References
Allen, F., Crepaldi, L., Alsinet, C., Strong, A. J., Kleshchevnikov, V.,
De Angeli, P., . . . Kosicki, M. (2019). Predicting the mutations
generated by repair of Cas9-induced double-strand breaks. Nature
biotechnology, 37 (1), 64-72.
Anderson, K. G., Stromnes, I. M., & Greenberg, P. D. (2017). Obstacles
posed by the tumor microenvironment to T cell activity: a case for
synergistic therapies. Cancer cell, 31 (3), 311-325.
Baldanzi, G., Bettio, V., Malacarne, V., & Graziani, A. (2016).
Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid
Gradients to Control Cell Polarity. Frontiers in cell and
developmental biology, 4 , 140. doi:10.3389/fcell.2016.00140
Berdien, B., Mock, U., Atanackovic, D., & Fehse, B. (2014).
TALEN-mediated editing of endogenous T-cell receptors facilitates
efficient reprogramming of T lymphocytes by lentiviral gene transfer.Gene therapy, 21 (6), 539-548. doi:10.1038/gt.2014.26
Bischoff, N., Wimberger, S., Maresca, M., & Brakebusch, C. (2020).
Improving Precise CRISPR Genome Editing by Small Molecules: Is there a
Magic Potion? Cells, 9 (5). doi:10.3390/cells9051318
Cao, J., Xiao, Q., & Yan, Q. (2018). The multiplexed CRISPR targeting
platforms. Drug Discovery Today: Technologies, 28 , 53-61.
Chen, J. H., Perry, C. J., Tsui, Y.-C., Staron, M. M., Parish, I. A.,
Dominguez, C. X., . . . Kaech, S. M. (2015). Prostaglandin E2 and
programmed cell death 1 signaling coordinately impair CTL function and
survival during chronic viral infection. Nature medicine, 21 (4),
327-334.
Chen, S. S., Hu, Z., & Zhong, X. P. (2016). Diacylglycerol Kinases in T
Cell Tolerance and Effector Function. Frontiers in cell and
developmental biology, 4 , 130. doi:10.3389/fcell.2016.00130
Choi, B. D., Yu, X., Castano, A. P., Darr, H., Henderson, D. B.,
Bouffard, A. A., . . . Gerhard, G. M. (2019). CRISPR-Cas9 disruption of
PD-1 enhances activity of universal EGFRvIII CAR T cells in a
preclinical model of human glioblastoma. Journal for immunotherapy
of cancer, 7 (1), 1-8.
Chow, V. A., Shadman, M., & Gopal, A. K. (2018). Translating anti-CD19
CAR T-cell therapy into clinical practice for relapsed/refractory
diffuse large B-cell lymphoma. Blood, 132 (8), 777-781.
doi:10.1182/blood-2018-04-839217
Cradick, T. J., Fine, E. J., Antico, C. J., & Bao, G. (2013).
CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial
off-target activity. Nucleic acids research, 41 (20), 9584-9592.
Diaconu, I., Ballard, B., Zhang, M., Chen, Y., West, J., Dotti, G., &
Savoldo, B. (2017). Inducible Caspase-9 Selectively Modulates the
Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells.Mol Ther, 25 (3), 580-592. doi:10.1016/j.ymthe.2017.01.011
Dufva, O., Koski, J., Maliniemi, P., Ianevski, A., Klievink, J.,
Leitner, J., . . . Mustjoki, S. (2020). Integrated drug profiling and
CRISPR screening identify essential pathways for CAR T-cell
cytotoxicity. Blood, 135 (9), 597-609.
doi:10.1182/blood.2019002121
Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S. J.,
Hamieh, M., Cunanan, K. M., . . . Sadelain, M. (2017). Targeting a CAR
to the TRAC locus with CRISPR/Cas9 enhances tumour rejection.Nature, 543 (7643), 113-117.
Fonfara, I., Le Rhun, A., Chylinski, K., Makarova, K. S., Lecrivain,
A.-L., Bzdrenga, J., . . . Charpentier, E. (2014). Phylogeny of Cas9
determines functional exchangeability of dual-RNA and Cas9 among
orthologous type II CRISPR-Cas systems. Nucleic acids research,
42 (4), 2577-2590.
Fraietta, J. A., Lacey, S. F., Orlando, E. J., Pruteanu-Malinici, I.,
Gohil, M., Lundh, S., . . . Melenhorst, J. J. (2018). Determinants of
response and resistance to CD19 chimeric antigen receptor (CAR) T cell
therapy of chronic lymphocytic leukemia. Nat Med, 24 (5), 563-571.
doi:10.1038/s41591-018-0010-1
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J.
K., & Sander, J. D. (2013). High-frequency off-target mutagenesis
induced by CRISPR-Cas nucleases in human cells. Nature
biotechnology, 31 (9), 822-826.
Fujihara, Y., & Ikawa, M. (2014). CRISPR/Cas9-based genome editing in
mice by single plasmid injection. Methods Enzymol, 546 , 319-336.
doi:10.1016/b978-0-12-801185-0.00015-5
Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-Editing
Technologies: Principles and Applications. Cold Spring Harb
Perspect Biol, 8 (12). doi:10.1101/cshperspect.a023754
Garcia-Robledo, J. E., Barrera, M. C., & Tobón, G. J. (2020).
CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic
weapon against immune-related diseases: CRISPR/Cas9 offers a simple and
inexpensive method for disease modeling, genetic screening, and
potentially for disease therapy. International Reviews of
Immunology, 39 (1), 11-20.
Georgiadis, C., Preece, R., Nickolay, L., Etuk, A., Petrova, A., Ladon,
D., . . . Kim, D. (2018). Long terminal repeat CRISPR-CAR-coupled
“universal” T cells mediate potent anti-leukemic effects.Molecular Therapy, 26 (5), 1215-1227.
Givens, B. E., Naguib, Y. W., Geary, S. M., Devor, E. J., & Salem, A.
K. (2018). Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing
Therapeutics. Aaps j, 20 (6), 108. doi:10.1208/s12248-018-0267-9
Gundry, M. C., Brunetti, L., Lin, A., Mayle, A. E., Kitano, A., Wagner,
D., . . . Nakada, D. (2016). Highly Efficient Genome Editing of Murine
and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Rep,
17 (5), 1453-1461. doi:10.1016/j.celrep.2016.09.092
Han, D., Xu, Z., Zhuang, Y., Ye, Z., & Qian, Q. (2021). Current
Progress in CAR-T Cell Therapy for Hematological Malignancies. J
Cancer, 12 (2), 326-334. doi:10.7150/jca.48976
Hendel, A., Bak, R. O., Clark, J. T., Kennedy, A. B., Ryan, D. E., Roy,
S., . . . Wilkens, A. B. (2015). Chemically modified guide RNAs enhance
CRISPR-Cas genome editing in human primary cells. Nature
biotechnology, 33 (9), nbt. 3290.
Hoyos, V., Savoldo, B., Quintarelli, C., Mahendravada, A., Zhang, M.,
Vera, J., . . . Dotti, G. (2010). Engineering CD19-specific T
lymphocytes with interleukin-15 and a suicide gene to enhance their
anti-lymphoma/leukemia effects and safety. Leukemia, 24 (6),
1160-1170. doi:10.1038/leu.2010.75
Hu, B., Zou, Y., Zhang, L., Tang, J., Niedermann, G., Firat, E., . . .
Zhu, X. (2019). Nucleofection with plasmid DNA for CRISPR/Cas9-mediated
inactivation of programmed cell death protein 1 in CD133-specific CAR T
cells. Human gene therapy, 30 (4), 446-458.
Hu, W., Zi, Z., Jin, Y., Li, G., Shao, K., Cai, Q., . . . Wei, F.
(2019). CRISPR/Cas9-mediated PD-1 disruption enhances human
mesothelin-targeted CAR T cell effector functions. Cancer
Immunology, Immunotherapy, 68 (3), 365-377.
Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas
from encounter with a mysterious repeated sequence to genome editing
technology. Journal of bacteriology, 200 (7).
Jasin, M., & Rothstein, R. (2013). Repair of strand breaks by
homologous recombination. Cold Spring Harbor perspectives in
biology, 5 (11), a012740.
Joyce, J. A., & Fearon, D. T. (2015). T cell exclusion, immune
privilege, and the tumor microenvironment. Science, 348 (6230),
74-80.
Ju, X. P., Xu, B., Xiao, Z. P., Li, J. Y., Chen, L., Lu, S. Q., &
Huang, Z. X. (2005). Cytokine expression during acute graft-versus-host
disease after allogeneic peripheral stem cell transplantation.Bone Marrow Transplantation, 35 (12), 1179-1186.
doi:10.1038/sj.bmt.1704972
Jung, I.-Y., Kim, Y.-Y., Yu, H.-S., Lee, M., Kim, S., & Lee, J. (2018).
CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of
human T cells. Cancer research, 78 (16), 4692-4703.
Jung, I.-Y., & Lee, J. (2018). Unleashing the therapeutic potential of
CAR-T cell therapy using gene-editing technologies. Molecules and
Cells, 41 (8), 717.
Kim, D. W., & Cho, J. Y. (2020). Recent Advances in Allogeneic CAR-T
Cells. Biomolecules, 10 (2). doi:10.3390/biom10020263
Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J.-S. (2014). Highly
efficient RNA-guided genome editing in human cells via delivery of
purified Cas9 ribonucleoproteins. Genome research, 24 (6),
1012-1019. doi:10.1101/gr.171322.113
Kim, S., Koo, T., Jee, H. G., Cho, H. Y., Lee, G., Lim, D. G., . . .
Kim, J. S. (2018). CRISPR RNAs trigger innate immune responses in human
cells. Genome Res, 28 (3), 367-373. doi:10.1101/gr.231936.117
Kornete, M., Marone, R., & Jeker, L. T. (2018). Highly efficient and
versatile plasmid-based gene editing in primary T cells. The
Journal of Immunology, 200 (7), 2489-2501.
Koury, J., Lucero, M., Cato, C., Chang, L., Geiger, J., Henry, D., . . .
Tran, A. (2018). Immunotherapies: Exploiting the Immune System for
Cancer Treatment. J Immunol Res, 2018 , 9585614.
doi:10.1155/2018/9585614
Koyama, S., Akbay, E. A., Li, Y. Y., Herter-Sprie, G. S., Buczkowski, K.
A., Richards, W. G., . . . Asahina, H. (2016). Adaptive resistance to
therapeutic PD-1 blockade is associated with upregulation of alternative
immune checkpoints. Nature communications, 7 (1), 1-9.
Li, C., Guan, X., Du, T., Jin, W., Wu, B., Liu, Y., . . . Shattock, R.
J. (2015). Inhibition of HIV-1 infection of primary CD4+ T-cells by gene
editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of
General Virology, 96 (8), 2381-2393.
Li, D., Li, X., Zhou, W. L., Huang, Y., Liang, X., Jiang, L., . . .
Wang, W. (2019). Genetically engineered T cells for cancer
immunotherapy. Signal Transduct Target Ther, 4 , 35.
doi:10.1038/s41392-019-0070-9
Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020).
Applications of genome editing technology in the targeted therapy of
human diseases: mechanisms, advances and prospects. Signal
Transduct Target Ther, 5 (1), 1. doi:10.1038/s41392-019-0089-y
Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan,
M., . . . Ranganathan, S. (2015). Rapid and highly efficient mammalian
cell engineering via Cas9 protein transfection. Journal of
biotechnology, 208 , 44-53.
Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018).
Delivering CRISPR: a review of the challenges and approaches. Drug
delivery, 25 (1), 1234-1257.
Liu, X., Zhang, Y., Cheng, C., Cheng, A. W., Zhang, X., Li, N., . . .
Wang, H. (2017). CRISPR-Cas9-mediated multiplex gene editing in CAR-T
cells. Cell Res, 27 (1), 154-157. doi:10.1038/cr.2016.142
Long, K. B., Young, R. M., Boesteanu, A. C., Davis, M. M., Melenhorst,
J. J., Lacey, S. F., . . . Fraietta, J. A. (2018). CAR T Cell Therapy of
Non-hematopoietic Malignancies: Detours on the Road to Clinical Success.Front Immunol, 9 , 2740. doi:10.3389/fimmu.2018.02740
Long, L., Zhang, X., Chen, F., Pan, Q., Phiphatwatchara, P., Zeng, Y.,
& Chen, H. (2018). The promising immune checkpoint LAG-3: from tumor
microenvironment to cancer immunotherapy. Genes & cancer,
9 (5-6), 176.
Luther, D. C., Lee, Y. W., Nagaraj, H., Scaletti, F., & Rotello, V. M.
(2018). Delivery approaches for CRISPR/Cas9 therapeutics in vivo:
advances and challenges. Expert Opin Drug Deliv, 15 (9), 905-913.
doi:10.1080/17425247.2018.1517746
Makarova, K. S., & Koonin, E. V. (2015). Annotation and classification
of CRISPR-Cas systems. In CRISPR (pp. 47-75): Springer.
Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O.
S., Brouns, S. J., . . . Horvath, P. (2019). Evolutionary classification
of CRISPR–Cas systems: a burst of class 2 and derived variants.Nature Reviews Microbiology , 1-17.
Marofi, F., Motavalli, R., Safonov, V. A., Thangavelu, L., Yumashev, A.
V., Alexander, M., . . . Khiavi, F. M. (2021). CAR T cells in solid
tumors: challenges and opportunities. Stem Cell Research &
Therapy, 12 (1), 81. doi:10.1186/s13287-020-02128-1
Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M.,
Bittencourt, H., . . . Myers, G. D. (2018). Tisagenlecleucel in children
and young adults with B-cell lymphoblastic leukemia. New England
Journal of Medicine, 378 (5), 439-448.
Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M.,
Bittencourt, H., . . . Grupp, S. A. (2018). Tisagenlecleucel in Children
and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med,
378 (5), 439-448. doi:10.1056/NEJMoa1709866
Met, Ö., Jensen, K. M., Chamberlain, C. A., Donia, M., & Svane, I. M.
(2019). Principles of adoptive T cell therapy in cancer. Semin
Immunopathol, 41 (1), 49-58. doi:10.1007/s00281-018-0703-z
Morgan, R. A., Dudley, M. E., & Rosenberg, S. A. (2010). Adoptive cell
therapy: genetic modification to redirect effector cell specificity.Cancer J, 16 (4), 336-341. doi:10.1097/PPO.0b013e3181eb3879
Mout, R., Ray, M., Lee, Y.-W., Scaletti, F., & Rotello, V. M. (2017).
In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress
and challenges. Bioconjugate chemistry, 28 (4), 880-884.
Nakazawa, T., Natsume, A., Nishimura, F., Morimoto, T., Matsuda, R.,
Nakamura, M., . . . Park, Y.-S. (2020). Effect of CRISPR/Cas9-Mediated
PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting
EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells, 9 (4),
998.
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos,
D. B., Jacobson, C. A., . . . Lin, Y. (2017). Axicabtagene ciloleucel
CAR T-cell therapy in refractory large B-cell lymphoma. New
England Journal of Medicine, 377 (26), 2531-2544.
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos,
D. B., Jacobson, C. A., . . . Go, W. Y. (2017). Axicabtagene Ciloleucel
CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J
Med, 377 (26), 2531-2544. doi:10.1056/NEJMoa1707447
Park, J. H., Romero, F. A., Taur, Y., Sadelain, M., Brentjens, R. J.,
Hohl, T. M., & Seo, S. K. (2018). Cytokine release syndrome grade as a
predictive marker for infections in patients with relapsed or refractory
B-cell acute lymphoblastic leukemia treated with chimeric antigen
receptor T cells. Clinical Infectious Diseases, 67 (4), 533-540.
Poorebrahim, M., Melief, J., Pico de Coaña, Y., L. Wickström, S.,
Cid-Arregui, A., & Kiessling, R. (2021). Counteracting CAR T cell
dysfunction. Oncogene, 40 (2), 421-435.
doi:10.1038/s41388-020-01501-x
Porter, D. L., Hwang, W. T., Frey, N. V., Lacey, S. F., Shaw, P. A.,
Loren, A. W., . . . June, C. H. (2015). Chimeric antigen receptor T
cells persist and induce sustained remissions in relapsed refractory
chronic lymphocytic leukemia. Sci Transl Med, 7 (303), 303ra139.
doi:10.1126/scitranslmed.aac5415
Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR-Cas
immune system: biology, mechanisms and applications. Biochimie,
117 , 119-128.
Ren, J., Liu, X., Fang, C., Jiang, S., June, C. H., & Zhao, Y. (2017).
Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to
PD1 Inhibition. Clin Cancer Res, 23 (9), 2255-2266.
doi:10.1158/1078-0432.Ccr-16-1300
Ren, J., Liu, X., Fang, C., Jiang, S., June, C. H., & Zhao, Y. (2017).
Multiplex genome editing to generate universal CAR T cells resistant to
PD1 inhibition. Clinical cancer research, 23 (9), 2255-2266.
Ren, J., Zhang, X., Liu, X., Fang, C., Jiang, S., June, C. H., & Zhao,
Y. (2017). A versatile system for rapid multiplex genome-edited CAR T
cell generation. Oncotarget, 8 (10), 17002.
Riese, M. J., Moon, E. K., Johnson, B. D., & Albelda, S. M. (2016).
Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell
Activity in Cancer. Frontiers in cell and developmental biology,
4 (108). doi:10.3389/fcell.2016.00108
Rodríguez-Lobato, L. G., Ganzetti, M., Fernández de Larrea, C., Hudecek,
M., Einsele, H., & Danhof, S. (2020). CAR T-Cells in Multiple Myeloma:
State of the Art and Future Directions. Frontiers in Oncology,
10 (1243). doi:10.3389/fonc.2020.01243
Roth, T. L., Puig-Saus, C., Yu, R., Shifrut, E., Carnevale, J., Li, P.
J., . . . Marson, A. (2018). Reprogramming human T cell function and
specificity with non-viral genome targeting. Nature, 559 (7714),
405-409. doi:10.1038/s41586-018-0326-5
Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Chun, J. Y., Lim,
W. A., & Marson, A. (2017). CRISPR/Cas9-mediated PD-1 disruption
enhances anti-tumor efficacy of human chimeric antigen receptor T cells.Scientific reports, 7 (1), 1-10.
Sadelain, M. (2017). CD19 CAR T Cells. Cell, 171 (7), 1471.
doi:10.1016/j.cell.2017.12.002
Sadeqi Nezhad, M., Seifalian, A., Bagheri, N., Yaghoubi, S., Karimi, M.
H., & Adbollahpour-Alitappeh, M. (2020). Chimeric Antigen Receptor
Based Therapy as a Potential Approach in Autoimmune Diseases: How Close
Are We to the Treatment? Front Immunol, 11 , 603237.
doi:10.3389/fimmu.2020.603237
Salas-Mckee, J., Kong, W., Gladney, W. L., Jadlowsky, J. K., Plesa, G.,
Davis, M. M., & Fraietta, J. A. (2019). CRISPR/Cas9-based genome
editing in the era of CAR T cell immunotherapy. Human vaccines &
immunotherapeutics, 15 (5), 1126-1132.
Schumann, K., Lin, S., Boyer, E., Simeonov, D. R., Subramaniam, M.,
Gate, R. E., . . . Marson, A. (2015). Generation of knock-in primary
human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U
S A, 112 (33), 10437-10442. doi:10.1073/pnas.1512503112
Seki, A., & Rutz, S. (2018). Optimized RNP transfection for highly
efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J
Exp Med, 215 (3), 985-997. doi:10.1084/jem.20171626
Seliger, B. (2019). Basis of PD1/PD-L1 therapies. Journal of
Clinical Medicine, 8 (12), 2168.
Sharpe, M., & Mount, N. (2015). Genetically modified T cells in cancer
therapy: opportunities and challenges. Disease models &
mechanisms, 8 (4), 337-350.
Shen, B., Zhang, W., Zhang, J., Zhou, J., Wang, J., Chen, L., . . .
Huang, X. (2014). Efficient genome modification by CRISPR-Cas9 nickase
with minimal off-target effects. Nature methods, 11 (4), 399-402.
Singh, N., Perazzelli, J., Grupp, S. A., & Barrett, D. M. (2016). Early
memory phenotypes drive T cell proliferation in patients with pediatric
malignancies. Sci Transl Med, 8 (320), 320ra323.
doi:10.1126/scitranslmed.aad5222
Sorek, R., Lawrence, C. M., & Wiedenheft, B. (2013). CRISPR-mediated
adaptive immune systems in bacteria and archaea. Annual review of
biochemistry, 82 , 237-266.
Stenger, D., Stief, T. A., Kaeuferle, T., Willier, S., Rataj, F.,
Schober, K., . . . Feuchtinger, T. (2020). Endogenous TCR promotes in
vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated
TCR knockout CAR. Blood, 136 (12), 1407-1418.
doi:10.1182/blood.2020005185
Stenger, D., Stief, T. A., Käuferle, T., Willier, S., Rataj, F.,
Schober, K., . . . Grunewald, T. (2020). Endogenous TCR promotes in vivo
persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR
knockout CAR. Blood .
Sterner, R. M., Sakemura, R., Cox, M. J., Yang, N., Khadka, R. H.,
Forsman, C. L., . . . Hefazi, M. (2019). GM-CSF inhibition reduces
cytokine release syndrome and neuroinflammation but enhances CAR-T cell
function in xenografts. Blood, The Journal of the American Society
of Hematology, 133 (7), 697-709.
Tang, N., Cheng, C., Zhang, X., Qiao, M., Li, N., Mu, W., . . . Wang, H.
(2020). TGF-β inhibition via CRISPR promotes the long-term efficacy of
CAR T cells against solid tumors. JCI insight, 5 (4).
Torikai, H., Reik, A., Soldner, F., Warren, E. H., Yuen, C., Zhou, Y., .
. . Cooper, L. J. (2013). Toward eliminating HLA class I expression to
generate universal cells from allogeneic donors. Blood, 122 (8),
1341-1349. doi:10.1182/blood-2013-03-478255
Torikai, H., Reik, A., Yuen, C., Zhou, Y., Kellar, D., Huls, H., . . .
Cooper, L. (2010). HLA and TCR Knockout by Zinc Finger Nucleases: Toward
“off-the-Shelf” Allogeneic T-Cell Therapy for CD19+ Malignancies.Blood, 116 (21), 3766-3766. doi:10.1182/blood.V116.21.3766.3766
Townsend, M. H., Bennion, K., Robison, R. A., & O’Neill, K. L. (2020).
Paving the way towards universal treatment with allogenic T cells.Immunologic Research , 1-8.
Turley, S. J., Cremasco, V., & Astarita, J. L. (2015). Immunological
hallmarks of stromal cells in the tumour microenvironment. Nature
Reviews Immunology, 15 (11), 669-682.
Wang, M., Munoz, J., Goy, A., Locke, F. L., Jacobson, C. A., Hill, B.
T., . . . Reagan, P. M. (2020). KTE-X19 CAR T-Cell Therapy in Relapsed
or Refractory Mantle-Cell Lymphoma. N Engl J Med, 382 (14),
1331-1342. doi:10.1056/NEJMoa1914347
Wang, W., Ye, C., Liu, J., Zhang, D., Kimata, J. T., & Zhou, P. (2014).
CCR5 gene disruption via lentiviral vectors expressing Cas9 and single
guided RNA renders cells resistant to HIV-1 infection. PloS one,
9 (12), e115987.
Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N., & Siegwart, D. J. (2020).
Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for
effective tissue specific genome editing. Nature communications,
11 (1), 3232. doi:10.1038/s41467-020-17029-3
Wherry, E. J., & Kurachi, M. (2015). Molecular and cellular insights
into T cell exhaustion. Nat Rev Immunol, 15 (8), 486-499.
doi:10.1038/nri3862
Wu, X., Kriz, A. J., & Sharp, P. A. (2014). Target specificity of the
CRISPR-Cas9 system. Quantitative biology, 2 (2), 59-70.
Xiao-Jie, G. E. L., Li-Juan, J., Koo, T., & Kim, J.-S. (2017).
Therapeutic applications of CRISPR RNA-guided genome editing.Briefings in Functional Genomics, 16 (1), 38-45.
Xu, X., Wan, T., Xin, H., Li, D., Pan, H., Wu, J., & Ping, Y. (2019).
Delivery of CRISPR/Cas9 for therapeutic genome editing. The
Journal of Gene Medicine, 21 (7), e3107.
Yazdanifar, M., Zhou, R., Grover, P., Williams, C., Bose, M., Moore, L.
J., . . . Mukherjee, A. P. (2019). Overcoming Immunological Resistance
Enhances the Efficacy of A Novel Anti-tMUC1-CAR T Cell Treatment against
Pancreatic Ductal Adenocarcinoma. Cells, 8 (9).
doi:10.3390/cells8091070
Yazdanifar, M., Zhou, R., & Mukherjee, P. (2016). Emerging
immunotherapeutics in adenocarcinomas: A focus on CAR-T cells.Curr Trends Immunol, 17 , 95-115.
Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak,
B., . . . Holak, T. A. (2015). Structure of the complex of human
programmed death 1, PD-1, and its ligand PD-L1. Structure,
23 (12), 2341-2348.