, skew, and kurtosis of frequency 

distributions; but do not identify which of these parameters are driving distributional 

differences.  Therefore, we report the following characteristics of each body size distribution to

further describe any differences found: mean, standard deviation (sd), minimum value (min), 

maximum value (max), the range of values, skewness, and kurtosis.

3. Results

3.1 Hydrology and wetland water quality

Wet season rainfall totals in the Archer River catchment were low during the study period 

compared to the preceding years (Fig. 2), with rainfall within the 10th percentile for historical 

recordings held by the Australian Bureau of Meteorology.  This means that some caution is 

necessary with interpretation of these data; namely that floodplain connectivity under higher 

rainfall years is likely to have a longer duration when compared to lower connection duration 

under the current rainfall conditions.
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A full summary of water quality data are provided in Supplementary files (S1).  In summary, 

water temperatures during the study period were generally about 26oC (Table 1).  Minimum 

water temperature recordings as low as 18oC, while maximum temperatures occurred in 

November 2016 survey reached above 40oC for several hours of the day in some instances.  

The water column exhibited pronounced diel temperature periodicity; one or two hours after 

sunrise each day. Near-surface water temperatures began to rise at an almost linear rate for a 

period of 8.0 ± 0.5 hours, generally reaching daily maxima during the middle of the afternoon. 

The mean daily temperature amplitude was 6.2ºC (highest daily amplitude 9.6ºC, lowest 

4.4oC).  For the remaining 16 hours of each day, near-surface water temperatures gradually 

declined reaching minimum conditions shortly after sunset. 

The electrical conductivity (EC) was very low (Table S1) during the post wet season surveys, 

while the late-dry season conductivity was higher, a consequence of evapo-concentration.  The 

lowest wetland in the catchment (AR08 located on the coastal floodplain) recorded the highest 

conductivity, suggesting connection with tidal water from the nearby estuary at some stage. 

There was evidence of cyclical daily DO fluctuations supporting the contention that biological

diel periodicity processes were probably not significantly inhibited in all  wetlands (Fig. 3).

Daily minimum DO concentrations were low enough to suggest there was enough respiratory

oxygen consumption to measurably affect water quality, particularly so at the pig impacted

wetlands, but also during the late-dry season survey in November 2016.  Dissolved oxygen

(DO) seemed to  reach daily minima  conditions,  well  below the  asphyxiation  thresholds  of

sensitive fish species, in the early morning hours during all surveys.  In the examples shown,

after the morning low DO (following overnight respiration processes), conditions generally
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recovered to approximately 50%, but reaching a high of 100-160% in the late afternoon (before

sunset).  

pH is also potentially subject to the same kinds of biogenic fluctuations as DO, due to 

consumption of carbon dioxide (i.e., carbonic acid) by aquatic plants and algae during the day 

(through photosynthesis), and net production of carbon dioxide at night. If respiratory oxygen 

consumption is predominant, DO concentrations are low and pH values are generally 

moderately acidic to neutral, which was the case for wetlands examined here.  All 

photosynthetically active organisms utilise carbon dioxide as a preferred carbon source. Some 

species (including most green algae) are unable to photosynthesise if carbon dioxide is 

unavailable, but there are other species (including most cyanobacteria and submerged 

macrophytes) which can utilise bicarbonate as an alternative carbon source.  Carbon dioxide 

consumption causes pH to rise to values in the order of 8.6 to 8.7 (but that was not the case 

here during this survey period).

3.2 Fish community

A total of 6,353 fish were captured, representing twenty-six species from 15 families (Table 1).

The most common species was the freshwater glassfish (Ambassis sp., 51% total catch), 

delicate blue-eyes (Pseudomugil tenellus, 11%), and northern purple-spot gudgeon (Morgunda 

morgunda, 9%).  A greater number of fish species were caught in the post wet season survey, 

with a lower number captured during the late-dry season, including the northern purple-spot 

gudgeon (Morgunda mogunda), chequered  rainbow fish (Melanotaenia s. inornata), and the 

empire gudgeon (Hypseloptris compressa).  In addition to fish, we captured a freshwater 

crayfish (Cherax sp.), macleays watersnakes (Pseudoferania polylepis) and freshwater turtles 

(Chelodina oblonga and Emydura s. worrelli) in most wetlands, notably during post wet 
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season.  Overall, there was no significant difference among seasons, fenced/unfenced wetlands 

and years (PERMANOVA, Pseudo-F <0.589, P<0.84).  

With a reduced list confined to dominant species, occurrence profiles for groups in the terminal

branches of the mCART analysis (Fig. 4) show two initial wetland groups based on a split 

supported by region, with wetlands in the Coen (mid-catchment) region separating from those 

wetlands in the coastal plains.  Following the left branch there is inter-annual variation among 

wetlands, and a second terminal node based on whether wetlands were fenced in 2016, but not 

so in 2017 and 2018 data.  Following the right branch (APN, coastal plains), the first node 

separates seasons, and following late-dry season wetlands further separate based on mean 

dissolved oxygen (~3.0%), and then mean temperature (~28.5oC).  The post-wet season branch 

appears to have more separation among data, with a separation based on mean water 

temperature (~26.5oC), years, and then finally dissolved oxygen (~4%). 

Mean fish body size distributions differed between the three sample years (with fish for each

wetland and survey pooled) (KS, P < 0.001, Table S2 – S5), with larger fish measured in 2017

(50.5mm) compared to 2016 (38.7mm) and 2018 (31.6mm), despite the assemblages having

similar size ranges. When comparing the overall fish size distribution by pooling years, post

wet season fish were larger (44.9mm) when compared to the late-dry season (39.7mm) (KS, P

< 0.01).  For some fish species such as the chequered rainbow fish (Melanotaenia s. inornata),

the post wet season (32.5mm) was similar when compared to late-dry season (38.4mm) (KS, P

= 0.06, S3).  In contrast, the northern purple-spot gudgeon (Mogurnda mogurnda) was larger

post-wet season (52.8mm) compared to late-dry season (37.1mm) (KS, P < 0.01, Table S4).

4. Discussion
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While installation of fences can protect terrestrial ecosystem services from feral impacts 

(Bariyanga et al., 2016), in the case here fences appear to offer little over-improvised fish 

additional value compared to those that are not fenced – overall the fish assemblage remained 

similar across years, seasons, and with and without fencing.  While this is the case, importantly

what this means is that many fish indeed access both fenced and unfenced wetlands during wet 

season connection, however, the seasonal effects of reduced water level conditions and the loss

of fish assemblage as the dry season progresses is a pattern that remains regardless of fencing.  

To this end, installation of expensive exclusion fences might not offer additional protection to 

fish species habitat on this tropical floodplain  The same conclusion was reported by Doupe et 

al., (2010) where those authors surveyed strongly seasonal wetlands (similar to the wetlands 

here) elsewhere in northern Australia, and concluded that the seasonal dry down of wetlands 

ultimately prohibits the wetland contribution to future year successful fish recruitment.  In 

contrast, where floodplain wetlands remain more permanently connected, fish can take more 

advantage of rich food and nutrient rich floodplains (Hurd et al., 2016; Love et al., 2017).   

The low species richness in wetlands relative to the main Archer River channel might be a 

consequence of the frequency and duration of connection between wetlands and the main 

Archer River.  The wet season rainfall immediately prior, and during this survey, was within 

the 10th percentile for historical records.  In research elsewhere, a longer connection duration 

was shown to result in more fish present post wet season, and conceivably more species present

late-dry season (Arthington et al., 2015; Hurd et al., 2016).  Examples exist where longer 

connection between main river channels and wetlands contributes positively to fish growth 

rates, and higher abundance and diversity of fish (Barko et al., 2006; Schomaker & Wolter, 

2011; Love et al., 2017).  It is also possible that the field methods used here confound our 

ability to determine the full species composition in wetlands – this could be overcome by using

additional survey techniques, including multi-panel gill nets, traps or electrofishing (though we
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attempted to electrofish these wetlands, however, the conductivity was too low to effectively 

use that method), in addition to the presence of crocodiles in these wetlands present a real 

challenge to sampling.  Future research might consider riparian vegetation condition, benthic 

and floating aquatic plant extent and pig impact pressure as potential correlating variables 

describing the fish assemblage in fenced and unfenced wetlands. 

An obvious characteristic of the fish assemblage here were larger, presumably adult, 

individuals in the wetlands after the wet season compared to small individuals present in the 

late-dry season.  This suggests that the wetlands serve as important refugia for successful 

recruitment of freshwater fish, that adult fish remaining in the wetlands after disconnection are 

able to complete imperative life cycle stages.  The fact that we did not catch large fish in the 

late-dry season suggests that adult fish might be lost as the dry season progresses, consumed 

either by predators such as estuarine crocodiles (Crocodylus porosus).  Wetlands are also 

popular feeding and roosting locations for water birds (Chacin et al., 2015; Brandolin & 

Blendinger, 2016); we observed a large number of species at most wetlands in the late-dry 

season.  The value of wetlands to wader birds is limited by the condition (Żmihorski et al., 

2016; Robertson et al., 2017), but are thought to provide an important nutrient subsidy more 

broadly on seasonal floodplains (Ma et al., 2010; Buelow et al., 2018).  Hurd et al., (2017) 

postulates that differences in fish communities between main channel and off channel waters is

more influenced by the presence of piscivorous predators, or even via a function of competitive

exclusion within fish guilds as resources diminish as the late-dry season takes hold.  Examining

this point could be achieved by investigating the species niche width (Jackson et al., 2011; 

Swanson et al., 2015) in drying waters by constructing food webs in individual waters to 

determine species ranges and changes with fencing treatment, and comparing post wet season 

and late-dry season conditions. 
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In the late-dry season for the few fish species present, juveniles dominated the catch regardless 

whether wetlands were fenced.  Having small recruits in the late dry period might be an 

important strategy in maximising dispersal after connectivity with the commencement of the 

wet season (Pusey et al., 2018).  Moreover, late season conditions with no flow and warm 

conditions might favour larval development (King et al., 2003; Godfrey et al., 2016).  

Melanotaeniid rainbowfish, for example, have a flexible reproductive behaviour that is well 

adapt to deal with the vagaries of temporal variation in habitat conditions (Pusey et al., 2001).  

The same is true for both Eleotrid gudgeon species here with smaller recruits presumably ready

for wide-scape distribution with the pending wet season flow.  Pusey et al., (2018) provides a 

case that the reproduction success of freshwater fish in northern Australia could in fact hinge 

on antecedent flow patterns across the landscape, and that this flexibility ensures population 

level success (Stewart Koster et al., 2011).  This strategy might be particularly appropriate ‐

given the below average summer rainfall totals seen during this survey, particularly when 

compared to previous years.   

As the dry season takes hold, water quality conditions progressively deteriorate mostly because

of increasing impact from rooting pigs as they access the wetland vegetation.  Generally, 

fenced wetlands change little in terms of water conditions (Fig. 5).  However, it is the late-dry 

season when water conditions are poorest and therefore most critical to fish.  Unfenced 

wetlands tended to be shallower, highly turbid, and suffer water temperatures that exceed acute

thermal effects thresholds for fish – which does provide good justification for fencing 

wetlands, particularly those that are more permanent, such as those spring feed, compared to 

wetlands that will dry because they are so distant from the primary water course (Waltham & 

Schaffer, 2018).  The most critical water quality condition for fish survival is dissolved 

oxygen, and the solubility of dissolved oxygen in water is strongly affected by temperature 

(i.e., high temperature reduces dissolved oxygen solubility (Diaz & Breitburg, 
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2009).  Data on hypoxia tolerances of local freshwater fish species in northern Queensland is 

available (Butler & Burrows, 2007), and while tolerances vary between species and life 

stages, there were obvious periods in wetlands when these threshold limits are exceeded.  

During critical periods, fish must regulate breathing either via increasing ventilation 

rates (Collins et al., 2013), or by rising to the surface to utilise aquatic surface respiration 

and/or air gulping (e.g. tarpon, Megalops cyprinoides).  In any case, the capacity for fish to do 

that safely depends on the timing of the oxygen sag and antecedent conditions, though notably 

it appears that most hypoxia-induced fish kills originate from thermal stress and sunburn 

resulting from the animals’ need to remain at the surface during the heat of the day in order to 

access available oxygen for respiration.  Increasing these risks to fish can have important 

chronic effects including reducing physical fitness to successfully contribute to future 

populations (Flint et al., 2018; Gilmore et al., 2018).
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australis A. 
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aureus 
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5. Summary and Conclusions

The cultural and ecological value of coastal wetlands means that management intervention is 

increasingly necessary to ensure they remain productive and viable habitat (Creighton et al., 

2015; Canning & Waltham 2021).  Overall, these data support a model that damage to 

wetlands from pig activities not only contributes to reduced aquatic habitat, through loss of 

aquatic vegetation communities, but also probably has secondary impacts including water 

temperature and asphyxiation risks for many hours each day, that are higher than when 

compared to fenced wetlands (Fig. 5).  However, fish occupying fenced and unfenced wetlands

here were similar, particularly in the late-dry season where those remaining few species were 

small and presumably juveniles ready for wet season re-distribution.  On this basis, installing 

fences to both floodplain and riverine wetlands that were not on the main flow channels, but 

rather were on anabranches and flood channels that connect to the main channels only during 

high flow conditions, seems to offer little additional habitat value for fish from the treat of feral

pig impact. Where wetlands are largely ephemeral and will dry anyway, or where wetlands 

remain until the next seasons rain connection; species abundance and/or diversity is not 

improved by restricting feral pig access – the exception is that unfenced wetlands tend to be 

hotter and experience lower available oxygen for fish which may support fencing wetlands 
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most distant from primary water courses if they are like to remain until the next wet season.  

Further research is necessary to examine climate change resilience on permanent wetlands (and

managed wetlands) particularly whether they provide a similar level of refugia as future 

climate warming in the region is likely to result in more variable wet season rainfall and flow 

patterns (James et al., 2017).  Under this scenario, it is possible that even the more persistent 

wetlands might suffer similar dry out fate to the ephemeral wetlands examine here. 
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