References
Allen, A., Habimana, O., & Casey, E. (2018). The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions. Colloids and Surfaces B: Biointerfaces ,165 , 127–134. https://doi.org/10.1016/j.colsurfb.2018.02.035
Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., … Sternberg, C. (2016). Critical review on biofilm methods. Critical Reviews in Microbiology , 0 (0), 1–39. https://doi.org/10.1080/1040841X.2016.1208146
Banin, E., Vasil, M. L., & Greenberg, E. P. (2005). From The Cover: Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences , 102 (31), 11076–11081. https://doi.org/10.1073/pnas.0504266102
Berlutti, F., Morea, C., Battistonp, A., Sarli, S., Cipriani, P., Supertp, F., & Valentp, P. (2005). IRON AVAILABILITY INFLUENCES AGGREGATION, BIOFILM, ADHESION AND INVASION OF PSEUDOMONAS AERUGINOSA AND BURKHOLDERIA CENOCEPACIA. International Journal of Immunopathology and Pharmacology , 18 (4), 661–670.
Beyenal, H., Donovan, C., Lewandowski, Z., & Harkin, G. (2004). Three-dimensional biofilm structure quantification. Journal of Microbiological Methods , 59 , 395–413. https://doi.org/10.1016/j.mimet.2004.08.003
Blauert, F., Horn, H., & Wagner, M. (2015). Time-resolved biofilm deformation measurements using optical coherence tomography.Biotechnology and Bioengineering , 112 (9), 1893–1905. https://doi.org/10.1002/bit.25590
Bridier, A., Meylheuc, T., & Briandet, R. (2013). Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron , 48 , 65–69. https://doi.org/10.1016/j.micron.2013.02.013
Chan, C. S., Stasio, G. De, Welch, S. a, Fakra, S., & Banfield, J. F. (2004). Microbial Polysaccharides Template Assembly of Nanocrystal Fibers. Science , 303 , 1656–1658. https://doi.org/10.1126/science.1092098
Cuny, L., Pfaff, D., Luther, J., Ranzinger, F., Ödman, P., Gescher, J., … Hille-Reichel, A. (2019). Evaluation of productive biofilms for continuous lactic acid production. Biotechnology and Bioengineering , 116 (10), 2687–2697. https://doi.org/10.1002/bit.27080
Derlon, N., Peter-Varbanets, M., Scheidegger, A., Pronk, W., & Morgenroth, E. (2012). Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Research ,46 , 3323–3333. https://doi.org/10.1016/j.watres.2012.03.031
Dreszer, C., Wexler, A. D., Drusová, S., Overdijk, T., Zwijnenburg, A., Flemming, H.-C., … Vrouwenvelder, J. S. (2015). In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change. Water Research , 67 , 243–254. https://doi.org/10.1016/j.watres.2014.09.006
Dutta Sinha, S., Das, S., Tarafdar, S., & Dutta, T. (2017). Monitoring of Wild Pseudomonas Biofilm Strain Conditions Using Statistical Characterization of Scanning Electron Microscopy Images.Industrial and Engineering Chemistry Research , 56 (34), 9496–9512. https://doi.org/10.1021/acs.iecr.7b01106
Dytham, C. (2011). Choosing and Using Statistics A Biologist’s Guide (3rd ed.). Wiley-Blackwell.
Edel, M., Horn, H., & Gescher, J. (2019). Biofilm systems as tools in biotechnological production. Applied Microbiology and Biotechnology , 103 (13), 5095–5103. https://doi.org/10.1007/s00253-019-09869-x
Faina, A., Nejatimoharrami, F., Stoy, K., Theodosiou, P., Taylor, B., & Ieropoulos, I. (2016). EvoBot: An Open-Source, Modular Liquid Handling Robot for Nurturing Microbial Fuel Cells, (July), 626–633. https://doi.org/10.7551/978-0-262-33936-0-ch099
Flemming, H. C., Wingender, J., & Szewzyk, U. (2007). Biofilm Highlights - Springer Series on Biofilms Series . 5 . https://doi.org/10.1007/b136878
Florea, L. J., Noe-Stinson, C. L., Brewer, J., Fowler, R., Kearns, J. B., & Greco, A. M. (2011). Iron oxide and calcite associated with Leptothrix sp. biofilms within an estavelle in the upper Floridan aquifer. International Journal of Speleology , 40 (2), 205–219. https://doi.org/10.5038/1827-806X.40.2.12
Gierl, L., Stoy, K., Faína, A., Horn, H., & Wagner, M. (2020). An open-source robotic platform that enables automated monitoring of replicate biofilm cultivations using optical coherence tomography.Npj Biofilms and Microbiomes , 18 , 1–9. https://doi.org/10.1038/s41522-020-0129-y
Guvensen, N. C., Demir, S., & Ozdemir, G. (2013). Effects of Magnesium and Calcium Cations on Biofilm Formation by Sphingomonas paucimobilis from an Industrial Environment. Fresenius Environmental Bulletin ,21 (12), 3685–3692.
Hackbarth, M., Jung, T., Reiner, J. E., Gescher, J., Horn, H., Hille-Reichel, A., & Wagner, M. (2020). Monitoring and quantification of bioelectrochemical Kyrpidia spormannii biofilm development in a novel flow cell setup. Chemical Engineering Journal ,390 (124604), 1–7. https://doi.org/10.1016/j.cej.2020.124604
Haisch, C., & Niessner, R. (2007). Visualisation of transient processes in biofilms by optical coherence tomography. Water Research ,41 , 2467–2472. https://doi.org/10.1016/j.watres.2007.03.017
Ivleva, N. P., Wagner, M., Horn, H., Niessner, R., & Haisch, C. (2010). Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. Journal of Biophotonics ,3 (8–9), 548–556. https://doi.org/10.1002/jbio.201000025
Kang, D., & Kirienko, N. V. (2018). Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa.Journal of Microbiology , 56 (7), 449–457. https://doi.org/10.1016/j.physbeh.2017.03.040
Kolodkin-Gal, I., Elsholz, A. K. W., Muth, C., Girguis, P. R., Kolter, R., & Losick, R. (2013). Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes and Development ,27 , 887–899. https://doi.org/10.1101/gad.215244.113
Körstgens, V., Flemming, H.-C., Wingender, J., & Borchard, W. (2001). Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Science and Technology , 43 (6), 49–57. https://doi.org/10.2166/wst.2001.0338
Li, C., Wagner, M., Lackner, S., & Horn, H. (2016). Assessing the Influence of Biofilm Surface Roughness on Mass Transfer by Combining Optical Coherence Tomography and Two-Dimensional Modeling.Biotechnology and Bioengineering , 113 (5), 989–1000. https://doi.org/10.1002/bit.25868
Lin, M. H., Shu, J. C., Huang, H. Y., & Cheng, Y. C. (2012). Involvement of iron in biofilm formation by staphylococcus aureus.PLoS ONE , 7 (3), 1–7. https://doi.org/10.1371/journal.pone.0034388
Manz, B., Volke, F., Goll, D., & Horn, H. (2003). Measuring Local Flow Velocities and Biofilm Structure in Biofilm Systems With Magnetic Resonance Imaging (MRI). Biotechnology and Bioengineering ,84 (4), 424–432. https://doi.org/10.1002/10782
Martin, K., Bolster, D., Derlon, N., Morgenroth, E., & Nerenberg, R. (2014). Effect of fouling layer spatial distribution on permeate flux: A theoretical and experimental study. Journal of Membrane Science ,471 , 130–137. https://doi.org/10.1016/j.memsci.2014.07.045
Mei, L., Liao, L., Wang, Z., & Xu, C. (2015). Interactions between phosphoric/tannic acid and different forms of FeOOH. Advances in Materials Science and Engineering , 2015 , 1–10. https://doi.org/10.1155/2015/250836
Möhle, R. B., Langemann, T., Haesner, M., Augustin, W., Scholl, S., Neu, T. R., … Horn, H. (2007). Structure and Shear Strength of Microbial Biofilms as Determined With Confocal Laser Scanning Microscopy and Fluid Dynamic Gauging Using a Novel Rotating Disc Biofilm Reactor.Biotechnology and Bioengineering , 98 (4), 747–755. https://doi.org/10.1002/bit
Möller, B., Glaß, M., Misiak, D., & Posch, S. (2016). MiToBo – A Toolbox for Image Processing and Analysis. Journal of Open Research Software , 4 (1), 6–11. https://doi.org/10.5334/jors.103
Musk, D. J., Banko, D. A., & Hergenrother, P. J. (2005). Iron Salts Perturb Biofilm Formation and Disrupt Existing Biofilms of Pseudomonas aeruginosa. Chemistry & Biology , 12 , 789–796. https://doi.org/10.1016/j.chembiol.2005.05.007
Neilands, J. (1974). MICORBIAL IRON METABOLISM (1st ed.). Elsevier.
Neu, T. R., Manz, B., Volke, F., Dynes, J. J., Hitchcock, A. P., & Lawrence, J. R. (2010). Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiology Ecology , 72 , 1–21. https://doi.org/10.1111/j.1574-6941.2010.00837.x
Oh, E., Andrews, K. J., & Jeon, B. (2018). Enhanced biofilm formation by ferrous and ferric iron through oxidative stress in Campylobacter jejuni. Frontiers in Microbiology , 9 , 1–9. https://doi.org/10.3389/fmicb.2018.01204
Omoike, A., Chorover, J., Kwon, K. D., & Kubicki, J. D. (2004). Adhesion of bacterial exopolymers to α-FeOOH: Inner-sphere complexation of phosphodiester groups. Langmuir , 20 (25), 11108–11114. https://doi.org/10.1021/la048597
Park, A., Jeong, H.-H., Lee, J., Kim, K. P., & Lee, C.-S. (2011). Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip Journal , 5 (3), 236–241. https://doi.org/10.1007/s13206-011-5307-9
Paul, E., Ochoa, J. C., Pechaud, Y., Liu, Y., & Liné, A. (2012). Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Research , 46 (17), 5499–5508. https://doi.org/10.1016/j.watres.2012.07.029
Pelchovich, G., Omer-Bendori, S., & Gophna, U. (2013). Menaquinone and iron are essential for complex colony development in Bacillus subtilis.PLoS ONE , 8 (11), 1–14. https://doi.org/10.1371/journal.pone.0079488
Peterson, B. W., He, Y., Ren, Y., Zerdoum, A., Libera, M. R., Sharma, P. K., … Busscher, H. J. (2015). Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Reviews , 39 (2), 234–245. https://doi.org/10.1093/femsre/fuu008
Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology , 68 (9), 4457–4464. https://doi.org/10.1128/AEM.68.9.4457
Ranmadugala, D., Ebrahiminezhad, A., Manley-harris, M., & Ghasemi, Y. (2017). The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochemistry , 62 , 231–240. https://doi.org/10.1016/j.procbio.2017.07.003
Renslow, R., Lewandowski, Z., & Beyenal, H. (2011). Biofilm Image Reconstruction for Assessing Structural Parameters, 108 (6), 1383–1394. https://doi.org/10.1002/bit.23060.BIOFILM
Riemer, J., Hoepken, H., Czerwinska, H., Robinson, S. R., & Dringen, R. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical Biochemistry , 331 , 370–375. https://doi.org/10.1016/j.ab.2004.03.049
Rizzi, A., Roy, S., Bellenger, J. P., & Beauregard, P. B. (2019). Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Applied and Environmental Microbiology ,85 (3), 1–10. https://doi.org/10.1128/AEM.02439-18
Rosche, B., Li, X. Z., Hauer, B., Schmid, A., & Buehler, K. (2009). Microbial biofilms: a concept for industrial catalysis? Trends in Biotechnology , 27 (11), 636–643. https://doi.org/10.1016/j.tibtech.2009.08.001
Rupp, C. J., Fux, C. A., & Stoodley, P. (2005). Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration.Applied and Environmental Microbiology , 71 (4), 2175–2178. https://doi.org/10.1128/AEM.71.4.2175-2178.2005
Safari, A., Tukovic, Z., Walter, M., Casey, E., & Ivankovic, A. (2015). Mechanical properties of a mature biofilm from a wastewater system : from microscale to macroscale level. Biofouling , 31 (8), 651–664. https://doi.org/10.1080/08927014.2015.1075981
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods ,9 (7), 676–682. https://doi.org/10.1038/nmeth.2019
Sehar, S., Naz, I., Das, T., & Ahmed, S. (2016). Evidence of microscopic correlation between biofilm kinetics and divalent cations for enhanced wastewater treatment efficiency. RSC Advances ,6 , 15112–15120. https://doi.org/10.1039/C5RA21076C
Singh, P. K. (2004). Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation.BioMetals , 17 , 267–270.
Singh, P. K., Parsek, M. R., Greenberg, E. P., & Welsh, M. J. (2002). A component of innate immunity prevents bacterial biofilm development.Letters to Nature , 417 , 552–555.
Song, B., & Leff, L. G. (2006). Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiological Research ,161 (4), 355–361. https://doi.org/10.1016/J.MICRES.2006.01.004
Stoodley, P., Dodds, I., Boyle, J. D., & Lappin-Scott, H. M. (1999). Influence of hydrodynamics and nutrients on biofilm structure.Journal of Applied Microbiology Symposium Supplement , 85 , 19–28.
Stoodley, P, Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology & Biotechnology , 361–367. https://doi.org/10.1038/sj.jim.7000282
Stoodley, Paul, Lewandowski, Z., Boyle, J. D., & Lappin-scott, H. M. (1999). Structural Deformation of Bacterial Biofilms Caused by Short-Term Fluctuations in Fluid Shear : An In Situ Investigation of Biofilm Rheology.
Teodósio, J. S., Simões, M., Melo, L. F., & Mergulhão, F. J. (2011). Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.Biofouling , 27 (1), 1–11. https://doi.org/10.1080/08927014.2010.535206
Towler, B. W., Rupp, C. J., Cunningham, A. L. B., & Stoodley, P. (2003). Viscoelastic Properties of a Mixed Culture Biofilm from Rheometer Creep Analysis. Biofouling , 19 (5), 279–285. https://doi.org/10.1080/0892701031000152470
Van Loosdrecht, M. C. M., & Heijnen, S. J. (1993). Biofilm bioreactors for waste-water treatment. Trends in Biotechnology , 11 (4), 117–121. https://doi.org/10.1016/0167-7799(93)90085-N
Wagner, M. (2011). Anwendung und Vergleich bildgebender Verfahren zur qualitativen und quantitativen Charakterisierung der Struktur von Biofilmen in der Mikro- und Mesoskala . Berichte aus der Siedlungswasserwirtschaft Technische Universität München 2011 . Technische Universität München. https://doi.org/ISSN 0942-914X
Wagner, M., & Horn, H. (2017). Optical coherence tomography in biofilm research: A comprehensive review. Biotechnology and Bioengineering , 114 (7), 1386–1402. https://doi.org/10.1002/bit.26283
Wang, X., Wang, G., & Hao, M. (2015). Modeling of the bacillus subtilis bacterial biofilm growing on an agar substrate. Computational and Mathematical Methods in Medicine , 2015 , 1–10. https://doi.org/10.1155/2015/581829
Weinberg, E. D. (2004). Suppression of bacterial biofilm formation by iron limitation. Medical Hypotheses , 63 , 863–865. https://doi.org/10.1016/j.mehy.2004.04.010
Weiss, N., Obied, K. E. T. El, Kalkman, J., Lammertink, R. G. H., & van Leeuwen, T. G. (2016). Measurement of biofilm growth and local hydrodynamics using optical coherence tomography. Biomedical Optics Express , 7 (9), 3508–3518. https://doi.org/10.1364/boe.7.003508
Yang, L., Barken, K. B., Skindersoe, M. E., Christensen, A. B., Givskov, M., Tolker-nielsen, T., & Tolker-nielsen, T. (2007). Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa.Microbiology , 153 , 1318–1328. https://doi.org/10.1099/mic.0.2006/004911-0
Yang, X., Beyenal, H., Harkin, G., & Lewandowski, Z. (2000). Quantifying biofilm structure using image analysis. Journal of Microbiological Methods , 39 (2), 109–119. https://doi.org/10.1016/S0167-7012(99)00097-4
Yeung, T., Kwan, M., Adler, L., Mills, T. J., Neilan, B. A., Conibeer, G., & Patterson, R. (2017). Increased methane production in cyanobacteria and methanogenic microbe co-cultures. Bioresource Technology , 243 , 686–692. https://doi.org/10.1016/j.biortech.2017.06.126