References
Allen, A., Habimana, O., & Casey, E. (2018). The effects of extrinsic
factors on the structural and mechanical properties of Pseudomonas
fluorescens biofilms: A combined study of nutrient concentrations and
shear conditions. Colloids and Surfaces B: Biointerfaces ,165 , 127–134. https://doi.org/10.1016/j.colsurfb.2018.02.035
Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa,
A. R., … Sternberg, C. (2016). Critical review on biofilm
methods. Critical Reviews in Microbiology , 0 (0), 1–39.
https://doi.org/10.1080/1040841X.2016.1208146
Banin, E., Vasil, M. L., & Greenberg, E. P. (2005). From The Cover:
Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of
the National Academy of Sciences , 102 (31), 11076–11081.
https://doi.org/10.1073/pnas.0504266102
Berlutti, F., Morea, C., Battistonp, A., Sarli, S., Cipriani, P.,
Supertp, F., & Valentp, P. (2005). IRON AVAILABILITY INFLUENCES
AGGREGATION, BIOFILM, ADHESION AND INVASION OF PSEUDOMONAS AERUGINOSA
AND BURKHOLDERIA CENOCEPACIA. International Journal of
Immunopathology and Pharmacology , 18 (4), 661–670.
Beyenal, H., Donovan, C., Lewandowski, Z., & Harkin, G. (2004).
Three-dimensional biofilm structure quantification. Journal of
Microbiological Methods , 59 , 395–413.
https://doi.org/10.1016/j.mimet.2004.08.003
Blauert, F., Horn, H., & Wagner, M. (2015). Time-resolved biofilm
deformation measurements using optical coherence tomography.Biotechnology and Bioengineering , 112 (9), 1893–1905.
https://doi.org/10.1002/bit.25590
Bridier, A., Meylheuc, T., & Briandet, R. (2013). Realistic
representation of Bacillus subtilis biofilms architecture using combined
microscopy (CLSM, ESEM and FESEM). Micron , 48 , 65–69.
https://doi.org/10.1016/j.micron.2013.02.013
Chan, C. S., Stasio, G. De, Welch, S. a, Fakra, S., & Banfield, J. F.
(2004). Microbial Polysaccharides Template Assembly of Nanocrystal
Fibers. Science , 303 , 1656–1658.
https://doi.org/10.1126/science.1092098
Cuny, L., Pfaff, D., Luther, J., Ranzinger, F., Ödman, P., Gescher, J.,
… Hille-Reichel, A. (2019). Evaluation of productive biofilms for
continuous lactic acid production. Biotechnology and
Bioengineering , 116 (10), 2687–2697.
https://doi.org/10.1002/bit.27080
Derlon, N., Peter-Varbanets, M., Scheidegger, A., Pronk, W., &
Morgenroth, E. (2012). Predation influences the structure of biofilm
developed on ultrafiltration membranes. Water Research ,46 , 3323–3333. https://doi.org/10.1016/j.watres.2012.03.031
Dreszer, C., Wexler, A. D., Drusová, S., Overdijk, T., Zwijnenburg, A.,
Flemming, H.-C., … Vrouwenvelder, J. S. (2015). In-situ biofilm
characterization in membrane systems using Optical Coherence Tomography:
Formation, structure, detachment and impact of flux change. Water
Research , 67 , 243–254.
https://doi.org/10.1016/j.watres.2014.09.006
Dutta Sinha, S., Das, S., Tarafdar, S., & Dutta, T. (2017). Monitoring
of Wild Pseudomonas Biofilm Strain Conditions Using Statistical
Characterization of Scanning Electron Microscopy Images.Industrial and Engineering Chemistry Research , 56 (34),
9496–9512. https://doi.org/10.1021/acs.iecr.7b01106
Dytham, C. (2011). Choosing and Using Statistics A Biologist’s
Guide (3rd ed.). Wiley-Blackwell.
Edel, M., Horn, H., & Gescher, J. (2019). Biofilm systems as tools in
biotechnological production. Applied Microbiology and
Biotechnology , 103 (13), 5095–5103.
https://doi.org/10.1007/s00253-019-09869-x
Faina, A., Nejatimoharrami, F., Stoy, K., Theodosiou, P., Taylor, B., &
Ieropoulos, I. (2016). EvoBot: An Open-Source, Modular Liquid Handling
Robot for Nurturing Microbial Fuel Cells, (July), 626–633.
https://doi.org/10.7551/978-0-262-33936-0-ch099
Flemming, H. C., Wingender, J., & Szewzyk, U. (2007). Biofilm
Highlights - Springer Series on Biofilms Series . 5 .
https://doi.org/10.1007/b136878
Florea, L. J., Noe-Stinson, C. L., Brewer, J., Fowler, R., Kearns, J.
B., & Greco, A. M. (2011). Iron oxide and calcite associated with
Leptothrix sp. biofilms within an estavelle in the upper Floridan
aquifer. International Journal of Speleology , 40 (2),
205–219. https://doi.org/10.5038/1827-806X.40.2.12
Gierl, L., Stoy, K., Faína, A., Horn, H., & Wagner, M. (2020). An
open-source robotic platform that enables automated monitoring of
replicate biofilm cultivations using optical coherence tomography.Npj Biofilms and Microbiomes , 18 , 1–9.
https://doi.org/10.1038/s41522-020-0129-y
Guvensen, N. C., Demir, S., & Ozdemir, G. (2013). Effects of Magnesium
and Calcium Cations on Biofilm Formation by Sphingomonas paucimobilis
from an Industrial Environment. Fresenius Environmental Bulletin ,21 (12), 3685–3692.
Hackbarth, M., Jung, T., Reiner, J. E., Gescher, J., Horn, H.,
Hille-Reichel, A., & Wagner, M. (2020). Monitoring and quantification
of bioelectrochemical Kyrpidia spormannii biofilm development in a novel
flow cell setup. Chemical Engineering Journal ,390 (124604), 1–7. https://doi.org/10.1016/j.cej.2020.124604
Haisch, C., & Niessner, R. (2007). Visualisation of transient processes
in biofilms by optical coherence tomography. Water Research ,41 , 2467–2472. https://doi.org/10.1016/j.watres.2007.03.017
Ivleva, N. P., Wagner, M., Horn, H., Niessner, R., & Haisch, C. (2010).
Raman microscopy and surface-enhanced Raman scattering (SERS) for in
situ analysis of biofilms. Journal of Biophotonics ,3 (8–9), 548–556. https://doi.org/10.1002/jbio.201000025
Kang, D., & Kirienko, N. V. (2018). Interdependence between iron
acquisition and biofilm formation in Pseudomonas aeruginosa.Journal of Microbiology , 56 (7), 449–457.
https://doi.org/10.1016/j.physbeh.2017.03.040
Kolodkin-Gal, I., Elsholz, A. K. W., Muth, C., Girguis, P. R., Kolter,
R., & Losick, R. (2013). Respiration control of multicellularity in
Bacillus subtilis by a complex of the cytochrome chain with a
membrane-embedded histidine kinase. Genes and Development ,27 , 887–899. https://doi.org/10.1101/gad.215244.113
Körstgens, V., Flemming, H.-C., Wingender, J., & Borchard, W. (2001).
Influence of calcium ions on the mechanical properties of a model
biofilm of mucoid Pseudomonas aeruginosa. Water Science and
Technology , 43 (6), 49–57. https://doi.org/10.2166/wst.2001.0338
Li, C., Wagner, M., Lackner, S., & Horn, H. (2016). Assessing the
Influence of Biofilm Surface Roughness on Mass Transfer by Combining
Optical Coherence Tomography and Two-Dimensional Modeling.Biotechnology and Bioengineering , 113 (5), 989–1000.
https://doi.org/10.1002/bit.25868
Lin, M. H., Shu, J. C., Huang, H. Y., & Cheng, Y. C. (2012).
Involvement of iron in biofilm formation by staphylococcus aureus.PLoS ONE , 7 (3), 1–7.
https://doi.org/10.1371/journal.pone.0034388
Manz, B., Volke, F., Goll, D., & Horn, H. (2003). Measuring Local Flow
Velocities and Biofilm Structure in Biofilm Systems With Magnetic
Resonance Imaging (MRI). Biotechnology and Bioengineering ,84 (4), 424–432. https://doi.org/10.1002/10782
Martin, K., Bolster, D., Derlon, N., Morgenroth, E., & Nerenberg, R.
(2014). Effect of fouling layer spatial distribution on permeate flux: A
theoretical and experimental study. Journal of Membrane Science ,471 , 130–137. https://doi.org/10.1016/j.memsci.2014.07.045
Mei, L., Liao, L., Wang, Z., & Xu, C. (2015). Interactions between
phosphoric/tannic acid and different forms of FeOOH. Advances in
Materials Science and Engineering , 2015 , 1–10.
https://doi.org/10.1155/2015/250836
Möhle, R. B., Langemann, T., Haesner, M., Augustin, W., Scholl, S., Neu,
T. R., … Horn, H. (2007). Structure and Shear Strength of
Microbial Biofilms as Determined With Confocal Laser Scanning Microscopy
and Fluid Dynamic Gauging Using a Novel Rotating Disc Biofilm Reactor.Biotechnology and Bioengineering , 98 (4), 747–755.
https://doi.org/10.1002/bit
Möller, B., Glaß, M., Misiak, D., & Posch, S. (2016). MiToBo – A
Toolbox for Image Processing and Analysis. Journal of Open
Research Software , 4 (1), 6–11. https://doi.org/10.5334/jors.103
Musk, D. J., Banko, D. A., & Hergenrother, P. J. (2005). Iron Salts
Perturb Biofilm Formation and Disrupt Existing Biofilms of Pseudomonas
aeruginosa. Chemistry & Biology , 12 , 789–796.
https://doi.org/10.1016/j.chembiol.2005.05.007
Neilands, J. (1974). MICORBIAL IRON METABOLISM (1st ed.).
Elsevier.
Neu, T. R., Manz, B., Volke, F., Dynes, J. J., Hitchcock, A. P., &
Lawrence, J. R. (2010). Advanced imaging techniques for assessment of
structure, composition and function in biofilm systems. FEMS
Microbiology Ecology , 72 , 1–21.
https://doi.org/10.1111/j.1574-6941.2010.00837.x
Oh, E., Andrews, K. J., & Jeon, B. (2018). Enhanced biofilm formation
by ferrous and ferric iron through oxidative stress in Campylobacter
jejuni. Frontiers in Microbiology , 9 , 1–9.
https://doi.org/10.3389/fmicb.2018.01204
Omoike, A., Chorover, J., Kwon, K. D., & Kubicki, J. D. (2004).
Adhesion of bacterial exopolymers to α-FeOOH: Inner-sphere complexation
of phosphodiester groups. Langmuir , 20 (25), 11108–11114.
https://doi.org/10.1021/la048597
Park, A., Jeong, H.-H., Lee, J., Kim, K. P., & Lee, C.-S. (2011).
Effect of shear stress on the formation of bacterial biofilm in a
microfluidic channel. BioChip Journal , 5 (3), 236–241.
https://doi.org/10.1007/s13206-011-5307-9
Paul, E., Ochoa, J. C., Pechaud, Y., Liu, Y., & Liné, A. (2012). Effect
of shear stress and growth conditions on detachment and physical
properties of biofilms. Water Research , 46 (17),
5499–5508. https://doi.org/10.1016/j.watres.2012.07.029
Pelchovich, G., Omer-Bendori, S., & Gophna, U. (2013). Menaquinone and
iron are essential for complex colony development in Bacillus subtilis.PLoS ONE , 8 (11), 1–14.
https://doi.org/10.1371/journal.pone.0079488
Peterson, B. W., He, Y., Ren, Y., Zerdoum, A., Libera, M. R., Sharma, P.
K., … Busscher, H. J. (2015). Viscoelasticity of biofilms and
their recalcitrance to mechanical and chemical challenges. FEMS
Microbiology Reviews , 39 (2), 234–245.
https://doi.org/10.1093/femsre/fuu008
Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of
Hydrodynamics and Cell Signaling on the Structure and Behavior of
Pseudomonas aeruginosa Biofilms Influence of Hydrodynamics and Cell
Signaling on the Structure and Behavior of Pseudomonas aeruginosa
Biofilms. Applied and Environmental Microbiology , 68 (9),
4457–4464. https://doi.org/10.1128/AEM.68.9.4457
Ranmadugala, D., Ebrahiminezhad, A., Manley-harris, M., & Ghasemi, Y.
(2017). The effect of iron oxide nanoparticles on Bacillus subtilis
biofilm, growth and viability. Process Biochemistry , 62 ,
231–240. https://doi.org/10.1016/j.procbio.2017.07.003
Renslow, R., Lewandowski, Z., & Beyenal, H. (2011). Biofilm Image
Reconstruction for Assessing Structural Parameters, 108 (6),
1383–1394. https://doi.org/10.1002/bit.23060.BIOFILM
Riemer, J., Hoepken, H., Czerwinska, H., Robinson, S. R., & Dringen, R.
(2004). Colorimetric ferrozine-based assay for the quantitation of iron
in cultured cells. Analytical Biochemistry , 331 , 370–375.
https://doi.org/10.1016/j.ab.2004.03.049
Rizzi, A., Roy, S., Bellenger, J. P., & Beauregard, P. B. (2019). Iron
homeostasis in Bacillus subtilis requires siderophore production and
biofilm formation. Applied and Environmental Microbiology ,85 (3), 1–10. https://doi.org/10.1128/AEM.02439-18
Rosche, B., Li, X. Z., Hauer, B., Schmid, A., & Buehler, K. (2009).
Microbial biofilms: a concept for industrial catalysis? Trends in
Biotechnology , 27 (11), 636–643.
https://doi.org/10.1016/j.tibtech.2009.08.001
Rupp, C. J., Fux, C. A., & Stoodley, P. (2005). Viscoelasticity of
Staphylococcus aureus biofilms in response to fluid shear allows
resistance to detachment and facilitates rolling migration.Applied and Environmental Microbiology , 71 (4), 2175–2178.
https://doi.org/10.1128/AEM.71.4.2175-2178.2005
Safari, A., Tukovic, Z., Walter, M., Casey, E., & Ivankovic, A. (2015).
Mechanical properties of a mature biofilm from a wastewater system :
from microscale to macroscale level. Biofouling , 31 (8),
651–664. https://doi.org/10.1080/08927014.2015.1075981
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source
platform for biological-image analysis. Nature Methods ,9 (7), 676–682. https://doi.org/10.1038/nmeth.2019
Sehar, S., Naz, I., Das, T., & Ahmed, S. (2016). Evidence of
microscopic correlation between biofilm kinetics and divalent cations
for enhanced wastewater treatment efficiency. RSC Advances ,6 , 15112–15120. https://doi.org/10.1039/C5RA21076C
Singh, P. K. (2004). Iron sequestration by human lactoferrin stimulates
P. aeruginosa surface motility and blocks biofilm formation.BioMetals , 17 , 267–270.
Singh, P. K., Parsek, M. R., Greenberg, E. P., & Welsh, M. J. (2002). A
component of innate immunity prevents bacterial biofilm development.Letters to Nature , 417 , 552–555.
Song, B., & Leff, L. G. (2006). Influence of magnesium ions on biofilm
formation by Pseudomonas fluorescens. Microbiological Research ,161 (4), 355–361. https://doi.org/10.1016/J.MICRES.2006.01.004
Stoodley, P., Dodds, I., Boyle, J. D., & Lappin-Scott, H. M. (1999).
Influence of hydrodynamics and nutrients on biofilm structure.Journal of Applied Microbiology Symposium Supplement , 85 ,
19–28.
Stoodley, P, Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002).
Biofilm material properties as related to shear-induced deformation and
detachment phenomena. Journal of Industrial Microbiology &
Biotechnology , 361–367. https://doi.org/10.1038/sj.jim.7000282
Stoodley, Paul, Lewandowski, Z., Boyle, J. D., & Lappin-scott, H. M.
(1999). Structural Deformation of Bacterial Biofilms Caused by
Short-Term Fluctuations in Fluid Shear : An In Situ Investigation of
Biofilm Rheology.
Teodósio, J. S., Simões, M., Melo, L. F., & Mergulhão, F. J. (2011).
Flow cell hydrodynamics and their effects on E. coli biofilm formation
under different nutrient conditions and turbulent flow.Biofouling , 27 (1), 1–11.
https://doi.org/10.1080/08927014.2010.535206
Towler, B. W., Rupp, C. J., Cunningham, A. L. B., & Stoodley, P.
(2003). Viscoelastic Properties of a Mixed Culture Biofilm from
Rheometer Creep Analysis. Biofouling , 19 (5), 279–285.
https://doi.org/10.1080/0892701031000152470
Van Loosdrecht, M. C. M., & Heijnen, S. J. (1993). Biofilm bioreactors
for waste-water treatment. Trends in Biotechnology , 11 (4),
117–121. https://doi.org/10.1016/0167-7799(93)90085-N
Wagner, M. (2011). Anwendung und Vergleich bildgebender Verfahren
zur qualitativen und quantitativen Charakterisierung der Struktur von
Biofilmen in der Mikro- und Mesoskala . Berichte aus der
Siedlungswasserwirtschaft Technische Universität München 2011 .
Technische Universität München. https://doi.org/ISSN 0942-914X
Wagner, M., & Horn, H. (2017). Optical coherence tomography in biofilm
research: A comprehensive review. Biotechnology and
Bioengineering , 114 (7), 1386–1402.
https://doi.org/10.1002/bit.26283
Wang, X., Wang, G., & Hao, M. (2015). Modeling of the bacillus subtilis
bacterial biofilm growing on an agar substrate. Computational and
Mathematical Methods in Medicine , 2015 , 1–10.
https://doi.org/10.1155/2015/581829
Weinberg, E. D. (2004). Suppression of bacterial biofilm formation by
iron limitation. Medical Hypotheses , 63 , 863–865.
https://doi.org/10.1016/j.mehy.2004.04.010
Weiss, N., Obied, K. E. T. El, Kalkman, J., Lammertink, R. G. H., & van
Leeuwen, T. G. (2016). Measurement of biofilm growth and local
hydrodynamics using optical coherence tomography. Biomedical
Optics Express , 7 (9), 3508–3518.
https://doi.org/10.1364/boe.7.003508
Yang, L., Barken, K. B., Skindersoe, M. E., Christensen, A. B., Givskov,
M., Tolker-nielsen, T., & Tolker-nielsen, T. (2007). Effects of iron on
DNA release and biofilm development by Pseudomonas aeruginosa.Microbiology , 153 , 1318–1328.
https://doi.org/10.1099/mic.0.2006/004911-0
Yang, X., Beyenal, H., Harkin, G., & Lewandowski, Z. (2000).
Quantifying biofilm structure using image analysis. Journal of
Microbiological Methods , 39 (2), 109–119.
https://doi.org/10.1016/S0167-7012(99)00097-4
Yeung, T., Kwan, M., Adler, L., Mills, T. J., Neilan, B. A., Conibeer,
G., & Patterson, R. (2017). Increased methane production in
cyanobacteria and methanogenic microbe co-cultures. Bioresource
Technology , 243 , 686–692.
https://doi.org/10.1016/j.biortech.2017.06.126