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Summary

Polynomial interpolation with equidistant nodes is notoriously unreliable due to the
Runge phenomenon, and is also numerically ill-conditioned. By taking advantage of
the optimality of the interpolation processes on Chebyshev nodes, one of the best
strategies to defeat the Runge phenomenon is to use the mock-Chebyshev points,
which are selected from a satisfactory uniform grid, for polynomial interpolation.
Yet, little literature exists on the computation of these points. In this study, we inves-
tigate the properties of the mock-Chebyshev nodes and propose a subsetting method
for constructing mock-Chebyshev grids. Moreover, we provide a precise formula for
the cardinality of a satisfactory uniform grid. Some numerical experiments using the
points obtained by the method are given to show the effectiveness of the proposed
method and numerical results are also provided.
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1 INTRODUCTION

In polynomial interpolation, the quality of the polynomial interpolant depends heavily on the distribution of the interpolation
points. Moreover, some sets of interpolation points deliver near-best polynomial approximants, while others lead to divergence
of the interpolation scheme. It is well-known that the best choice is to use point sets that are clustered at the endpoints of
the interval with an asymptotic density proportional to 1

√

1−x2
as n → ∞. The family of Chebyshev points have such density

properties. Moreover, if a smooth function f defined on the interval [−1, 1] is interpolated by polynomials in Chebyshev points
or in any other system of points with the asymptotic density (1 − x2)−1∕2, the rate of convergence of the interpolants to f
as n → ∞ is remarkably fast1. In applications, however, this is not always the case. For instance, experimental data may be
available only at equally spaced intervals. Thus, we are led to consider the problem of interpolation on equispaced points. In
this case, however, polynomial interpolation has the well-known drawback that the polynomial interpolants on equally spaced
points might not converge, even if the considered function is analytic anywhere on the interval. For this, a classical example
is given by using equidistant points to interpolate the Runge function f (x) = 1

1+25x2
over the interval [−1, 1]. Here, the error

made by interpolating f with polynomials has wild oscillations near the the endpoints of the interval2 - an effect known as
Runge Phenomenon. There are many strategies to defeat this phenomenon3,4. By taking advantage of the optimality of the
interpolation processes on Chebyshev nodes, one of the best strategies to defeat the Runge phenomenon is to use the mock-
Chebyshev points for polynomial interpolation, which asymptotically follow the Chebyshev distribution and they are selected
from a larger set of equispaced nodes. Yet, little literature exists on the computation of these points. In his work, Boyd5 first
introduced a nice strategy for defeating the Runge phenomenon by interpolation on a “mock-Chebyshev” grid, choosing the
nodes from a uniform satisfactory grid. Since the computational cost is about (n3) for this strategy, the computation of these

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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nodes is challenging especially when the number of nodes is large. In a recent paper6, we have presented a fast algorithm for
computing the mock-Chebyshev nodes for a given set of (n + 1) Chebyshev-Lobatto points. In this study, we investigate the
properties of the mock-Chebyshev nodes and propose a subsetting method for constructing mock-Chebyshev grids. Moreover,
we provide a precise formula for the smallest value of the cardinality of a satisfactory uniform grid.
The rest of this paper is organized as follows. Section 2 introduces Lebesgue constants in polynomial interpolation. In Section

3, we prove the precise formula for the minimum value of the cardinality of a satisfactory uniform grid, and discuss some details
on the mock-Chebyshev interpolation. In Section 4, we investigate the properties of the mock-Chebyshev nodes and propose
a subsetting method for constructing mock-Chebyshev grids. Section 5 is devoted to some numerical results. The concluding
remarks are given in Section 6.

2 LEBESGUE CONSTANTS IN POLYNOMIAL INTERPOLATION

LetXn =
{

xj ∶ 0 ≤ j ≤ n
}

be a set of (n+1) distinct interpolation points (or nodes) on the real intervalΩ = [−1, 1], increasingly
ordered from x0 = −1 to x0 = 1. Let f ∈ C(Ω) and denote by n, the set of all polynomials of degree at most n. Then there is
a unique polynomial interpolant pn ∈ n of the function f at the points of Xn, which satisfies

p(xj) = f (xj), j = 0,… , n. (1)

Suppose f ∈ C (n+1)(Ω). Then, it is well known that the interpolation error satisfies7, pp. 56-57

||f − pn||∞ ≤ max
x∈Ω

(

|f (n+1)(x)|
(n + 1)!

)

max
x∈Ω

n
∏

j=0
|x − xj|. (2)

Since f is given, we cannot control the factor |f (n+1)(x)|, but we can try to minimise the error by choosing an appropriate
distribution of the points xj . It is well-known that ||(x − x0)⋯ (x − xn)||∞ is minimal on Ω if the points xj are the zeroes of
the (n + 1)th degree Chebyshev polynomial Tn+1(x) = cos((n + 1) arccos x). In fact, maxx∈Ω

∏n
j=0 |x − xj| is bounded by 1

2n

and 1
2n−1

for the zeros of Tn+1(x) and the extrema of Tn(x) (Chebyshev points of the first kind and Chebyshev-Lobatto points),
respectively7.

The operator that associates f ∈ C(Ω) to its interpolant is linear and given by

Pn ∶ C(Ω)→ n ∶

f (x)→ pn(x) =
n
∑

i=0
f (xi)li(x)

(3)

where the i-th basic Lagrange polynomial is defined by

li(x) =
n
∏

j=0, i≠j

x − xj
xi − xj

(4)

the unique polynomial of degree n which equals 0 at all points except xi, at which it equals 1. So another bound for the
interpolation error is given by8

||f − pn||∞ ≤
(

1 + ||Pn||
)

||f − p∗n||∞, ||Pn|| = max
x∈[−1,1]

n
∑

i=0

|

|

li(x)|| . (5)

Here, Λn ∶= Λn(x0,… , xn) = ||Pn|| is called the Lebesgue constant, and p∗n is the best polynomial approximation to f of
degree n. It is clear that Λn depends on the location of the interpolation points xj but not on the function values f (xi). Since
the computation of the best approximation p∗n is more complicated than that of the interpolant pn, there is an interest in using
interpolating polynomials that are near-best approximants. It follows from (5) that ifΛn is small, then pn is a near-best polynomial
approximation to f .

The Lebesgue constant also expresses the conditioning of the polynomial interpolation problem in the Lagrange basis. Let p̃n(x)
denote the polynomial interpolant of degree n for the perturbed function f̃ in the same interpolation points:

p̃n(x) =
n
∑

i=0
f̃ (xi)li(x).
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Since ||pn||∞ ≥ max0≤i≤n |f (xi)| we have

||pn − p̃n||∞
||pn||∞

≤
maxx∈Ω

∑n
i=0 |f (xi) − f̃ (xi)||li(x)|
max0≤i≤n |f (xi)|

≤ Λn(x0,… , xn)
max0≤i≤n |f (xi) − f̃ (xi)|

max0≤i≤n |f (xi)|
.

(6)

By virtue of (5) and (6), it is of interest to find interpolation points that lead to a small Lebesgue constant. An explicit formula for
the points xj that minimize the Lebesgue constant is not yet known, and if no further constraints are imposed on the interpolation
points, then the solution is not even unique. Interpolation sets with the constraints that include the endpoints of the interval as
interpolation points are called canonical interpolation sets. If one imposes these constraints on the interpolation points, then
such a nodal set that minimizes the Lebesgue constant is unique9,10. Although no explicit formulation of this canonical nodal
set is known, it is proved that the minimal growth of the Lebesgue constant satisfies the following estimate11,12, pp. 110-121:

minΛn =
2
�
log(n + 1) + 0.52125… + 

(

(

log log (n + 1)
log (n + 1)

)2
)

(7)

where 
 = 0.5772156… is the Euler constant and n + 1 is the number of interpolation points.

Several sets of interpolation points come close to realizing this minimal growth, among which the Chebyshev-Lobatto points
are. Recall that these points are the extrema of the Chebyshev polynomial of the first kind of degree n on Ω, i.e.,

xj = − cos
(

j�
n

)

, j = 0,… , n. (8)

Including the endpoints of the interval±1, this is a canonical interpolation set. The Lebesgue constant of the Chebyshev-Lobatto
nodes satisfies the following estimate13,14:

Λn(x0,… , xn) =
2
�
log(n) + 0.9625… + ( 1

n2
), (9)

which is very close to the minimal growth. In contrast, for equispaced nodes,

xj = −1 +
2j
n
, j = 0,… , n,

the Lebesgue constant grows exponentially with the asymptotic estimate15,16:

Λn(x0,… , xn) =
2n+1

e n(log(n) + 
)
+ o(1).

3 MOCK-CHEBYSHEV GRIDS

Polynomial interpolation on equidistant nodes is notoriously unreliable due to the Runge phenomenon, and also the interpolation
process is exponentially ill-conditioned with Lebesgue constants of size about 2n. This ill-conditioning means that, for instance,
polynomial interpolants in equispaced points on [−1, 1] will diverge on a computer as n → ∞, even for a function like f (x) =
exp(x) for which in principle they should converge. Moreover, in the paper17, it has been shown that no stable method for
approximating functions from equally spaced samples can converge exponentially for analytic functions.
Polynomial interpolation on Chebyshev-Lobatto points, by contrast, converge geometrically and stably for analytic functions.
Moreover, as we have discussed in the previous section, for any sets of interpolation points, the Lebesgue constant grows at
least logarithmically. The Chebyshev-Lobatto points are one system of points that has this optimal (logarithmically growing)
Lebesgue constant. In order to make use of this result in real-world applications, where experimental data is available only at
equally spaced intervals, interpolation at the Chebyshev-Lobatto points is mimicked, for instance, by selecting a proper subset
of interpolation points x̃j from a sufficiently dense uniform grid with x̃j ≈ xj from 8. In other words, a mock-Chebyshev grid
is a subset of (n + 1) points from a satisfactory uniform grid with (n2) points chosen to mimic the non-uniform (n + 1)-point
Chebyshev-Lobatto grid. Hence, we can say that a mock-Chebyshev grid is considered to satisfy the following properties:

(i) The points are distinct.

(ii) The points are distributed like Chebyshev points in the interval.
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When computing a mock-Chebyshev grid, we should consider the above properties.

3.1 Satisfactory Uniform Grid
In the mock-Chebyshev interpolation, a sufficiently dense uniform grid is considered to be a uniform satisfactory grid when the
spacing between the points ensures that a grid point nearest to the endpoints of the interval [−1, 1] is never repeated. In order to
explain and prove the upper bound of the spacing for a sufficiently dense uniform grid, let us first introduce some notations as
follows:

XCL
n ∶the set of (n + 1) Chebyshev-Lobatto points,

XCL
n = {xj = −cos

(

j�
n

)

, j = 0, 1,… , n}, (10)

X̄m ∶the set of (m + 1) equispaced points, with m ≥ (n2)

X̄m = {x̄k = −1 +
2k
m
, k = 0, 1,… , m}, (11)

X̃n ∶the set of (n + 1) mock-Chebyshev points,
X̃n = {x̃j ∶ x̃j ∈ X̄m, with x̃j ≈ xj , j = 0, 1,… , n}. (12)

Let us now take a closer look at the distance between each of the two consecutive Chebyshev-Lobatto points. Since the
Chebyshev-Lobatto points aremore dense near the endpoints of the interval [−1, 1] and less near its center, by using the symmetry
we can write

xj − xj−1 < xj+1 − xj , j = 1,… ,
⌊n
2

⌋

. (13)

From this, the minimum distance between any two points of the set of Chebyshev-Lobatto pointsXCL
n is x1 − x0 (or xn − xn−1).

If the grid spacing of the set of (m + 1) equispaced points X̄m, which is 2
m
, is smaller than x1 − x0, this ensures that a grid

point nearest to a Chebyshev-Lobatto point xj is never repeated. We now prove how to determine the minimum value of m for
a uniform satisfactory grid. To do this, let us expand in Taylor series x1 − x0

x1 − x0 =
�2

2n2
− 1
24
�4

n4
+ (�

6

n6
).

Now, by employing this, we can write
2
m
< �2

2n2
− 1
24
�4

n4
.

Indeed, it is not necessary to mimic the Chebyshev-Lobatto grid this closely. Using Taylor expansion of the cosine function for
x2 − x1

x2 − x1 =
3�2

2n2
− 5
8
�4

n4
+ (�

6

n6
),

it is easy to verify that we have a satisfactory grid with
2
m
< �2

n2
− 1
12
�4

n4
, (14)

because this satisfies that the difference x̄1 − x1 is less than both x2 − x̄1 and x1 − x0 for x̄1 > x1. Since
2n2

�2
+ 1 > 2

�2

n2
− 1

12
�4

n4

,

it is easy to conclude that the cardinality of a satisfactory uniform grid satisfies

m ≥
⌈

2n2

�2

⌉

+ 1, (15)

where ⌈⋅⌉ denotes the ceil function. If the positive integer m is less than this lower bound, then two grid points x̃j may coalesce
at the endpoints ±1(see Figure 1 ).
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FIGURE 1 Graphs of 9 Chebyshev-Lobatto points (∗) with their mock-Chebyshev points (□) selected from equispaced grid
(□) for m = 61, 14, 13 from top to bottom, respectively. For m = 13, the endpoints −1 and 1 repeat due to m <

⌈

2n2

�2

⌉

+ 1.

3.2 Computing the mock-Chebyshev nodes
Boyd5 first introduced a nice strategy for computing a “mock-Chebyshev” grid choosing the nodes from a uniform satisfactory
grid, which is as follows (see Figure 2 ):

x̃j = x̄l, such that |xj − x̄l| = mink |xj − x̄k|,

∀k = 0, 1,… , m, j = 0, 1,… , n, l ∈ {0, 1,… , m}
(16)

where xj , x̄k and x̃j are defined as in Section 3.1. Since this strategy is based on comparing each xj to all points x̄k, however,
the computational cost is (nm). That is, this is about (n3), where n + 1 is the number of the Chebyshev-Lobatto nodes. On
the other hand, in the recent paper6, we have presented a fast algorithm for computing the mock-Chebyshev nodes for a given
set of (n + 1) Chebyshev-Lobatto points with only an (n) computational cost. The following explains the algorithm:

x̃j = x̃0 + Sj ℎ̃, ℎ̃ = 2
Sn
, x̃0 = x0, S0 = 0, j = 1, 2,… , n,

Sj =
⌈ ℎj(Xn)
minℎj(Xn)

⌉

+ Sj−1, ℎj(Xn) = xj − xj−1,
(17)

where xj , x̄k and x̃j are defined as in Section 3.1, and ⌈⋅⌉ denotes the ceil function. Note that, for this technique, it is not necessary
to give a satisfactory uniform grid. In the sequel, x̃C (or x̃Cj ) denotes points obtained by this procedure.
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FIGURE 2 Graphs of Runge’s function (dashed line) f (x) = 1
1+25x2

, −1 ≤ x ≤ 1, and its polynomial interpolant (solid line)
with equidistant points (□) (left) and with mock-Chebyshev points (□) (right) for degree n = 10.

4 A NEW APPROACH FOR COMPUTING THE MOCK-CHEBYSHEV NODES

In section 3, we introduce the properties of a mock-Chebyshev grid. The following proposition explains these properties. Also,
using the proposition, we can compute a family of mock-Chebyshev grids which satisfy the properties of a mock-Chebyshev
grid.

Proposition 1. Let n and m be two positive integers with m ≥
⌈

2n2

�2

⌉

+ 1, and let X̄m = {x̄k = −1 +
2k
m
, k = 0, 1,… , m} and

XCL
n = {xj = −cos

(

j�
n

)

, j = 0, 1,… , n}. Also, let X̄m,0 = {x̄0 = −1}, X̄m,n = {x̄n = 1}, and X̄m,j = {x̄l ∶
xj−1+xj

2
< x̄l <

xj+xj+1
2

, 1 ≤ j ≤ n − 1, l ∈ {0, 1,… , m}}. If we choose the points x̃0, x̃1,⋯ , x̃n such that

x̃j ∈ X̄m,j , j = 0, 1,… , n,

then we obtain a set of (n + 1) mock-Chebyshev points which satisfies the following properties:

1. The points x̃j are necessarily distinct.

2. The points x̃j are distributed like Chebyshev-Lobatto points in the interval [−1, 1], i.e., the distance of the points x̃j closest
to the endpoints ±1 is (n−2), while the distance between two interior points near the center is (n−1).

Proof. In the following proofs we use the expansion of xj in Taylor series to express the distance of the points xj .

1. We begin by showing that
X̄m,j ≠ ∅, 1 ≤ j ≤ n − 1.

Since x̄1 − x1 < x2 − x̄1 for a satisfactory uniform grid,

X̄m,1 ≠ ∅.

Using the upper bound of 2
m
and the distance between x1+x2

2
and x2+x3

2
, we obtain

2
m
< �2

n2
− 1
12
�4

n4
< 2�2

n2
− 27
16
�4

n4
<
x3 − x1
2

.

This implies that
X̄m,2 ≠ ∅.

Due to the distribution of Chebyshev-Lobatto points in the interval, we have
xj+1 − xj−1

2
>
x3 − x1
2

, j = 3,… , n − 3.
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From this, we deduce that
X̄m,j ≠ ∅, 3 ≤ j ≤ n − 3.

In conclusion, since X̄m,j ∩ X̄m,j+1 = ∅, j = 0,… , n− 1 and X̄m,j ≠ ∅, j = 0,… , n, one concludes that the points x̃j are
necessarily distinct.

2. It is well-known that the Chebyshev-Lobatto points are distributed on [−1, 1] with the density n
�
√

1−x2
, which implies that the

distance between adjacent points is (n−2) near the endpoints ±1 and (n−1) near the center.

Since x̃j ∈ X̄m,j , j = 0, 1,… , n, it follows that

x̃0 = −1, x̃n = 1,
xj−1 + xj

2
< x̃j <

xj + xj+1
2

, 1 ≤ j ≤ n − 1.

From this, it is easy to verify that

x̃j+1 − x̃j < 2(xj+1 − xj), j = 0, 1,… , n − 1.

Using this, one concludes that the points x̃j are distributed like Chebyshev-Lobatto points in the interval [−1, 1], i.e., the
distance of the points x̃j closest to the endpoints ±1 is (n−2), while the distance between two interior points near the center
is (n−1).

Proposition 1 ensures that for a given set of (n+ 1) Chebyshev-Lobatto points, the points x̃0, x̃1,⋯ , x̃n satisfy the conditions of
a mock-Chebyshev grid when they are chosen from a satisfactory uniform grid such that

x̃0 = −1, x̃n = 1,
xj−1 + xj

2
< x̃j <

xj + xj+1
2

, 1 ≤ j ≤ n − 1.

Note that this may give more than one configuration of the points in which the Chebyshev-Lobatto points are mimicked. But the
question remains how to choose each x̃j from its associated X̄m,j in order to make the maximum deviation between the points
xj and x̃j , max0≤j≤n |xj − x̃j|, is minimal. This can be done in the following way:

x̃j = x̄l, such that |xj − x̄l| is minimum for all x̄l ∈ X̄m,j .
This is probably the best case in the sense that it minimizes the error max0≤j≤n |xj − x̃j| with the maximum deviation of size
(n−2). In the sequel, we denote these points by x̃B (or x̃Bj ). Note that these points coincide with the points obtained by 16, but
here, the computational cost is (n2) instead of (n3).
On the other hand, if the points x̃0, x̃1,⋯ , x̃n are chosen in the following way

x̃j = x̄l, such that |xj − x̄l| is maximum for all x̄l ∈ X̄m,j ,

then this is probably the worst case in the sense of small maximum deviation (see Figure 3 ). We denote these points by x̃W (or
x̃Wj ) in the sequel. So, it is clear that for a given set of (n + 1) Chebyshev-Lobatto points if we choose the x̃0, x̃1,⋯ , x̃n from a
satisfactory uniform grid with m ≫

⌈

2n2

�2

⌉

+ 1, then the maximum deviation decreases (see Figure 1 ).

FIGURE 3 Graphs of sets 33 nodes; (∗)xCL, (□)x̃B , (◦)x̃C , (+)x̃W from top to bottom.
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5 NUMERICAL EXPERIMENTS

In this section, we give some numerical experiments using the points obtained by our method given in Section 4. To do this, as
a standard quality measure of a set of interpolation points, we compare Lebesgue constants.

TABLE 1 Lebesgue constants of the Chebyshev-Lobatto points and mock-Chebyshev points

n Chebyshev-Lobatto points, xCL points x̃B points x̃C points x̃W

5 1.99 2.25 2.25 5.63
10 2.42 2.58 2.58 6.95
20 2.87 2.87 2.87 37.79
40 3.31 3.36 3.33 124.95
100 3.89 3.98 3.80 535.13

Table 1 presents Lebesgue constants for the Chebyshev-Lobatto points and their mock-Chebyshev points. From Table 1, one
concludes that, although the points x̃B have the smallest maximum deviation, the points x̃C have smaller Lebesgue constants.
Moreover, the Lebesgue constants of the points x̃B and x̃C grow like that of Chebyshev-Lobatto points, which has the minimal
order of growth (log n). On the other hand, the points x̃W differ from the other mock-Chebyshev sets with Lebesgue constants
of size about (n).

6 CONCLUSION

For a given set of (n + 1) Chebyshev-Lobatto points, we presented a method based on subsetting an associated satisfactory
uniform grid for constructing a subset of uniformly-distributed points (n+1)which satisfies the conditions of a mock-Chebyshev
grid. Using our method, we show that it is possible to obtain different configurations of the sets in which the given Chebyshev-
Lobatto points are mimicked. This gives us the opportunity to compare different configurations of mock-Chebyshev sets. For a
given set of Chebyshev-Lobatto points using our method, numerical evidence is presented suggesting that when the maximum
deviation is small, the Lebesgue constant associated with these points grows like that of the given points.
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