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ABSTRACT: Efforts to protect and restore tropical wetlands impacted by feral pigs (Sus 

scrofa) in northern Australia have more recently included exclusion fences, an abatement 

response proposing fences improve wetland condition by protecting habitat for fish production 

and water quality.  Here we tested: 1) whether the fish assemblage are similar in wetlands with 

and without fences; and 2) whether specific environmental processes influence fish 

composition differently between fenced and unfenced wetlands.  Twenty-one floodplain and 

riverine wetlands in the Archer River catchment (Queensland) were surveyed during post-wet 

(June-August) and late-dry season (November-December) in 2016, 2017 and 2018, using a 

fyke soaked overnight (~14-15hrs).  A total of 6,353 fish representing twenty-six species from 

15 families were captured.  There were no multivariate differences in fish assemblages between

seasons, years and for fenced and unfenced wetlands (PERMANOVA, Pseudo-F <0.58, 

P<0.68).  Late-dry season fish were considerably smaller compared to post-wet season: a 

strategy presumably to maximise rapid disposal following rain.  At each wetland a calibrated 

Hydrolab was deployed (between 2-4 days, with 20min logging) in the epilimnion (0.2m), and 

revealed distinct diel water quality cycling of temperature, dissolved oxygen and pH 

(conductivity represented freshwater wetlands) which was more obvious in the late-dry season 

survey, because of extreme summer conditions.  Water quality varied among wetlands, in terms

of the daily amplitude, and extent of daily photosynthesis recovery, which highlights the need 

to consider local site conditions rather than applying general assumptions around water quality 

conditions for these types of wetlands examined here.  Though many fish access (fenced and 

unfenced) wetlands during wet season connection, the seasonal effect of reduced water level 

conditions seems to be more over-improvised compared to whether fences are installed or not, 

as all wetlands supported few, juvenile, or no fish species because they had dried completed 

regardless of whether fences were present or not. 
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1. Introduction

Wetlands (palustrine and lacustrine) that are located on floodplains away from riverine 

channels support rich aquatic plant and fauna communities (Ambrose & Meffert, 1999; Jiang et

al., 2015; Brandolin and Blendinger, 2016).  However, some point after peak flood connection,

aquatic organisms occupying these wetlands begin to face a moving land-water margin, until 

connection is broken, at which point the remaining wetland waterbodies typically support a 

non-random assortment of species, including fish (Arrington & Winemiller, 2006; Pander et 

al., 2018).  The duration, timing and frequency that off channel wetlands maintain lateral pulse 

connection to primary rivers is an important determining factor in broader contribution to 

coastal fisheries production (Bennett & Kozak, 2016; Górski et al., 2016; Hurd et al., 2016; 

Galib et al., 2018).  In addition to connection, environmental conditions become important 

including water quality (Waltham & Schaffer, 2018), access to shelter to escape predation and 

available food resources (Jardine et al., 2012; Blanchette et al., 2014).  Although optimism 

about restoration is building (Waltham et al., 2020), efforts by managers to restore wetland 

ecosystem values is increasing, though data delineating success of restoration are limited.  This

becomes important when attempting to establish biodiversity returns for the funding 

investment made by government or private investor organisations (Elliott et al., 2016; 

Weinstein & Litvin, 2016; Zedler, 2016; Waltham & Fixler, 2017).

At some point after floodplain connection, the waters begin receding and progressively 

disconnect from the main river channel, forming smaller and shallower off channel 

wetland/swamp refugia (McJannet et al. 2014; Pettit et al., 2012; Pusey & Arthington, 2003).  

In tropical north Australia, seasonal off channel wetlands are more pronounced owing to high 

evaporation rates, loss to groundwater (Petheram et al., 2008), and in many situations waters 

quickly retract away from the banks and riparian shade (Pusey & Arthington, 2003).  At that 
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point, they become more prone to reduced water quality conditions - most notably reduced 

water depth (Pettit et al., 2012) and suffer from high water temperatures (Wallace et al., 2017; 

Waltham & Schaffer, 2018).  This increases aquatic fauna exposure risks to acute and chronic 

thresholds (Burrows & Butler, 2012; Wallace et al., 2015).  In the late-dry season, fish 

confined to isolated wetlands on floodplains therefore have very limited avoidance options 

(Waltham & Schaffer, 2018).  Fish must exploit available ephemeral aquatic habitats (Phelps et

al., 2015; Love et al., 2017), which can be specific to each wetland depending on orientation 

and location (Schomaker & Wolter, 2011), depth and vegetation cover in the landscape 

(Wallace et al., 2017), in order to survive until monsoonal rain reconnects overbank coastal 

floodplains again.  

Across northern Australia, feral pigs (Sus scrofa) have been shown to contribute wide scale 

negative impacts on wetland vegetation assemblages, water quality, biological communities 

and wider ecological processes (Baber & Coblentz, 1986; Krull et al., 2013).  Feral pigs utilise 

an omnivorous diet supported by foraging or digging plant roots, bulbs and other below ground

vegetation material over terrestrial or wetland areas (Ballari & Barrios García, 2014).  This ‐

feeding strategy has a massive impact on wetland aquatic vegetation (Doupé et al., 2010), 

which gives rise to soil erosion and benthic sediment re-suspension, reduced water clarity and 

eutrophication which becomes particularly critical late-dry season.  The fact that limited data 

exits on the impact that feral pigs contribute to wetlands (Mitchell & Mayer, 1997; Doupe et 

al., 2010; Steward et al., 2018; Waltham & Schaffer, 2018), places a strain on the ability for 

land managers to quantify the consequences of pig destruction (Commonwealth of Australia, 

2017).  Conversely, a lack of baseline data means quantifying success following expensive 

mitigation efforts is problematic.
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Strategies focused on reducing or removing feral pigs from the landscape have been employed 

since the introduction to Australia (Fordham et al., 2006).  Control strategies include poison 

baiting, aerial shooting, and trapping using specially constructed mesh cages (that are baited 

sometimes) (Ross et al., 2017).  Attempts to exclude feral pigs have also included installing 

exclusion fencing that border the wetland of interest.  While advantages of installing fencing 

around wetlands has been examined only recently in Australia (Doupe et al., 2010), those 

authors claim fencing might well be less effective particularly in situations where wetlands 

would normally dry before the next wet season rainfall.  Fencing is expensive to construct and 

maintain (Ross et al., 2017), but at the same time prevents other non-target terrestrial fauna 

from accessing wetlands, which becomes particularly imperative late-dry season where 

remaining wetlands provide a regional water point (Commonwealth of Australia, 2017).  

The aims were twofold: first to determine whether the model of non-randomness of fish stands 

here in wetlands, and secondly whether specific environmental conditions influence fish 

composition in wetlands with and without fences.  These data are important and necessary 

given increasing government funding investment underway and planned in northern Australia 

for restoration of wetlands impacted by feral animals (including pigs) (Waltham & Schaffer, 

2018), a response linked to the United Nations recent declaration of a decade on ecosystem 

restoration (Waltham et al., 2020).  

2. Methods

2.1 Description of Study System

The Archer River catchment is located on Cape York Peninsula, north Queensland (Fig 1).  

The head waters of the river rise in the McIlwraith range on the eastern side Cape York, where 

it flows and then enters Archer Bay on the western side of the Gulf of Carpentaria; along with 
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the Watson and Ward Rivers.  The catchment area is approximately 13,820 km2, which 

includes approximately 4% (510 km2) of wetland habitats 

(https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/basin-archer/), such as estuarine 

mangroves, salt flats and saltmarshes, wet heath swamps, floodplain grass sedge, herb and tree 

Melaleuca spp. swamps and riverine habitat.  The lower region of the catchment includes part 

of the Directory of Internationally Important Wetland network (i.e. nationally recognised status

for conservation and cultural value) that extends along much of the eastern Gulf of Carpentaria,

including the Archer Bay Aggregation, Northeast Karumba Plain Aggregation and Northern 

Holroyd Plain Aggregation.  Two national parks are located in the catchment (KULLA 

(McIlwraith Range) National Park, and Oyala Thumotang National Park).  Land use is 

predominately grazing, with some mining activities planned in the next few years on the 

northern bank of the river (not within the area of this study).

Rainfall is tropical monsoonal with a strongly seasonal pattern where between 60% and 90% of

total annual rain occurs between November and February.  Long-term rainfall records for the 

catchment revealed highest wet season rainfall occurred in 1989/1999 (2515 mm), while the 

lowest was 1960/1961 (563.5 mm) (Waltham & Schaffer, 2017).  Total antecedent rainfall for 

the wet season prior (Nov 2014 to Feb 2015) to this survey was 1081 mm, which is below the 

10th percentile for historical records.  The wet seasons experienced through the years prior to 

this study (2010 to 2015) were among the wettest on record, within the 95th percentile of the 

long-term data records.  The low rainfall experienced during this study may have contributed to

a short flood duration, and connection between study wetlands and the main Archer River, 

when compared to average or above average rainfall years (Fig 2).
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Twenty-one wetlands were sampled for this project.  These included both floodplain and 

riverine wetlands that were not on the main flow channels, but rather were on anabranches and 

flood channels that connect to the main channels only during high flow conditions.  All 

wetlands have been historically damaged by pigs (and cattle to a lesser extent) for up to 160 

years (Gongora et al., 2004; Lopez et al., 2014), until recently, where a small number were 

fenced to abate feral pig and cattle from accessing wetlands, in accordance with the feral 

animal research and management agenda (to meet the objectives of traditional owners in the 

region) of both Kalan enterprises and Aak Puul Ngangtam, and their partners.  

The characteristics of each wetland are summarised in Table S1.  Here, sampling focused on 

two periods: 1) immediately following the wet season after disconnection between the river 

and wetlands (hereafter referred to as post wet season); and 2) late-dry season (hereafter late-

dry) in 2016, 2017 and 2018.  Each sampling campaign was completed over 14 days with six 

campaigns in total (post-wet and late-dry season in 2016, 2017 and 2018). 

2.2 Field Methods

In each wetland, a calibrated high frequency Hydrolab multi-parameter logger (OTT Hydromet

USA) was deployed (0.2m depth) for between 2 and 4 days to record epilimnion (0.2m) water 

temperature, dissolved oxygen (%), electrical conductivity and pH every 20mins; logging at 

this frequency provides explicit insight into diel changes in environmental water processes 

(Wallace et al., 2015; Wallace et al., 2017).  Weather conditions were fine with wetlands 

surveyed on the falling limb of the hydrograph.  

Fish were collected in wetlands using a fyke net (0.8m opening, double 4m wing panels, 1mm 

stretch mesh) that was soaked overnight (approximately 14:00 to 09:00).  Wetlands 

substantially impacted by feral pigs; secchi disk depth < 0.1m, no submerged or floating 
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aquatic plants exist, while the fenced wetlands were generally deeper (up to 1.5m), and had 

submerged aquatic vegetation (Fig. 1).  Fish were placed in a tub (~150L) temporarily, 

identified, measured (standard length, mm) and returned to the wetland alive in accordance 

with Australian laws (except for a small number that were kept for food web studies, not 

shown here).   

2.3 Data Analysis

There are two main biases in the sampling method here: 1) that the technique will capture large

numbers of schooling fish along the wetland margins; and 2) the fact that predatory aquatic 

fauna including fish, snakes (macleays watersnakes, Pseudoferania polylepis), file snakes 

(Acrochordus arafurae)) and freshwater turtles (Chelodina oblonga, Chelodina canni and 

Emydura s. worrelli), were periodically trapped for hours means that they could consume fish 

caught in nets.  To overcome these uncertainties, analyses were based on presence/absence of 

species.  Presence/absence provide robust data when relative abundance are of doubtful 

validity because it deals with species with a diversity of behaviours, trophic functions, and 

spatial distribute in a more equivalent way than fully quantitative techniques (Quinn & 

Keough, 2002).

Multivariate differences were examined using PERMANOVA using the Bray-Curtis 

similarities measure (Clarke, 1993) with significance determined from 10,000 permutations of 

presence/absence transformation.  Multivariate dispersion were tested using PERMDISP, 

however, homogeneity of variance could not be stabilised with transformation, and therefore 

untransformed data were used.  Three factors where included: years (fixed), season (fixed); and

fenced/unfenced (random).  These factors were determined a-prior during study design.   

Spatial patterns in multivariate fish assemblage structure and the importance of explanatory 

data sets were analysed using a multivariate classification and regression tree (mCARTs) 
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(De'Ath, 2002) package in R (version 3.4.4).  Analysis was conducted using presence/absence 

transformed fish data for the 10 species that occurred in >20% of wetland sites (to remove rare 

species from this analysis).  Selection of the final tree model was conducted using 10-fold cross

validation, with a 1-SE tree; the smallest tree with cross validation error within 1 SE of the tree

with the minimum cross validation error (Sheaves & Johnston, 2009).  The relative importance 

of the explanatory variables were assessed to determine those with a high overall contribution 

to tree node split, with the best overall classifier being given a relative importance of 100%.  

Kolmogorov-Smirnov (K-S) two-sample tests determined differences in the overall shape of 

fish body size distribution using a Bonferroni correction for multiple comparisons. K-S tests 

take into account differences between the location, skew, and kurtosis of frequency 

distributions; but do not identify which of these parameters are driving distributional 

differences.  Therefore, we report the following characteristics of each body size distribution to

further describe any differences found: mean, standard deviation (sd), minimum value (min), 

maximum value (max), the range of values, skewness, and kurtosis.

3. Results

3.1 Hydrology and wetland water quality

Wet season rainfall totals in the Archer River catchment were low during the study period 

compared to the preceding years (Fig. 2), with rainfall within the 10th percentile for historical 

recordings held by the Australian Bureau of Meteorology.  This means that some caution is 

necessary with interpretation of these data; namely that floodplain connectivity under higher 

rainfall years is likely to have a longer duration when compared to lower connection duration 

under the current rainfall conditions.
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A full summary of water quality data are provided in Supplementary files (S1).  In summary, 

water temperatures during the study period were generally about 26oC (Table 1).  Minimum 

water temperature recordings as low as 18oC, while maximum temperatures occurred in 

November 2016 survey reached above 40oC for several hours of the day in some instances.  

The water column exhibited pronounced diel temperature periodicity; one or two hours after 

sunrise each day. Near-surface water temperatures began to rise at an almost linear rate for a 

period of 8.0 ± 0.5 hours, generally reaching daily maxima during the middle of the afternoon. 

The mean daily temperature amplitude was 6.2ºC (highest daily amplitude 9.6ºC, lowest 

4.4oC).  For the remaining 16 hours of each day, near-surface water temperatures gradually 

declined reaching minimum conditions shortly after sunset. 

The electrical conductivity (EC) was very low (Table S1) during the post wet season surveys, 

while the late-dry season conductivity was higher, a consequence of evapo-concentration.  The 

lowest wetland in the catchment (AR08 located on the coastal floodplain) recorded the highest 

conductivity, suggesting connection with tidal water from the nearby estuary at some stage. 

There was evidence of cyclical daily DO fluctuations supporting the contention that biological

diel periodicity processes were probably not significantly inhibited in all  wetlands (Fig. 3).

Daily minimum DO concentrations were low enough to suggest there was enough respiratory

oxygen consumption to measurably affect water quality, particularly so at the pig impacted

wetlands, but also during the late-dry season survey in November 2016.  Dissolved oxygen

(DO) seemed to  reach daily minima  conditions,  well  below the  asphyxiation  thresholds  of

sensitive fish species, in the early morning hours during all surveys.  In the examples shown,

after the morning low DO, conditions generally recovered to approximately 50%, but reaching

a high of 100-160% in the late afternoon (before sunset).  
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pH is also potentially subject to the same kinds of biogenic fluctuations as DO, due to 

consumption of carbon dioxide (i.e., carbonic acid) by aquatic plants and algae during the day 

(through photosynthesis), and net production of carbon dioxide at night. If respiratory oxygen 

consumption is predominant, DO concentrations are low and pH values are generally 

moderately acidic to neutral, which was the case for wetlands examined here.  All 

photosynthetically active organisms utilise carbon dioxide as a preferred carbon source. Some 

species (including most green algae) are unable to photosynthesise if carbon dioxide is 

unavailable, but there are other species (including most cyanobacteria and submerged 

macrophytes) which can utilise bicarbonate as an alternative carbon source.  Carbon dioxide 

consumption causes pH to rise to values in the order of 8.6 to 8.7 (but that was not the case 

here during this survey period).

3.2 Fish community

A total of 6,353 fish were captured, representing twenty-six species from 15 families (Table 1).

The most common species was the freshwater glassfish (Ambassis sp., 51% total catch), 

delicate blue-eyes (Pseudomugil tenellus, 11%), and northern purple-spot gudgeon (Morgunda 

morgunda, 9%).  A greater number of fish species were caught in the post wet season survey, 

with a lower number captured during the late-dry season, including the northern purple-spot 

gudgeon (Morgunda mogunda), chequered  rainbow fish (Melanotaenia s. inornata), and the 

empire gudgeon (Hypseloptris compressa).  In addition to fish, we captured a freshwater 

crayfish (Cherax sp.), macleays watersnakes (Pseudoferania polylepis) and freshwater turtles 

(Chelodina oblonga and Emydura s. worrelli) in most wetlands, notably during post wet 

season.  Overall, there was no significant difference between seasons, fenced/unfenced 

wetlands and among years (PERMANOVA, Pseudo-F <0.58, P<0.68).  
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With a reduced list confined to dominant species, occurrence profiles for groups in the terminal

branches of the mCART analysis (Fig. 4) show two initial wetland groups based on a split 

supported by region, with wetlands in the Coen (mid-catchment) region separating from those 

wetlands in the coastal plains.  Following the left branch there is inter-annual variation among 

wetlands, and a second terminal node based on whether wetlands were fenced in 2016, but not 

so in 2017 and 2018 data.  Following the right branch (APN, coastal plains), the first node 

separates seasons, and following late-dry season wetlands further separate based on mean 

dissolved oxygen (~3.0%), and then mean temperature (~28.5oC).  The post-wet season branch 

appears to have more separation among data, with a separation based on mean water 

temperature (~26.5oC), years, and then finally dissolved oxygen (~4%). 

Mean fish body size distributions differed between the three sample years (with fish for each

wetland and survey pooled) (KS, P < 0.001, Table S2 – S5), with larger fish measured in 2017

(50.5mm) compared to 2016 (38.7mm) and 2018 (31.6mm), despite the assemblages having

similar size ranges. When comparing the overall fish size distribution by pooling years, post

wet season fish were larger (44.9mm) when compared to the late-dry season (39.7mm) (KS, P

< 0.01).  For some fish species such as the chequered rainbow fish (Melanotaenia s. inornata),

the post wet season (32.5mm) was similar when compared to late-dry season (38.4mm) (KS, P

= 0.06, S3).  In contrast, the northern purple-spot gudgeon (Mogurnda mogurnda) was larger

post-wet season (52.8mm) compared to late-dry season (37.1mm) (KS, P < 0.01, Table S4).

4. Discussion

While installation of fences can protect terrestrial ecosystem services from feral impacts 

(Bariyanga et al., 2016), in the case here fences appear to offer little over-improvised fish 

additional value compared to those that are not fenced.  Many fish indeed access both fenced 

12

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295



and unfenced wetlands during wet season connection, however, the seasonal effects of reduced 

water level conditions and the loss of fish assemblage as the dry season progresses is a pattern 

that remained regardless of fencing.  To this end, installation of expensive exclusion fences 

might not offer additional protection to fish species occupying these tropical floodplain 

wetlands.  The same conclusion was reported by (Doupe et al., 2010) where those authors 

surveyed strongly seasonal wetlands (similar to the wetlands here) elsewhere in northern 

Australia, and concluded that the seasonal dry down of wetlands ultimately prohibits the 

wetland contribution to future year successful fish recruitment.  

The low species richness in wetlands relative to the main Archer River channel might be a 

consequence of the frequency and duration of connection between wetlands and the main 

Archer River.  The wet season rainfall immediately prior, and during this survey, was within 

the 10th percentile for historical records.  In research elsewhere, a longer connection duration 

was shown to result in more fish present post wet season, and conceivably more species present

late-dry season (Arthington et al., 2015; Hurd et al., 2016).  Examples exist where longer 

connection between main river channels and wetlands contributes positively to fish growth 

rates, and higher abundance and diversity of fish (Barko et al., 2006; Schomaker & Wolter, 

2011; Love et al., 2017).  It is also possible that the field methods used here confound our 

ability to determine the full species composition in wetlands – this could be overcome by using

additional survey techniques, including multi-panel gill nets, traps or electrofishing (though we

attempted to electrofish these wetlands, however, conductivity was too low to effectively use 

that method).

An obvious characteristic of the fish data were larger, presumably adult, individuals following 

the disconnection of wetlands after the wet season compared to small individuals present in the

late-dry season.  On this basis, it is possible that the wetlands serve as important refugia for 
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successful recruitment of freshwater fish, that adult fish remaining in the wetlands after 

disconnection are able to complete imperative life cycle stages.  The fact that we did not catch 

large fish in the late-dry season suggests that adult fish might be lost as the dry season 

progresses, consumed either by predators such as estuarine crocodiles (Crocodylus porosus), or

birds feeding in the shallow waters.  Wetlands are also popular feeding and roosting locations 

for birds (Chacin et al., 2015; Brandolin & Blendinger, 2016); we observed a large number of 

birds at most wetlands in the late-dry season.  The value of wetlands to wader birds is limited 

by the condition (Żmihorski et al., 2016; Robertson et al., 2017), but are thought to provide an 

important nutrient subsidy more broadly on seasonal floodplains (Ma et al., 2010; Buelow et 

al., 2018).  Hurd et al., (2017) postulates that differences in fish communities between main 

channel and off channel waters is more influenced by the presence of piscivorous predators, or 

even via a function of competitive exclusion within fish guilds as resources diminish as the 

late-dry season takes hold.  Examining this point could be achieved by investigating the species

niche width (Jackson et al., 2011; Swanson et al., 2015) in drying waters by constructing food 

webs in individual waters to determine species ranges and changes with fencing treatment, and 

comparing post wet season and late-dry season conditions. 

In the late-dry season for the few fish species present, juveniles dominated the catch regardless 

whether wetlands were fenced.  Having small recruits in the late dry period might be an 

important strategy in maximising dispersal after connectivity with the commencement of the 

wet season (Pusey et al., 2018).  Moreover, late season conditions with no flow and warm 

conditions might favour larval development (King et al., 2003; Godfrey et al., 2016).  

Melanotaeniid rainbowfish, for example, have a flexible reproductive behaviour that is well 

adapt to deal with the vagaries of temporal variation in habitat conditions (Pusey et al., 2001).  

The same is true for both Eleotrid gudgeon species found here with smaller recruits 

presumably ready for wide-scape distribution with the pending seasonal wet season flow.  
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Pusey et al., (2018) provides a case that the reproduction success of freshwater fish in northern 

Australia could in fact hinge on antecedent flow patterns across the landscape, and that this 

flexibility ensures population level success (Stewart Koster et al., 2011).  This production ‐

strategy might be particularly pertinent given the below average summer rainfall totals 

witnessed during this survey, particularly when compared to previous years.   

As the dry season takes hold, water quality conditions progressively deteriorated owing mostly 

to increasing impact from rooting pigs accessing wetland vegetation.  Generally, fenced 

wetlands change little in terms of water conditions (Fig. 5).  However, it is the late-dry season 

when water conditions are poorest and therefore most critical to fish.  Unfenced wetlands 

tended to be shallower, highly turbid, and experience water temperatures that exceed acute 

thermal thresholds for fish (Waltham & Schaffer, 2018).  The solubility of dissolved oxygen in 

water is strongly affected by temperature (i.e., high temperature reduces dissolved oxygen 

solubility (Diaz & Breitburg, 2009).  Data on hypoxia tolerances of local freshwater 

fish species in northern Queensland is available (Butler & Burrows, 2007), and while 

tolerances vary between species and life stages, there were obvious periods in wetlands when 

these threshold limits are exceeded.  During the critical periods, fish must regulate 

breathing either via increasing ventilation rates (Collins et al., 2013), or by rising to the surface

to utilise aquatic surface respiration and/or air gulping (e.g. tarpon, Megalops cyprinoides).  In 

any case, the capacity for fish to do that safely depends on the timing of the oxygen sag and 

antecedent conditions, though notably it appears that most of hypoxia-induced fish kills 

originate from thermal stress and sunburn resulting from the animals’ need to remain at the 

surface during the heat of the day in order to access available oxygen for respiration.

Increasing these risks to fish can have important chronic effects including reducing physical 

fitness of fish to successfully contribute to future populations (Flint et al., 2018; Gilmore et al., 

2018).
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5. Summary and Conclusions

The cultural and ecological value of coastal wetlands means that management intervention is 

increasingly necessary to ensure they remain productive and viable habitat (Creighton et al., 

2015).  These data support a model that damage to wetlands from pig activities not only 

contributes to reduced aquatic habitat, through loss of aquatic vegetation communities, but also
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probably has secondary impacts including water temperature and asphyxiation risks for many 

hours each day, that are higher than when compared to fenced wetlands (Fig. 5).  However, fish

occupying fenced and unfenced wetlands here were similar, particularly in the late-dry season 

where those remaining few species were juveniles ready for wet season re-distribution.  On this

basis, installing fences to both floodplain and riverine wetlands that were not on the main flow 

channels, but rather were on anabranches and flood channels that connect to the main channels 

only during high flow conditions, seems to offer little additional habitat value for fish. Where 

wetlands are largely ephemeral and will dry anyway, or where wetlands remain until the next 

seasons rain connection; species abundance and/or diversity is not improved by restricting feral

pig access.  Further research is necessary to examine climate change resilience on permanent 

wetlands (and managed wetlands) particularly whether they provide a similar level of refugia 

(James et al., 2017).  
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Table 1   Fish taxa identified in the Archer River (freshwater section) from broad northern 
Australia survey of freshwaters, and those species presented in wetlands recorded during this 
study.  * denotes species of economic importance, b denotes species declared as endangered 
under Australian conservation and biodiversity legislation. # Swamp eel caught in 
macroinvertebrate samples  

Family Genus Species Common name Present in
Archer River

Present in
wetlands

Apogonidae Glossamia aprion Mouth almighty ò ò
Ariidae Neoarius berneyi Berney’s catfish ò

Neoarius graeffei Lesser salmon catfish ò
Neoarius leptaspis Triangular shield catfish ò
Neoarius paucus Silver cobbler ò

Atherinidae Craterocephalus stercusmuscarum Fly-speck hardyhead ò ò
Belonidae Strongylura krefftii Long tom ò ò
Centropomidae Lates calcarifer Barramundi* ò
Chandidae Ambassis sp. Glass perch ò ò

Ambassis sp. Northwest glassfish ò
Ambassis agrammus Sailfin glassfish ò
Ambassis elongatus Elongate glassfish ò
Ambassis macleayi Macleay’s glassfish ò ò
Denariusa bandata Pennyfish ò ò

Clupediae Nematalosa erebi Bony bream ò ò
Dasyatidae Dasyatis sp. Stingrayb ò
Eleotridae Hypseleotris Compressa Empire gudgeon ò

Mogurnda mogurnda Northern purple-spot 
gudgeon

ò ò

Oxyeleotris sp. Gudgeon ò
Oxyeleotris nullipora Poreless cod ò
Oxyeleotris lineolatus Sleepy cod ò ò
Oxyeleotris selheimi Giant cod ò ò

Engraulidae Thryssa scratchleyi Freshwater anchovy ò
Gobiidae Glossogobius aureus Golden goby ò

Glossogobius giuris Flathead goby ò
Glossogobius sp2 Goby (Munroi) ò
Glossogobius sp3 Goby (Dwarf) ò

Megalopidae Megalops cyprinoides Oxeye herring ò ò
Melanotaeniidae Iriatherina werneri Threadfin rainbowfish ò ò

Melanotaenia nigrans Black-banded rainbowfish ò ò
Melanotaenia splendid inornata Chequered rainbow fish ò ò
Melanotaenia trifasciata Banded rainbow fish ò ò
Melanotaenia sp. Rainbowfish ò

Osteoglossidae Scleropages jardinii Saratoga ò ò
Plotosidae Anodontiglanis dahli Toothless catfish ò

Neosilurus sp. Eel-tailed catfish ò
Neosilurus ater Black catfish ò ò
Neosilurus hyrtlii Hyrtl’s tandan ò ò
Porochilus rendahli Rendahl’s catfish ò ò
Pseudomugil Tenellus ò
Pseudomugil gertrudae ò

Pristidae Pristis pristis Freshwater sawfishb ò
Soleidae Synaptura salinarum Freshwater sole ò
Synbranchidae Ophisternon sp. Swamp eel ò #
Terapontidae Amniataba percoides Banded grunter ò ò

Hephaestus carbo Coal grunter ò
Hephaestus fuliginosus Sooty grunter ò
Leiopotherapon unicolor Spangled perch ò ò
Scortum ogilbyi Gulf grunter ò

Toxotidae Toxotes chatareus Archer fish ò ò
Toxotes jaculatrix Banded archerfish ò

Total species 48 26
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