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A general g-component (g > 2) solution of the star—triangle equation under an “ice”-type
restriction is considered. The Bethe ansatz equations are derived explicitly for it. The exact
solution is presented for any g and reported in detail for g=3. The free energy and the
excitation energies are found as functions of the spectral and anisotropy parameters as well as
the finite-size corrections yielding the central charges and conformal dimensions. A new QFT is
associated to these models where the mass spectrum and the S-matrix are obtained through the
light-cone approach. The new feature of this model is to present a mass spectrum dependent on
the anisotropy parameter.

1. Introduction

The construction of exact solutions of 2D integrable statistical models has made
impressive progress in recent years [1,2]. Eigenvalues and eigenvectors of these
models have been constructed by means of the Bethe ansatz and its nested version.
One of the first to be treated was the six-vertex model. This model was diagonal-
ized for the g-component (g > 2) case [3] and for its generalization [4]. The
solution of the Bethe ansatz equations is presented here for the last case.

The multi-component generalized six-vertex model, also called Perk—Schultz
model, is defined by a multi-state “ice”-type condition associated to the vertex
weights. These weights are a general solution of the Yang—Baxter equation which
ensures integrability. Besides the dependence on the anisotropy (y) and the
spectral (8) parameters, the weights present two new parameters: G,, (1 <o <p <
g) and a discrete one € , = t 1. Their influence in the solution of the Bethe ansatz
equations is not the same. We will see that the solutions are dramatically affected
by €, that defines the ferroelectric or antiferroelectric character of the weights. On
the other hand, the G, parameter is equivalent to an external field.
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In this paper we sketch the algebraic Bethe ansatz construction of the eigenval-
ues and the eigenvectors. The solution of the Bethe ansatz equations is presented
for g states per bound in the trigonometric regime, that is, when the weights are
trigonometric functions of €,, y and 6. The solution is derived in detail for g = 3.
We obtain the expressions for the free energy and excitation energies as functions
of the spectral (#) and the anisotropy (y) parameters besides the discrete parame-
ter €,. This lattice model yields a solvable quantum field theory and a conformal
model in appropriated scaling limits within the lattice light-cone approach. One of
the new features of the generalized model is to present a mass spectrum depen-
dent on the anisotropy parameter. This fact is due to the presence of the discrete
parameter ¢,,.

A brief account of the present work has been reported in ref. [13].

2. The model

Let us consider a bi-dimensional lattice of order M X N with g possible colours
on the lattice bonds. Four bonds come together at each vertex of the lattice, so if
the number of colours is g there are g* distinct types of combinations of colours at
a vertex. We ascribe to each allowed combination a positive number e; (=
1,2,...,9%), and then we associate a total energy, which is defined as the sum of
the energies of the vertex:

E= Z‘Njej’ (1)

where N, is the number of vertices with a combination of colours of type j in a
given configuration. As a result we obtain a model of interacting colours situated
along the edges of the lattice.

The partition function of the system writes

Z= ZeXp(—ﬁE)’ (2)

where the summation is over all configurations of colours on the lattice, and E is
the total energy of a configuration defined by (1). The parameter g8 is inversely
proportional to the temperature, and uj=exp(—Bej) (j=1,2,...,9% are the
Boltzmann weights.

The free energy is defined in the thermodynamic limit as

1
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Fig. 1. RX2(6).

It is useful to rewrite the Boltzmann weights in a more appropriate form, that is
RXX(6) for the combination of colours in fig. 1. Then, horizontal and vertical
bonds can have a local colour belonging to the vector space #” where ¢ = dim 7.
We associate to a horizontal line of the lattice the monodromy operator T,,(6)
defined by

q
T}"(6) = A AZ 1t2?1(9) o (0) et (0)® ... ,(0), (4
1~ N_,1=

where [¢,,40)],, = R*2(8) and ¢{)(8) acts in the g-dimensional vertical space %
associated to the kth column of the lattice.

Considering periodic conditions in the horizontal direction we obtain the
transfer matrix 7*(8), defined as the trace of the monodromy matrix over the
horizontal indices,

7(8) = Tr, TV = i T(8), (%)

a=1

and the expression (2) for Z becomes an outer summation over the vertical, and
inner over the horizontal configurations, so

Z="Tr, [#¥(6)"], (6)

where Tr, means the trace over the space 7.

With this transformation the problem of calculating the statistical sum (2) is
reduced to a problem in quantum mechanics, namely the calculation of the
eigenvalues of the transfer matrix +V(8).

The model considered here, that is, the generalized six-vertex model, is defined
by a one-parameter family of vertex weights R(8) with not g* but ¢g(2g — 1)
non-zero types of combinations of colours at a vertex. The only configurations
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Fig. 2. Allowed configurations.

allowed to be nonzero are described in fig. 2. We have

sin(y + epﬂ)

R°(9) =
pp( ) sin y
sin(9) (7
po = *
Rvp(a) Gpa’ sin y 1Y g,

Rgg(e) — eiﬁsign(p-a)’ p # o

all other R}A() = 0. Here e, = +1, G,,G,.' =1 (no sumon p, ¢) and 1 <p, 0 <
q.

We note that the weights with €, = 1 favour ferroelectric configurations, that is,
all links with the same colour. Otherwise, for €, = —1, the weights make more
probable alternating coloured configurations. In this case we can obtain an
antiferroelectric behavior if all colours are associated to €, = —1 or a ferrielectric
behavior if we have a mixed configuration of colours associated to €, = —1 and
€,= 1.

Notice that reversing signs of all ep(l < p <q) is equivalent to changing vy into
T —7.

The generalized model is a solution of the Yang—Baxter equation [5]

R(0—6)[T(8)®T(6")] =[T(6')®T(8)]R(6-196"). (8)

This condition is sufficient to ensure the integrability of the model.

If g =2, then eq. (7) gives the weights of a six-vertex model with three possible
regimes depending on the values of ¢, and e,. For ¢, =¢, = —1 or +1 we obtain
respectively the ordinary six-vertex model in the antiferroelectric and ferroelectric
regime. For €, # ¢, we obtain a six-vertex model with a ferrielectric character. If
g > 2 then we have a multi-component generalization of the six-vertex model with
the three possible regimes. In fact, the weights of (7) are found to be a general
solution of the Yang—Baxter equation (8) under the restriction of a generalized
“ice” rule, which state that, of the g*R** only R%° RS and R7? are different

aa pe’
from zero. This restriction requires the vertices to obey a conservation law, just as
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in the case of the original ice rule. That is, if A" and A have the values p and o
than a’ and a must also be p and o or o and p.

A more general solution is obtained if we consider vertical field factors. In this
case the R-matrix reads

RL2(8) = bRy (6). (9)
So, the transfer matrix becomes
T,,(0) = bMpiNz . bqZNqTa,a(O). (10)

As we will see later T(8) is block diagonal, where each block is specified by a
set of integers Ny, N,,..., N,, and hence, the transfer matrix with vertical fields
can be diagonalized simply by adding the field factors to the expression (23) for the
eigenvalues, according to (10). In this way we will not consider this parameter in
the solution of the model treated in the following sections.

3. Algebraic Bethe ansatz

Let us now sketch how to construct the exact eigenvectors and eigenvalues of
the transfer matrix 7IVX(#) using the nested Bethe ansatz.
Taking the ferroelectric state

1) =N, 1), (11)

where the g-component vectors |1) have all components zero except for the first
that equals one, as the reference state, we observe that applying the monodromy
operators T!)YX(8, &) to this state we get

N sin[y +€,(6 —as)]

TV, @)l = T1 : 1),
s=1 s vy
N sin(0 —a,)
T8, )11 = TG I, 2<k<a,
s=1 (12)
TV (8, @)111) =0, k+i, 2<i<q,
TN 8, a)li1) #0,
where & =(ay,...,a,) is an inhomogeneity that varies from site to site.

The last operator is the only one that gives new states when applied to the
reference state ||1). Then, to obtain all the possible physical states we apply the
operator TV 8, &) on the reference state many times. In this way we obtain states
of antiferroelectric or ferrielectric character from |/1).
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The properties of the reference state ||1) suggest to decompose T’} and R in
blocks of the following form:

A(8,&) B0, &)

D o0 b8 )

where
A6, @) =TI'Y6, &), B,(6,a)=T{}(8,a), Ci(8,a)=T"(6, &)

D;(8, &) = Ti[jN](e’ @), 2<i,j<q.

and
1 0 0 0
0 &;by ;i O

R(O)=10 5,7 8,67 0 | (14)

0 0 0 R{P

where

sin 1y sin y iy
bit = 9, @ RJ?, 2<i,j,a,b<aq,

sin[y +e,(0)] R = Sy T+ ex0)]

sin 8 G G- =G
Csin[y+e(6)] Y uo

The bilinear algebra for the operators A(8), B(6), C(6) and D, (6) follows by
inserting eqs. (13) and (14) in eq. (8). One finds

[4(6), A(6")] =0, (15)

ny
sin[y +€,(60—6")]’

B(6) ® B(8') = [B(68") ® B(6)| RO(9 —9") (16)

A(8)B(6") =g} (0" = 0) B(6") A(0) — ki (0'—8) B(0) A(6"),  (17)

sin y
sin[y +€,(6—6")]

D(6) ®B(8") =g/ (6 —0")[B(6') ® D(6)| RP(6 - 6")

—h{(6-0")[B(8) ®D(8")], (18)
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where
1 i +¢e,(6
cf ! sin 6
bt sin y
hi(8) =~ =G et
i () cf it sin 6

We are interested in the eigenstate of 7/¥1(8, &) having the following structure:

PP, AP, A) = X XD B(AP)e... @B, (X))

py H ipy

=X;B(X)®...® B(AD)I1). (19)

X is a vector in the tensor product of p,; horizontal spaces of dimension (g — 1).
The numbers A{,...,AQ) and X, ., will be determined by the eigenvalue
equation

lpl

N9, )W ({XD}) = A(8, &) T ({AD}). (20)

Notice that ¥ is assumed to be independent of 8. This is reasonable because the
family commuting 71V, @) may have common eigenvectors ¥ for all 6.
We have here

7N(8, &) = A(8) + tr@D(9), (21)

where

tr®D(0) = qu D,.(8).
a=2

That is tr® is the trace in the (¢ — 1)-dimensional horizontal space.

The application of A(8) and D,,(6) on ¥, that depends on B(A), implies
passing these operators through the B(A) till we reach the reference state |[1),
whose eigenvalues we know by eq. (12). This is done using the commutation
relations (15)-(18).

This procedure is the general strategy of the algebraic Bethe ansatz and
generates a lot of terms. We are interested in those keeping the product

B(X)8B(AD) ® ... ® B(A))) (22)

unchanged. All the others, where some B(A(") is replaced by B(8), are imposed to
have a vanishing sum. In this way we get only states proportional to ¥ providing
an eigenvector and its eigenvalue.
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Using the same procedure as the one applied to the multi-component six-vertex
model in ref. [2], we find the following expression for the eigenvalues:

. M. 2 (2).
A5 AP AD; 4D aD;
=AD(8) + AD(0) + ...

AT N 1))

Pg-1
23
+A(q)(0) , ( )

N Py
] 1_161
a=1

sin 6 1V
sin y

XeD 40+

where

sinh(AY +i6 — iye, /2)
sinh(AQ) +i6 + iye, /2)’

sin(y +¢€,0)

sin y

AD(8) = ]1]2 [G,.,l]”"””[

A0y = T1 16,7

j=1,j%*0

q

sinh

Lete,

s=1

Le—e

s=1

Y/ 2)

=

X T1e,
a=1

1

sinh[ APV +i6 +i

o—1

sin

sin

qg—1
A(‘”(B) = 1—[1 [Gqu]pf—l‘l’ll:
j=

A‘“)+i0+z( Y e,
o1

e

] |

X 40+

Ze+e

s=1

sinh()\‘g_” +i0+i

>

v/ 2)

v/ 2)

H

a=1

smh(/\(j_l) +i0+1i

Xq:e te,
£

A

The set of numbers A‘j")(l <k <gq,1<j<p,) are determined as functions of y
and €, by coupled algebraic equations, that is, the Bethe ansatz equations (BAE):

l:[[ 11+1] Tei 17 €]

P sm[/\‘” AP ~ive, M]

=1 sm[)\(” /\(’)+1ye]

Pt sin[ AP = A0 +iye; /2]
L sin[AD =AY "D —iye; ., /2]

Pin1 Sin[)\(,{)-—)t(,j_l)-f-iyej/Z]
=1 Sin[)\(,{) . R iyej/Z] ’

(24)
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where
1<k<p, 1<o<(q-1), p,=0, X@=0, py=N, N=p,_,—p;. (25

The expression (24) is written in the trigonometric regime, that is, when the
weights are trigonometric functions. The same expression follows from the hyper-
bolic regime (that is, when the weights are hyperbolic functions) with the hyper-
bolic functions replaced by the trigonometric ones.

The expression for the eigenvalues in the hyperbolic regime was obtained in a
different way in ref. [4]. This expression can be fit in our results setting in this

paper:

N 5N — (e, +e,+ ... +€,)y/2. (26)

Eq. (24) shows that the role of the parameters G;; and ¢, is not the same. The
first one appears as multiplicative factors and has the meaning of external fields. It
is equivalent to gauge transformation on the eigenvalues or twist on the boundary
conditions [2,6] when |GUP| =1.

The second one, on the contrary, takes a prominent part in the solutions of the
Bethe ansatz equations. When ¢; = —¢;,, (for a given j), we see in eq. (24) that
the phase describing the interaction of pseudoparticles in the jth step between
them (AY), 1 <I< p;), vanishes. The interaction between pseudoparticles in differ-
ent steps is always present. The attractive or repulsive character of the interactions
can be changed at will by choosing the €, appropriately.

Notice that putting ¢, =¢,= ... =¢,= —1 and G;; =1 in eq. (24) we get the
usual Bethe ansatz equations for the original multi-component six-vertex model.

4. Exact solution of the ¢ = 3 critical model

We will concentrate in this section on the particular case where each bond can
have three different colours and the variable G,, is always equal one.

The variables € (1 <s < 3) may assume the values +1, and thus we have eight
possible situations. The first four are:

() e=-1, e=-1, e=+1,
(i) e¢=-1, e=+1, &=-1,
(ili) e,=-1, €=+1, e=+1, (27)

(iv) €=-1, e=-1, e=-1,

and the other possibilities corresponding to reversing all signs are described by the
same solutions upon the change y — (7 — y).
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The expression for the eigenvalues is
A(8) = AD(8) + AP(8) + A°N(0), (28)

where AUX@) is given by eq. (23). We notice that for large N and fixed p, and p,
the expression (28) is dominated by the first term A1(8) when 0 < 8 <y /2, that is

N Dy

Sinh(/\(;) +i6— i'yel/Z)
=i Vsinh(AD 100 + ive,/2)

(29)

Ao, ):) _ (Sin(y +€,0) )

sin y
A closed expression for the eigenvalue A(#) can be derived in the thermodynamic

limit N — o where eq. (24) becomes easily solvable with the help of the following
transformations:

e
XD 5 ) A(Z)—>A(2)+i(l +€2)Z. (30)

Substituting (30) in (24) we get two coupled equations:

sinh(AD +ive;/2)\" 22 sinh[AD — AP —ive, /2 +i(1 +e;)m/4
sinh(A —iye, /2) - j=1 sinh| XY = AP +iye, /2 +i(1 + €,)m/4

71 sinh(AQ — A +ive, /2)

X , 31
j=1 sinh(AQ = AP — iye,/2) (31)
21 sinh[ AP — AP +ive,/2 +i(1+€;)m/4]
j=1 sinh[A‘f) ~ MNP ~iye, /2 +i(1+ 62)77/4]
(32)

P2 sinh i M2 — MD L jve (14 ey /4]
j=1 sinh| AP — AP — iye; +i(1 + €;,) 7 /4

where 1 <k <p, and 1 </ <p,.
To solve this system of equations we first take the logarithm of egs. (31) and
(32), to get

pj ) ) Dj—y ) ) T
Se.e, ) Y D(AP = AP, v) —¢; Y @(A(Ig) —X§~b +iz(€f —€_1), y/2)
I=1 =1
Pj+1

4 4 K .
— €1 Y ‘P()\‘,ﬁ)—A(,’+1)+lz(ej—ej+1), y/Z) + SIIN@(/\(,?, 7/2) =271,
=1

(33)
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where j = 1, 2 corresponds respectively to the first and second equation, 1 <k <p;,
and we call

sinh(A +iz)

@ =i log————+
(A, z)=iloe g iy

DA, z)=—D(A+im/2,z). (34)

The numbers {7 are half-integers. For large N the number of roots (AY) is
very large but they become closer and closer and in the real axis so one can define
a continuous density in the N = oo limit:

1

poX0) = lim T =) (35)

For the ground state the half-integers I{/> form a monotonic sequence
B~ 10 =1 (36)

and, for excited states I{ exhibits jumps for some values of k.
Taking the difference between eq. (33) for k =j + 1 and k =j, we obtain

a(A) = Z I KA - M)U(k)(ﬂ)———d’ (A 7/2)
N N

S E | K- - B [Kaa-e) reell @D
k=1

where ¢4 denote the complex root (Im ¢7 > 0) and

Ky(w) = _Ejaj,k+l[66j,s,*l¢,(”” v/2) — 551,—5,_15’(#a 7/2)]

— &8 u-1[Beye, P (s v/2) =8, o, B (1, v/2)]
te€dude . P'(1, y). (38)
Here we used
lim — Z F(2%) f dr pD(A) f(A), (39)
N—w N/~
. de(A, a) F(a d®(A, @) 40
(La) =, B a) = (40)
I, — 19 ' 1 M _
lim ———————— =a(A) =pY(1) + Z 8(A—65). (41)

N N(A(‘,) )\(Ii))
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From the above relation one sees that each jump in the sequence I’ corre-
sponds to remove a root at the position A{? = 8{. One says that there is a hole at
the position @5 at the /th level (h =1,..., N{).

The linear integral equation (37) can be solved by Fourier integrals. In order to
do that one needs the following Fourier representations:

N o dk o sinh k(7/2 — a) 0
= -+ —_—
$(A, @) =m f_w o Sin sinh km/2 (42)
2 o dk A sinh ko i3
= — “+ e _—
$(A )= - f_w SN S 2 (43)
cP(A) = [ 69(k) e dk, (44)

where A € R. The Fourier tranforms of ¢(A — ¢, a) and ¢(A — ¢, &), where
A—ED =1 —7D+in0) e® are defined in appendix A. The complex roots £
are classified as: wide, middle and close roots depending on the region where
Im ¢ is defined.

The solution of eq. (37) reads

. : 1 . ,
a-ogj)()‘) = U\Sziguum()‘) + —N- [a'}(li))les + Géér)nplex] : (45)

The Fourier transforms of the ground-state root density is given by

k=j+1

3
Sinh{%k[(3—j)7r/2+(7r/2—y) Y ek}

Fuum(k) = (46)
sinh{%k[3ﬂ'/2 +(m/2-7) Y & }
k=1
We obtain the following expression for the ground-state spin:
€, €;
S;=2p;—pj_y —Pjr1= J J . (47)

3
3(1-2y/m) 7'+ Le
-1

This equation shows that [S,| <1 for 1 <y <. Therefore, unless all ¢; are
equal we find a ferrielectric behavior. That is, the |.S ,~| values are larger than in
the antiferroelectric case (Sj=0) and smaller than in the ferroelectric case
(§; = £1). More precisely, S; behaves ferrielectrically provided €; #¢;, ;. Other-

wise, when ¢€; =¢;, ,, S; exhibits an antiferroelectric character.
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The free energy follows from egs. (28), (29) and (46),

1 o
f(8,y) = = lim —log A0, ) =i dA oQumd(A+i8, v/2)

sinh x

3
= dx sinh(2x6) "+("T/2—7)k§26k]

=2
o x sinh 7x

T

sinh x[377/2+ (m/2—v) Y ek]

k=1

x sinh x[m/2 — e (/2 —y)]. (48)

The solution of eq. (37) can be written in general in terms of the resolvent
R=(0-K)7!, that is

2 e
le(’\) - Z f du Ktj(/\ —M)Rjk(l/«) =5lk8(A)' (49)

j=17-=

One finds upon Fourier transformation,
Ru(A) = [ Ry(k) e dk, (50)

and using egs. (38), (42) and (43) an explicit solution for eq. (49):

I
sinh x[l<1r/2+ (m/2—v) ¥ ek]

k=1
sinh[ x (7 —v)] sinh(xy)

R, (2x) = sinh(7x)

3
sinh x[(?a I )m/2+(m/2-y) Y ek]

k=I,+1

X (51)

3
sinh x[3'rr/2+ (m/2-7v) Y &
k=1

Now, we can also express the hole contributions to the roots density o,{%(A) as
2 N

o) = L L [8:8(A = 0) = Ru(A — 6)], (52)
k=1h=1

where we used eqs. (38) and (49).
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The matrix transfer eigenvalues for a state with a hole at 65 in the jth branch
behaves for large N as

Aexe(8, 657) e exp[ —Nf(0, v) —ig,(0 +i65, v)], (53)

where A(8) = exp[ —Nf(8, y)] is the ground-state eigenvalue and g; follows from
eqs. (45), (48) and (52),

g(65+i0,v) = [ dA Ry(X = 6)d(A +i6, v/2). (54)
So, we get
' T Y J T Y J
g (@, v) =Plkd, —k (j+(1—2—)2€k -~k j+(1—2—)25k.
4 T/ k_1 2 P

(55)

Here k=[3 + (G —y/m)Li_,e, 17! and ¢ =0 +i6’. By these expressions we
see that |e *¢®]| < 1, so, this confirms our identification of the ground state since
any deviation from it increases the eigenvalue of 7(8).

The solutions for complex roots densities are written down explicitly just for
case (ii):

Case (ii), close: 0 <, < (7 —y)/2:

N(l) N(Z)
V=4 { Y e % cosh kn® sinh tky + ¥ e % cosh kn® sinh kw}

c=1
(56)
N(l) N(2)
30 =4 Z e 77 cosh kn(V sinh tkm+ Y, e %" cosh kn@® sinh lkY}-
c=1
(57)
Case (i), wide: (7 — y)/2 <, <7/2
NP
&&1)=B{ Y e~ %7 cosh k(n( +m/2) sinh 3ky
w=1
N(Z)
+ Z e—tk‘rw cosh k(n‘2’+77/2) sinh %k‘n’ . (58)

w=1
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N
6@ =B{ Y e *7 cosh k(n + m/2) sinh tkw
w=1

NG
+ Y e " cosh k(0@ + m/2) sinh tky ), (59)
w=1

where A =2 sinh 3ky(sinh $k( + y) sinh 3k(m —y)™! and B = —2(sinh k(s
+y)7h
The number of roots in each step is given by

IN® + L(2ND + INO + NO)

= Tty ™
N
- (L)(ZNC‘Z) +2NO+ NP+ NP+ > (60)
T—y TTY
Y
D= — o 2N+ ;(ZN‘,(,I) + 2NC(2) +N1§2))
Y Ny
— H(Q’Nc(l) + 2Nc(2) + N}(‘l) + N}(lz)) + e . (61)

Since p, and p, must be integers, the relation y/7 must be a rational number.

We observe that expression (55) is gapless since g8, —)=0. From the
light-cone approach (see ref. [2]) the gapless models describe a massive quantum
field theory where the energy and momentum eigenvalues are given by

g(f)( +0+ iol(lj)’ ,y)

Et+tP= lim

a—0,i6—oo a

(62)

where a is the lattice spacing. We let i@ — « and the lattice spacing a — 0 such
that

1
u= ;exp(—iGK). (63)

w is a fixed mass unit. The energy-momentum dispersion law results in

E;=m; cosh(k6{”),  P,=m, sinh(x6’), (64)



E. Lopes / Multi-component generalized six-vertex model 651

where

. ko
m; = sin 7K

j+(1—2l) fekl}. (65)

T/ k=1

We observe here the interesting effect of the €, parameters in the generalized
model. In fact, their presence produces a dependence of the mass spectrum on the
anisotropy parameter (y). That is the case for all models where we have not all the
€, equal among them. This is in contrast with all mass spectra find up to now for
integrable models which are vy-independent [1,2,10,11]. At the quantum field
theory level vy stands for a coupling constant (or a function of it).

The S-matrix between a hole at branch / and another one at [’ follows from eq.
(51) by applying the method of ref. [9]. (That is the S-matrix between a particle m,
and a particle m,..) It reads S,,(#) = expli8,; ()], where ¢ = k85 is the relativis-
tic rapidity and

ou(#) =27 [, (1) da. (66)

A look at egs. (51) and (60) shows that this S-matrix can be expressed as an
infinite product of I'-functions.

Besides the scaling limit yielding an integrable massive QFT we can take the
trivial continuous limit (a — 0) leading to conformal invariant models.

A systematic procedure for computing finite-size corrections for integrable
theories was proposed in ref. [7]. We will just sketch here the derivation of the
finite-size corrections to the free energy, that is

LN(B’ 'Y) =fN(07 7) _f(a’ 7)

=]

e TN

dA; fi(A) o (X))

z | £AD) (A7)

=1 O-JS/I)(Af) ON i

1 2 1
+ Eﬁlgl [fi(A7) +fi(A)] + 12N7,

+ higher-order terms, (67)

where +Aj are the largest positive and negative roots of the Bethe ansatz
equations (31) and (32) in the /th branch,

d ()
(1) = S22 (), (68)
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where

b D

2TNZP = €118y, L d(AXP =MD, v/2) —€1118,., 2 (AL =AY, v/2)
i1 i

Py Py

e, L (XA, v/2) —€b,,., L (AP AP, v/2)
j=1 j=1

14

beid, T (X0 X0, y) (69)

j=1

where €, =¢,.
We define the Fourier transforms

XE(w) =[ exp(iwt) 0( £1)oP( A} +1t) dt (70)
which are analytic functions in +Im w>0. We get the following matrix

Riemann-Hilbert problem from the Bethe ansatz equations (24) approximated as
67):

2
X (w) + l;]é,k(w)X,*(w)
Iélk(w)

1
= —iWA,-: La} +
e Gm 5y DA™Y’

i . w2
=1+ 2 Ry(w)| - Y (8- 1)
=1 12N? /5

(71)

where R, ,(w)=38,,— o, (w). The resolution of this problem is analogous to ref.
[2]. The finite-size corrections L,(6) for an excited state with weights S(1 </<?2)
leq. (4.7)] and A% holes beyond +Aj, that is a generic low-energy excitation,
reads

Ln(6 =~ " sin(«8 —@[A —ixd _ A gix?] 72
w(8,7) = = grzsin(8) — [ o7~ F o), (72)

where
2 Y A y .
A= Z (2h,+ + 2—-(:51Jrl +e,)Sl)R”,(O)(2hl+, + 2—(05,,+1 +e,!)S’) (73)
=1 m m

with the weight of the Bethe ansatz state given by

§'= 2p;=Prsr —Piys
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and the R;;'(0) =[1 — K] matrix follows from eq. (38), that is

S

e

o

Al € te—2 (& te)y €_1te (€)Y
lel(o) = _251j[ " - Li+1 - -

€1t e (€1+1)7]. (74)

+6, . _
Li 1{ 2 ™

A follows from A by exchanging k‘, <> h' . Since the speed of sound here is
v =sin k0, eq. (72) tells us that the central charge ¢ =2. We recall that the
parameter « gives the finite renormalization of the rapidity [see eq. (64)].

A quantum hamiltonian for a chain of SU(3) spins can be obtained through the
well-known relation [2]

d
H= —sin yﬁlog 7(0) lo=o. (75)

For the g = 3 generalized model we obtain [12]

H=—= Y h;;., (76)
where
By =0+ ()" + 3[3(e; +€5) cos y — 1] o7 — 2(e;, cos y — 1)(5,-2)2
+3i sin yo7 (S7 = 87,1 ) + 7(€; — €3) cos y o7 (57 + 5741)

+3[3(e1+ e+ €3) cos y = 3] [cos(3y) = 1] (07"

and

3

z — QzQz — a a 1= 1

of =SiSj, o= LSS, gt=g-of (77)
a=1

Here S/(a =x, y, z) are the spin-1 matrices,

1 (0 1 0) i(o —1 0) (1 0 0)
S,=—11 0 1|, S,=—(1 o -1|, s.=[o o o). (78
21 1 o) 7 2l 1 o 0 0 -1

j is the site index (1 <j < N) and we choose periodic boundary conditions:
St .1 =S7. The hamiltonian H describes nearest neighbors interactions invariant
under rotations around the z-axis, it includes biquadratic couplings (o}, o;) be-
sides the usual Heisenberg exchange terms S/, S;.
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5. Multi-component generalized model

We present in this section the exact solution of the multi-component general-
ized six-vertex model where each bond can assume g different colours and where
all the variables G,, equal 1 [13].

The Bethe ansatz equations (24) are now solved using the following generalized
transformation:

. . r
)\(C{)=[.L(U{)+l'z(1+€j). (79)
This results for the expression (24)

prore o sin[AD = AP +ive)]
[fj+1] [fj] = l_I

B=1 sin[)\ﬂ{) - AP - iyejH]

P+t sin A(f{)_A(r£+l)_i75f+1 2_+_i_(_ei—€i+])ﬂ'/4

g=1 sin )\(O{) —)\(é+l) +i')’5,'+1/2 +i(€j - 5j+1)7r/4

X

'if;ll sin[ XD — X4~V —iye; /2 +i(e; — ;- )w/4]
X - -
p=1sin[ XD =AY +ive, /2 +i(e; — G R/H

Using the same procedure as in sect. 4, we obtain for the ground-state density
the Fourier transform:

. (80)

I=j+1

Sinh{%k[(q—j)W/H(W/Z—v) z 61}

G uum( k) = ; (81)
sinh{%k[qﬂ-/Z +(m/2-v) L e
=1
and for the holes density, expressed in terms of the resolvent R =(1 —K)™ !,
1<
sinh x[l<7r/2 +(m/2-7v) ), fk}
R k=1
Ry = si
w(2x) = sinh(m7x) Sinh[x(7 — )] sinh(x7)
q
sinh x[(q 1 )yw/2+(m/2—y) X Ek]
y qk=l>+1 (82)

sinh x[qw/2+ (m/2—-7) Y &
k=1
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The free energy follows from egs. (48) and (81). It reads

1
6, v)=— lim —log A(8, A
f(a,6,7) dim —log (6,4)

sinh x[(q — V) /2+(m/2—7) ), ek}
L k=2

_5 et
o x sinh 7x

q
sinh x[qrr/2+ (m/2—7v) Y, ek]

k=1
X sinh x[7/2 —e(m/2—7)]. (83)

The eigenvalues of the excited states writes as in the g=3 case by the

expression (53) where
AN 7 7)j
+(1-22 -~k |i+{1-2= :
( ”)kglekU 2" ( ™ kglek}

(84)

gj(d)’ 7) =P qu)’ ZKq J

Here «,=[q/2+ (3 —y/m)Li_€ ] ". Since these models are gapless,
gj(B, —o0, y, €) =0, we can apply the light-cone approach and we get

g(f) +0+ iﬂ(j), ¥
E+P= lim ( é ). (85)

a—0,i0->x a

We let i6 — « and the lattice spacing a — 0 such that

1
u = —exp(—ifk,). (86)
a
w is a fixed mass unit. The energy—-momentum dispersion law results in
E;=m, cosh(k,6f),  P,=m, sinh(k6),

where

1+(1—21) Xl:ek]}. (87)
T/ k=1

. aa
m;=pu sin e

The decisive influence of the parameters €, in all results obtained just now is
evident. The same conclusion for the mass spectrum holds here, that is the
dependence on the anisotropy parameter vy is linked to the values that €, assume
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for each different colour. We recover the results for the ordinary multi-component
six-vertex model, that is, a y-independent mass spectrum putting all e,= —1
(1<s<q).

The systematic procedure for computing the finite-size corrections can also be
applied here. We find

m(g—1 2i . -
(—Z)Sin(qu) — F[A e ik — A e"‘ae] (88)

Ly(q,0,v)=~— N

where
al y y
A= Z (th + 2—(e,+1 +61)SI)R,1,(0)(2h;7 + — (€44 +61,)Sll) (89)
=1 T 2w

with R,(0) given by

A €rate—2 (€4 te)y €1te  (€)y
le1(0) = —251,'[ - Li+1 -

4 2 2 T

€17 € (e+1)7
+5,,,._1[ +2 —%. (90)

A can be obtained from A by exchanging 4V« A
Since the speed of sound here is v = sin «,0, eq. (88) tell us that the central
charge ¢ equals (g — 1).

6. Conclusion

We have considered a multi-component generalization of the six-vertex model
whose weights are a general solution of the star—triangle equations under a
multi-colour “ice”-type condition which, by requiring certain vertex weights to be
zero, ensures that the model has some useful conservation properties. The eigen-
values and eigenvectors of the transfer matrix are obtained by the nested Bethe
ansatz. From this we see the different role played by the parameters G,, and €,,.
The first one has the meaning of an external field and the second one defines the
ferroelectric or antiferroelectric or still the ferrielectric character of the model. In
the thermodynamic limit we solve the Bethe ansatz equations for the case where
IG(,pI = 1. We note the presence of the parameters ¢, in all results. In particular
for the mass spectrum where the €, presence makes it dependent on the anisotropy
parameter (y).
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We would like to point out that this model is connected with the deformed Lie
algebra A (g). y is related with the quantum group variable g through g = €™.
Models associated to other Lie algebras can be generalized like the model treated
here with the addition of the discrete parameters e, [14].

Notice that in the special case g =3 and €, = —e, = —e; = —1 the isotropic
limit (v — 0) of our solution yields the integrable case (a) of the models solved in
ref. [15]. The roots density for the second step, ¢®(k) identically vanishes in this
limit and ¢(k/y)=exp — | k| /2 for y — 0, in agreement with ref. [15].

I wish to thank H.J. de Vega for many helpful discussions. This work was

supported in part by CAPES (Brazil)

Appendix A

sinh(A +ia)

P(A, a) =i log——F.
(A, @) logsmh()\—ia)

() 0<a<1:

|Im A| <min(a, 7 —a),

N » dk - sinh k(7 /2 — ) Al
’ = + - T .
(A, a) =m ’/-—oo ik exp(ikA) sinh kw /2 (A1)

() 0<a<w/2:
IIm A > «,
B(A " 9K xplikA + mh(Im 1) /2] S0 ke A2
( ,a)— f.wik CXp[l ki (m )/]W ( )
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