
Computing Generalized Linear Model using

Iteratively Weighted Least Squares and

Coordinate Descent

Khoa Huynh

Advisor: Dr. Xia Wang

Department of Mathematical Sciences

Division of Statistics and Data Science

University of Cincinnati

August 31, 2020

Abstract

Generalized Linear Model (glm) has been widely used in regression

models. Iteratively weighted least squares algorithm (IWLS) and co-

ordinate descent (CD) algorithm are technique that can used to �nd

maximum likelihood function for generalized linear model. We are in-

terested in comparing the two algorithm to the framework of regression

models with binary responses. Link function is an important compo-

nent in the generalized linear model. We carried out a simulation study

to compare glm using IWLS algorithm and CD algorithm performance

under di�erent link functions. The link functions we investigated in-

clude the commonly used logistic (logit), probit and complementary

log-log links (cloglog). We also wrote an algorithm glm using itera-

tively weighted least squares and coordinate descent algorithm. Our

results show that under IWLS algorithm perform better than glm un-

der CD algorithm when we increase the number of variable. The cur-

rent study helps our future research to build an integrated process of

variable selection via lasso along with a �exible link function.

Keywords: binary response, coordinate descent algorithm, itera-

tively weighted least squares, link functions, generalized linear model.
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1 Introduction

Generalized linear models include a link function that provides the relation-
ship between linear predictor and the mean of the response random variable.
Iteratively weighted least squares is one of the original technique for solv-
ing the generalized linear models problems[4]. However, coordinate descent
algorithm solve optimization problems and have been used in applications
many years. They are iterative methods in which each iterate is obtained
by �xing most components of the variable vector at their values from the
current iteration, and approximately minimizing the objective with respect
to the remaining components[5]. There has been an enormous amount of
research activity related to computational algorithm on generalized linear
models using coordinate descent such as:

• Coordinate descent algorithms (Stephen J. Wright 2015) describes the
fundamentals of the coordinate descent approach on glm, together with
variants and extensions and their convergence properties, mostly with
reference to convex objectives.

• Coordinate Descent (Geo� Gordon and Ryan Tibshirani 2012) repre-
sent the application of coordinate descent algorithms in least absolute
shrinkage and selection operators (lasso).

• Coordinate Descent Optimization for l1 Minimization with Application
to Compressed Sensing; a Greedy Algorithm (Yingying Li and Stanley
Osher) propose a fast algorithm for solving the Basis Pursuit problem,
which has application to compressed sensing.

In this paper, we discuss about the compare accuracy between IWLR
algorithm and CD algorithm with link functions such as probit, logit and
cloglog, and then compare the time performance of coordinate descent with
iteratively weighted least squares. The algorithm iteratively weighted least
squares for maximize likelihood estimates function for generalized linear mod-
els will be provides (section 2.3) as well as coordinate descent algorithm under
probit, logit, and cloglog link functions (section 2.4).

2 Methods

2.1 Generalized Linear Models

Let consider we have binary response variables Y1, Y2, ...Yn, and an n×p ma-
trix of predictor X, where X = (X ′1, X

′
2, . . . , X

′
n)′ and Xi is the p-dimensional
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row vector of predictors, and we want to model the probability p = Pr(Y =
1). The link function can take continous scales from negative in�nity to pos-
itive in�nity and transforms it to the probabilities with value between 0 and
1 for binary response such as logit, probit and cloglog link functions. Since
our approach is studying di�erent link functions, it is more convenience to
express the logit, probit and cloglog model in terms of function form below:

Table 1: Binary link functions

Link name Link Function, Xβ = g(p) Inverse Link

Logit Xβ = log( p
1−p) p = exp(Xβ)

1+exp(Xβ)

Probit Xβ = Φ−1(p)∗ p = Φ(Xβ)
Cloglog Xβ = log(− log(1− p)) p = 1− exp (− exp(Xβ))

Note∗: Φ(.) denote the standard cumulative distribution function of the
class, such as the N(0, 1).

We now de�ne the maximum likelihood for function. Let p(xi) = Pr(Y =
1|xi) be a probability for observation i at a particular value for the parameters
(β0, β):

L(β0, β) =
n∏
i=1

p(xi)
yi(1− p(xi))1−yi . (1)

The log-likelihood function turns the products into the sums:

lnL(β0, β) =
n∑
i=1

yi ln p(xi) + (1− yi) ln(1− p(xi)). (2)

2.2 Log maximum likelihood for link functions

1. Logit link function model:

lnL(β0, β) =
N∑
i=1

(yi ln(
exp (β0 + xTi β)

1 + exp (β0 + xTi β)
)+(1−yi) ln (1− exp (β0 + xTi β)

1 + exp (β0 + xTi β)
))

(3)

2. Probit link function model:

lnL(β0, β) =
N∑
i=1

(yi ln(Φ(β0 + xTi β)) + (1− yi) ln (1− Φ(β0 + xTi β)))

(4)
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3. Cloglog link function model:

lnL(β0, β) =
N∑
i=1

(yi ln(1− exp (− exp (β0 + xTi β)))+(1−yi)(− exp (β0 + xTi β))).

(5)

2.3 Iteratively Weighted Least Squares

Iteratively Weighted Least Squares (IWLS) is used to �nd the maximum
likelihood estimates of a generalized linear model [4]. The following table
shows the algorithm for IWLS, where rth is the number of iteration :

Step 1: Let βr the current estimate of β̂, determine
η̂ri := xTi β

r, i = 1, ..., n, (current linear predictor)
µ̂ri := g−1(ηri ), (current �tted means)
νri := a(φ)b”(θi)|θi=θ̂ri
θ̂ri := h−1(µri )
Zr
i := η̂ri + (yi − µ̂ri )(

dηi
dµi
|ηi=η̂ri ), (adjusted dependent variable)

W r
i := [νri (

dηi
dµi
|ηi=η̂ri )2]−1

Step 2: Regress Zr
i on xi1, xi2, ...xip with weights (W r

i )−1 to obtain new esti-
mate βr+1 and continue with step 1 until |βr − βr+1| su�ciently small.

2.4 Coordinate Descent

Coordinate descent algorithms is an optimization algorithm that minimizes
along the coordinate direction to �nd the minimum function. Coordinate
descent has been applied to several algorithms for solving the optimization
problem. The idea behind these algorithms is simple. Suppose f is multiple
dimensional functions, in our case it would be the log-likelihod function.
We can minimize f by minimizing each of the individual dimensions of f ,
while holding the argument of f in the other dimensions �xed [3]. In other
word, it will take complex multiple dimensional problems and reduces it to
a collection of one-dimensional problem [3].
While we keeping β0 = 0 and moving β1, we can see in Fig 2 that the logit
likelihood have the minimum to achieve.

Here is the write up algorithm for coordinate:
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Figure 1: One-Dimensional function to optimize

Step 1:

Set initial point β = (0, ...0) Calculate lnL(0, ...0)r the current estimate of

log-likelihood Step 3:

For j = 1, ..., p, minimize lnL(β0, ..., βj−1, β, βj+1, ...βp)
r+1 where

β0, ..., βj−1, βj+1, ...βp are all �xed at their current values.

Step 4:

Continue with step 3 until | ln(.)r − ln(.)r+1| su�ciently small

3 Simulation Study

3.1 Example 1

In this example, we investigate on the comparison between IWLS and CD
algorithm. We used β = (1, 3) to generate data from multivariate normal
distribution Xi, where i = 1, 2. The data consist of response y variables
from the model:

g(E(Yi)) =

p∑
j=1

βjXij

. We run over 100 simulations. The correlation between xi and xj, j =
1, 2..., 1000, was ρ|i−j| with ρ = 0.90. We apply logit, probit and cloglog link
function as the true model in each simulations. We split data into 2 parts:
train data and test data base on the ratio 1:1. We used train data to �nd
β̂, which is the estimate of β and then using β̂ with test data to compute
the response. After that, we calculate the accuracy of the test data for each
methods (IWLS and CD).
Here is the result for simulation comparision between IWLS and CD with
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logit link functions:

Table 2: Accuracy for Example 1

Logit Probit Cloglog
IWLS CD IWLS CD IWLS CD

Mean 78% 77.95% 86.3% 86.57% 76.01% 85.41%
Median 78.2% 78% 86.2% 86.7% 75.% 85.50%

As we can see from the table 2, the mean and median accuracy from
IWLS methods slightly higher than CD methods for logit link. However,
CD methods is better than IWLS method for both probit and cloglog link
function.
The boxplot below show time comparision between IWLS and CD with logit
link functions. Base on the boxplot, the time to converge for CD method is
faster compare to IWLS methods. This is the same case for both probit and
cloglog link functions (graph in appendix section).

Figure 2: Boxplot time comparision

3.2 Example 2

In this example, we used the same set up as we did in example 1, however,
with β = (1,−3, 3) generate data from multivariate normal distribution Xi,
where i = 1, 2, 3. The correlation between xi and xj, j = 1, 2..., 1000, was
ρ|i−j| with ρ = 0.99 for example 2a, ρ = 0.01 for example 2b,ρ = 0.5 for
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example 2c . The data consist of response y variables from the model:

g(E(Yi)) =

p∑
j=1

βjXij

Here is the result for simulation comparision between IWLS and CD with
logit, probit and cloglog link functions:

Table 3: Accuracy for Example 2a

Logit Probit Cloglog
IWLS CD IWLS CD IWLS CD

Mean 61.51% 61.29% 72.76% 72.37% 85.33% 85.06%
Median 61.30% 61.40% 73.00% 72.40% 85.40% 85.40%

Table 4: Accuracy for Example 2b

Logit Probit Cloglog
IWLS CD IWLS CD IWLS CD

Mean 82.96% 83.21% 89.92% 89.82% 77.80% 84.36%
Median 83% 83.20% 90.10% 89.80% 78.00% 86.00%

Table 5: Accuracy for Example 2c

Logit Probit Cloglog
IWLS CD IWLS CD IWLS CD

Mean 77.71% 77.90% 86.43% 86.35% 78.33% 83.06%
Median 78.00% 78.00% 86.50% 86.40% 79.40% 84.42%

As we can see, the table show that both mean and median accuracy for
IWLS and CD method are the same. However, the CD method perform
better in example 2b and example 2c than IWLS method.

The boxplot from �gure 3 and �gure 5 show time comparision between
IWLS and CD with logit link functions for example 2a and example 2c.
Time convergence for CD methods about 10 higher than time convergence
for IWLS methods. However, the time convergence for CD method in �gure
4 (example 2b) lower than time convergence for IWLS method. Base on box-
plots below, we can see that the correlation have e�ect on the CD algorithm.
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This is the same case for both probit and cloglog link functions (graph in
appendix section).

Figure 3: Example 2a: Boxplot time comparision

Figure 4: Example 2b: Boxplot time comparision
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Figure 5: Example 2c: Boxplot time comparision

3.3 Convergence

The correlation for data does not impact on the CD algorithm as we can see
in �gure 8, which is ρ = 0.01. Moreover, the time convergence for IWLS are
higher than CD method like we discuss in �gure 2. Both �gure 6, �gure 7
and �gure 9 show that the higher correlation, the more time CD algorithm
need to convergence. CD algorithm convergence much faster and stable with
variable does not have correlation.

Figure 6: Example 1 - Correlation verse time between IWLS and CD for logit
link
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Figure 7: Example 2a - Correlation verse time between IWLS and CD for
logit link

Figure 8: Example 2b - Correlation verse time between IWLS and CD for
logit link
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Figure 9: Example 2c - Correlation verse time between IWLS and CD for
logit link

4 Discussion and Future Works

In the simulation study, although the model under misspec�y link function,
the CD algorithm have better performance accuarcy more than IWLS algo-
rithm for glm. Moreover, lasso model have very high percentage to select-
ing the correct variable under di�erent link function. The misspeci�ed link
functions does not e�ect on the shrinkage methods for choosing the correct
variable. For the future work, we would like to continous investiagte on the
link function with di�erence misspecify approach to see whether the true link
function can have higher accuracy than other link functions.
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A Graph for probit link simulation

Figure 10: Example 1: Boxplot time comparision probit link

Figure 11: Example 1: Correlation verse time between IWLS and CD for
probit link
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Figure 12: Example 2a: Boxplot time comparision probit link

Figure 13: Example 2b: Boxplot time comparision probit link
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Figure 14: Example 2a: Correlation verse time between IWLS and CD for
probit link

Figure 15: Example 2b: Correlation verse time between IWLS and CD for
probit link
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Figure 16: Example 2c: Boxplot time comparision probit link

Figure 17: Example 2c: Correlation verse time between IWLS and CD for
probit link
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B Graph for cloglog link simulation

Figure 18: Example 1: Boxplot time comparision cloglog link

Figure 19: Example 2a: Boxplot time comparision cloglog link
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Figure 20: Example 2b: Boxplot time comparision cloglog link

Figure 21: Example 2c: Boxplot time comparision cloglog link
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Figure 22: Example 1 - Correlation verse time between IWLS and CD for
cloglog link

Figure 23: Example 2a - Correlation verse time between IWLS and CD for
cloglog link
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Figure 24: Example 2b - Correlation verse time between IWLS and CD for
cloglog link

Figure 25: Example 2c - Correlation verse time between IWLS and CD for
cloglog link
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