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Abstract 35 

Approaching the consequences of climate change demands understanding how temperature 36 

controls species' responses across key biological aspects, as well as the coordination of 37 

thermal responses across these aspects. We study the role of temperature in determining 38 

the species' diel, seasonal, and geographical occurrence, using dung beetles as a model 39 

system. We found that temperature has relatively low –but not negligible– effects in the 40 

three studied species’ aspects, once accounting for alternative factors. More importantly, 41 

the estimated thermal niches were largely incongruent across aspects. This shows that 42 

species have multidimensional thermal niches, entailing that adjustments to fulfil 43 

temperature requirements for one biological aspect, such as seasonal ontogenetic cycles, 44 

may result in detrimental effects on other aspects, like diel activity. Paradoxically, the 45 

relatively weak effects of temperature we found may have serious consequences for 46 

species' responses to warming if temperature regulates essential aspects of species’ biology 47 

in divergent ways.   48 
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Introduction 49 

Temperature is fundamental for the efficient capture and management of the energy that 50 

maintains living organisms (Brown et al. 2004). Temperature plays a critical role in 51 

controlling key aspects such as species' spatiotemporal distribution, physiological activity 52 

or individual growth rates (Somero 2005, Thackeray et al. 2016, Scranton & Amarasekare 53 

2017, Madrigal-González et al. 2018), among many other things. Here, the effects of 54 

temperature on species' geographic distributions and seasonal and diel activities are of 55 

particular interest since variation in these aspects can modify the spatial and temporal 56 

organization of biodiversity (Chapin III & Diaz 2020), which is leading to spatial and 57 

seasonal decouples of interacting species (Sheldon et al. 2011) and to the disruption of food 58 

webs and ecosystem services (Román-Palacios & Wiens 2020). Ecologists and 59 

climatologists have accumulated a large amount of evidence on these effects during recent 60 

decades, which are especially relevant for ectotherms (Paaijmans et al. 2013). Despite this, 61 

how temperature responses integrate across different species’ aspects is still largely 62 

unknown.  63 

Delimiting the actual effect of temperature on the distribution and abundance of 64 

species may become difficult when other variables that are either spatially or temporally 65 

correlated with temperature are considered. For instance, the latitudinal distribution of 66 

species in the Northern Hemisphere is associated with historical events and dispersal 67 

limitations, whose effects generate geographical patterns that can be confounded with those 68 

of temperature variations (Araújo et al. 2008, Hortal et al. 2011, Calatayud et al. 2016, 69 

2019). Similarly, the apparent relationships between temperature and either seasonal or diel 70 

activities may be indeed conditioned by several life-history constraints, including the time 71 

required to complete individual development, species’ voltinism, the phase in which 72 

overwintering occurs, photoperiod limitations, light requirements, and the reliance on solar 73 

radiation independently on the environmental temperature (Bradshaw & Holzapfel 2007, 74 

2010, Teder 2020). Hence, assessing the predictive value of temperature in accounting for 75 

the species’ spatial and temporal variations would require considering any alternative 76 

variables that could play a significant role.  77 

Experimental setups can help unravel the “true” role of temperature in driving 78 

geographical, seasonal and diel patterns for some model organisms while controlling for 79 

other variables (Angilletta 2009). However, experiments based on artificial thermal 80 

gradients can subject individuals to new and unrealistic stress conditions, providing 81 

overestimated projections of species responses (Guo et al. 2020). Alternatively, one could 82 
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explore the contribution of temperature using observational data where the variations in 83 

temperature and other complementary predictors are decoupled. For example, the effects 84 

of temperature and solar radiation can be teased apart using diel activity from consecutive 85 

days with substantial temperature variations (i.e., while presenting almost equal sunlight 86 

incomings). Similarly, the effects of temperature and day length can be teased apart using 87 

seasonal data along steep temperature gradients, with nearly equal day lengths (such as 88 

e.g., elevational gradients). Finally, the role of temperature in determining the species’ 89 

distribution can be assessed by comparing geographical areas with different temperature 90 

regimens. If temperature is an important variable, we should find similar responses under 91 

different background temperatures.  92 

The relevance of temperature in accounting for the spatiotemporal variation in 93 

species occurrence and abundance may thus be estimated from observational data, 94 

comparing the results from including or not alternative predictors. Temperature will stand 95 

out as a relevant factor across different biological aspects if its association with several 96 

species' responses is high, but also if such responses are congruent across dimensions. The 97 

congruence in thermal responses to diel, seasonal and geographical gradients would 98 

support the universal and homogeneous role of temperature in delimiting the occurrence 99 

and abundance of species. Note here that expectations are that different mechanisms are 100 

behind the response to temperature variations associated with geography, seasonality and 101 

diel rhythms. For instance, daily temperature variations should also be related to changes 102 

in light or other environmental factors that can generate behavioural, endocrine, and 103 

physiological diel rhythms (Levy et al. 2019). In contrast, responses to seasonal 104 

temperatures should be associated with the annual rhythms and the need to synchronize life 105 

history phases with seasonal variations in climate (Saunders 2020). On the other hand, 106 

responses to geographical variations in temperature should relate to local adaptation 107 

processes acting at the population level, and likely involving the above-mentioned 108 

individual tolerances and ontogenetic timing, as well as other essential species attributes 109 

(Sunday et al. 2019).  110 

Despite these differences, a certain level of congruence in the responses would 111 

indicate the consistent role of temperature as a holistic and predictable driver of key 112 

biological aspects. Such congruence would be evident, for example, if species occurring in 113 

colder regions are also active during colder periods of the year and at colder hours of the 114 

day in areas of milder climate. The hypothesized thermal congruence is fundamental to 115 

respond adequately to global warming, as decoupling responses across different 116 
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spatiotemporal gradients may expose local populations to critical temperatures, thus 117 

compromising their long-term persistence. For instance, if seasonal and diel responses to 118 

temperature are decoupled, species might not be able to adjust seasonal cycles as much as 119 

it would be necessary to prevent individuals from facing critical temperatures during diel 120 

activities. Following this line of evidence, studying the congruence of thermal responses 121 

across evolutionary lineages is also important because a marked phylogenetic signal in 122 

thermal niches would also point to the relevance of temperature changes. If thermal 123 

adaptations are evolutionarily conserved, species might present limited ability to modify 124 

their thermal responses, being unable to cope with climate warming and producing 125 

phylogenetic biases in the effects of climate warming. Despite the relevance of studying 126 

the consistency of thermal responses across biological aspects and evolutionary lineages, 127 

integrative studies are lacking.  128 

Here we study the thermal responses associated with geographical, seasonal, and 129 

diel temperature variations using several temperate dung beetle species as a model system. 130 

Dung beetles are capable to self-regulate their body temperature and produce heat 131 

depending on their body size (Verdú & Lobo 2008, Verdú et al. 2012) a physiological 132 

adaptation directly linked to the need of a quick dispersal response to exploit an ephemeral 133 

resource. In addition, they feed on cattle from domestic and wild animals, participating in 134 

nutrient cycling and seed dispersion (Nervo et al. 2017, Milotić et al 2019), providing 135 

important ecosystem functions. These characteristics make dung beetles an ideal and 136 

important group to study thermal responses.  137 

Specifically, we evaluated the responses of dung beetles to changes in temperature 138 

associated to: (i) diel rhythms across three consecutive days with contrasted temperatures; 139 

(ii) seasonal rhythms across six sites located at different elevations; and (iii) geographical 140 

ranges along five river basins in the Iberian Peninsula (Fig. 1). We hypothesized that if 141 

temperature is the main factor determining the activity and distribution of dung beetles, its 142 

effect should be observed along the three considered species aspects, and its relevance 143 

would be higher if the effects of other alternative and/or complementary factors are low. 144 

Furthermore, congruence in the different species' thermal responses to diel, seasonal and 145 

geographical changes would support a general and predictable role of temperature. On the 146 

contrary, a low explanatory capacity of temperature and a lack of congruence in its effects 147 

across the three spatiotemporal gradients would support a limited and dissimilar role of 148 

temperature depending on the biological aspect. Finally, if species are evolutionarily 149 
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limited to adapt to new thermal regimens, we expect thermal niches to be phylogenetically 150 

conserved.  151 

 152 

Material and methods 153 

Data origin 154 

We use data on 16 Iberian dung beetle species of the family Scarabaeidae. These species 155 

were selected because they occurred in at least 10% of the samples of the three datasets 156 

considered (see below). All considered species (Table 1) are of small body size, with body 157 

weights far smaller than 1.9 g (0.2 g at most), the threshold from which endothermy is 158 

thought to appear in this group of beetles (Verdú et al. 2006). Temperature–distribution 159 

associations for all these species were examined along: (i) five geographical areas of 160 

similar extent but different temperature regimes within the Iberian Peninsula (geographical 161 

dataset or GD); (ii) six sites placed across a steep elevational range in Central Iberia, and 162 

sampled during the same dates but differing in their environmental temperatures (seasonal 163 

dataset or SD); and (iii) three consecutive days with similar daily variations but different 164 

weather conditions in a single locality near the centre of the same elevational range (diel 165 

dataset or DD). 166 

 167 

Geographical Dataset. The GD is divided in five study areas, corresponding to the major 168 

river basins of the Iberian Peninsula (Ebro, Duero, Tajo, Guadiana and Guadalquivir; limits 169 

extracted from HydroBASINS available at www.hydrosheds.org, Lehner & Grill 2013, 170 

Fig. 1a). We used these natural areas since they are relatively similar in extent and show 171 

contrasting environmental temperatures (Fig. 1b). In each basin, we collected all 172 

georeferenced occurrences of the selected species from GBIF (www.gbif.org, accessed 173 

May 2020) and additional published sources (Hortal & Lobo 2011). We pooled the 174 

occurrences within UTM grid cells of 10 x 10 km to avoid uneven sampling efforts (Lobo 175 

et al. 2018, Appendix S1). We computed the frequency of each species' occurrence in 176 

temperature bins of 1ºC (ranging from -3 to 20ºC, n=24) for each river basin (n = 24 x 5 = 177 

120), and these figures were used as dependent variables in the subsequent regression 178 

analyses. 179 

 180 

Seasonal dataset. We sampled six sites along an elevational gradient located in the Sierra 181 

de Guadarrama (Central Spain) (Fig. 1a, Espinoza 2016) to explore the effect of 182 

http://www.hydrosheds.org/
http://www.gbif.org/
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temperature variations in SD. Elevations range from 755 to 1900 m a.s.l., separating sites 183 

approximately 200 m a.s.l.. Each survey site was sampled every three weeks, totalling 14 184 

times from May 2012 to June 2013. The sites show considerable variations in temperature 185 

during the whole period of the surveys (Fig. 1b). We obtained an estimation of each species' 186 

abundance per elevation site and date (n = 6 x 14 = 84, see Appendix S1 for details), which 187 

were used as response variables in subsequent statistical analyses. 188 

  189 

Diel Dataset. We sampled a grassland located in the Sierra de Guadarrama at an 190 

approximate elevation of 1500 m a.s.l. (Fig. 1a) to assed temperature effects on dung beetle 191 

diel activity. We chose this locality for its high diversity of dung beetles (between 30 and 192 

40 species belonging to the considered subfamilies; Cuesta & Lobo 2019). We sampled 193 

three consecutive days (April 28th–30th 2015) from dawn to dusk (approximately from 7:30 194 

am to 7:00 pm). These days showed contrasting temperatures, with around 8 ºC of 195 

difference between the mean temperatures of the coldest and the hottest days (Fig. 1b). We 196 

obtained an estimation of the abundance of active individuals from each species each 30 197 

min. (n = 23 x 3 = 69, see Appendix S1 for details), which were further used as dependent 198 

variables. 199 

 200 

Temperature measures and alternative correlates 201 

Temperature measures were obtained from different standardized methods for each dataset. 202 

For the GD, we obtained mean annual temperatures at a 30 sec resolution from WorldClim 203 

(Hijmans et al. 2005). For SD, we set up a temperature data logger in the shadow and at 204 

one meter from the ground in each elevational point during the whole period of the study. 205 

Finally, for DD, we used temperature measurements from a data logger placed on the 206 

ground and in the sun as they were best correlated with the species' diel activity among 207 

temperature measurements from data loggers placed to recover different microclimatic 208 

conditions available for dung beetles (see Appendix 1 for details).  209 

The effects of temperature measurements might be overestimated due to its 210 

collinearity with other factors with which it shares spatial or temporal structure. We 211 

quantified this potential overestimation by using different “contrast variables”: alternative 212 

predictors which are often partly correlated with temperature but are measures or proxies 213 

of other potential causal factors for dung beetle spatial and temporal variations. These 214 

alternative predictors were temperature availability in the case of GD, day of the year for 215 

SD (included as date sine and cosine), and hour of the day in the case of DD (see Appendix 216 
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1 for details). The effect of temperature on the frequency of occurrence (GD) or abundance 217 

(SD and DD) that is independent of these contrast variables was assessed as the “pure” 218 

effect of temperature that is independent of the range of temperatures available (GD), the 219 

period of the year (SD), and the hour of the day (DD) as explained below.  220 

 221 

Statistical analyses 222 

Explanatory capacity of temperature 223 

We explored the independent capacity of temperature to explain variations in dung beetle 224 

data in GD, SD, and DD. For each dataset, we conducted Generalized Linear Regression 225 

Models (GLMs) of the species’ frequency or abundance as a function of temperature. Data 226 

coming from the five basins (in GD), the six elevational sites (SD), and the three days (in 227 

DD) were considered at the same time in each case. A curvilinear quadratic function of 228 

temperature was included to account for the typical unimodal performance curves of 229 

ectotherms (Huey & Kingsolver 1989). A negative binomial error distribution for the 230 

dependent variable was assumed to avoid overdispersion issues associated with the Poisson 231 

error distribution (Blasco-Moreno et al. 2019), and it was related to the set of predictors 232 

via a logarithmic link function. We, then, fitted three supplementary GLMs representing 233 

different hypotheses regarding the importance of temperature: (i) a full model where 234 

temperature and contrast variables are included, (ii) a model including only contrast 235 

variables, and (iii) a null model where only the intercept was included. We assumed a linear 236 

relationship between the density of occurrence and temperature availability (GD); whereas 237 

in SD and DD, we assumed curvilinear relationships between abundance and contrast 238 

variables by including a quadratic term of both the number of minutes from dawn, and date 239 

sine and cosine. It is important to note that we did not include a term in the models to 240 

account for the different spatial (i.e., basins and elevations) and temporal (i.e., days) units. 241 

By doing so, we were ignoring other factors that may affect the distribution and activity of 242 

dung beetles, besides temperature and the contrast variables analysed. However, this allows 243 

us to tease apart the effects of temperature and contrast variables while avoiding model 244 

overparameterization. We used a deviance partition approach (Legendre 1993, see also 245 

Calatayud et al. 2019) to calculate the deviance explained by each set of variables alone 246 

(i.e., temperature vs. contrast variables; herein, total pseudo R2) and once accounting for 247 

the collinearity with other variables (herein, partial pseudo R2). Model performance was 248 

assessed using the Akaike Information Criterion corrected for small sample size (AICc).  249 

 250 
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Thermal niche attributes 251 

Deriving thermal niches from occurrence data typically provides a partial description of 252 

the whole potential response of the species (Sánchez-Fernández et al. 2012, Saupe et al. 253 

2018). Still, occurrence-based thermal niches may be characterized by different attributes 254 

such as the optimum temperature and niche breadth (Gouveia et al. 2014, Löffler & Pape 255 

2020, Fig. 2). The temperature optimum of each species was assessed by fitting quadratic 256 

curves in a GLM and calculating the maxima as their inflection point (see Villén-Pérez & 257 

Carrascal 2015 for a similar procedure). Thermal niche breadth was also obtained as the 258 

area under the curve of these fitted curves. Fitted values were normalized to reach a 259 

maximum value of one to make calculations comparable among datasets and species.  260 

We evaluated the intraspecific dissimilarity in the thermal niches across different 261 

spatial and temporal scales, herein called “thermal lability”, using data from the different 262 

study units used in each dataset; that is, between river basins, elevation sites, and days (Fig. 263 

2). Thermal lability between pairs of units was measured using the Simpson index as 264 

follows: 265 

 𝑆 =
min⁡(𝑏,𝑐)

𝑎⁡+⁡min⁡(𝑏,𝑐)
, 266 

where 𝑎 represents the area under the curves where both curves overlap, and 𝑏 and 𝑐 267 

represent the independent areas under the curves in study units (see Fig. 2). The larger the 268 

overlap between the curves obtained at different scales, the smaller the thermal lability will 269 

be. We computed this index for all pairs of units in each dataset (i.e., for each pair of basins, 270 

each pair of elevations, and each pair of days) and then considered the maximum 271 

dissimilarity among all pairs from the same dataset, as this measure will provide a more 272 

realistic estimate of the potential thermal lability of each species.  273 

  274 

Congruencies in thermal niches 275 

The congruence in the thermal niches of the different species derived from the three 276 

datasets (i.e., GD, SD, and DD) was assessed using Spearman rank correlations between 277 

the deviance explained by temperature (i.e., both for the total and partial pseudo R2s), as 278 

well as the obtained temperature optima, thermal niche breadths and thermal labilities for 279 

each pair of datasets. We also explored the overlap in the thermal niches estimated from 280 

different datasets. For this, we examined whether interspecific thermal niche dissimilarities 281 

were correlated between the different datasets. We computed dissimilarities between the 282 

models' normalized fitted values where the temperature was the only explanatory variable 283 
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using the Simpson index as previously explained, but in this case between pairs of species 284 

(see also Fig. 2). Thus, we created a thermal niche pairwise dissimilarity matrix for each 285 

dataset. We conducted Mantel tests based on Spearman’s ρ coefficient to assess the 286 

relationship between dissimilarity matrices obtained from the different datasets. 287 

Significance was evaluated by comparing observed ρ coefficients with 999 null values 288 

obtained by permuting the dissimilarity matrices. 289 

 290 

Phylogenetic signal 291 

The potential lability of thermal niches shall be also assessed from an evolutionary point 292 

of view. A marked phylogenetic signal would indicate potential evolutionary constrains for 293 

temperature responses, and phylogenetically-structured effects of global warming. We 294 

reconstructed a Bayesian phylogeny for the species present in our datasets based on two 295 

mitochondrial (COI and COII) and one nuclear markers (28S RNA, see Appendix S2 for 296 

details). DNA markers were sequenced for this study and retrieved from Genbank (Table 297 

S1, accessed in June 2016). Pagel’s λ test (Pagel, 1999) and Blomberg’s K statistics 298 

(Blomberg et al. 2003) were used to explore the phylogenetic signal in the five variables 299 

considered (total and partial deviance explained by temperature, temperature optimum, 300 

thermal niche breadth, and thermal lability). Significance for Pagel’s λ was assessed with 301 

a likelihood ratio test comparing the negative log likelihood obtained from the original tree 302 

topology with the negative log likelihood from a topology transformed to remove the signal 303 

(i.e., λ = 0). In the case of Blomberg’s K, we tested for significance by randomizing the 304 

labels of the phylogenetic tips and comparing observed and random K values. Finally, we 305 

also investigated for phylogenetic signal in the thermal niche dissimilarities for each 306 

dataset. To do so, Spearman correlations between thermal dissimilarities and phylogenetic 307 

distances were used, assessing significance by comparing observed correlations with null 308 

values where the tip labels of the phylogeny were randomized. In all cases where tip labels 309 

were randomized, p-values were calculated as the proportion of null values being equal or 310 

higher than observed values.   311 

All analyses were conducted in R environment (R Core Team 2020), using the 312 

AICcmodavg package (Mazerolle 2019) to calculate AICc values, the function “sintegral” 313 

as implemented in the Bolstad2 packed (Curran 2013) to assess areas under the curves, the 314 

vegan package (Oksanen et al. 2019) for the Mantel tests, and the phytools package (Revell 315 

2012) to calculate Pagel’s λ and Blomberg’s K.  316 

 317 
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Results 318 

There is an evident gradient in the explanatory relevance of temperature towards higher 319 

relevance at progressively larger scales (i.e., geographical > seasonal > diel). Model 320 

selection revealed that the full model, including temperature and contrast variables, was 321 

the most parsimonious for most species in most datasets (Table 1). As exceptions to this 322 

general pattern, in the geographical dataset, the model only including temperature was 323 

equivalent to the full model (according to AICc) for one species, and it was also the best 324 

supported for another species. In the seasonal dataset, the model only including temperature 325 

was the best supported for four species, whereas the model only including contrast 326 

variables was equivalent to the full model for just one species. Finally, the model including 327 

minute from dawn in DD data was equivalent to the full model for only two species and 328 

even better for one species (Table 1). In general, the total deviance explained by the models 329 

including temperature and contrast variables was considerably high (mean pseudo-R2s = 330 

0.62, 0.63, and 0.77; ranges = 0.51-0.75, 0.38-0.86, and 0.64-0.86, respectively for GD, 331 

SD, and DD; see Fig. 3). Partial regressions revealed that the effects of temperature and 332 

contrast variables largely overlap, being the deviance independently explained by 333 

temperature considerably low (see Fig. 3). Interestingly, the percentage of deviance 334 

explained by temperature decreased from the geographical (mean pseudo-R2s = 0.33; range 335 

0.13–0.48), to the seasonal (0.19; 0.05–0.36) and diel datasets (0.08; 0.01–0.20) (see Fig. 336 

3).  337 

Thermal niche attributes derived from the different datasets showed little 338 

congruence. Neither the pseudo R2 explained by temperature alone nor the total pseudo R2 339 

were positively and significantly correlated between any pair of datasets, and none of the 340 

thermal niche attributes were significantly correlated between the three considered datasets 341 

(Table 2). Moreover, Mantel tests showed that interspecific niche dissimilarities were not 342 

correlated among the three studied spatiotemporal scales (Table 2). Finally, we did not find 343 

phylogenetic signal for any of these variables in any of the datasets, except in the case of 344 

niche breadth for the diel dataset (Table 3). 345 

 346 

Discussion 347 

Our results show that the spatial and temporal responses of the studied species show large 348 

associations to contrast variables besides temperature, but also that temperature controls to 349 

dung beetle occurrence may increase towards larger temporal and spatial scales. This 350 
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contrasts with our preliminary expectations of a high importance of temperature for dung 351 

beetle occurrence and activity based on the known basal ectothermic physiology of the 352 

considered species. Further, thermal niches were incongruent across scales for the studied 353 

species and lacked phylogenetic signal, indicating that thermal adaptations are highly 354 

variable both between and within species.  355 

The generally low partial effects of temperature lead to two important 356 

conclusions: (i) the distribution and activity of dung beetles are controlled by other factors 357 

different from temperature, which are at least partially represented by the ad hoc contrast 358 

variables used here; and (ii) dung beetle species must have biological mechanisms that 359 

allow them to cope with the temperature variations associated to each spatiotemporal 360 

context. Thermoregulation and body heat gain are intimately linked to solar radiation in 361 

ectotherms (Angilletta 2009). Indeed, empirical evidence suggest that solar radiation is 362 

associated with dung beetles’ body temperatures (Bartholomew & Heinrich 1978) and 363 

temporal variations in their abundance and species richness (Lobo et al. 1998). Hence, it is 364 

likely that this factor is a key environmental control of the diel activity of dung beetles. 365 

Regarding annual rhythms, photoperiod seems to be a crucial environmental cue regulating 366 

insects’ seasonality (Nijhout 1994, Bradshaw & Holzapfel 2007). This is likely the case for 367 

dung beetles, given the relatively weak effects of temperature on their phenology we found. 368 

Also, the different life-history phases of an insect need to be synchronized seasonally, and 369 

these require a minimum amount of time to complete. The development of a dung beetle 370 

individual requires from 30 to 80 days depending on the species (Christensen & Dobson 371 

1977, Romero-Samper & Martín-Piera 1995, 2007, Arellano et al. 2017), a time that 372 

determines key life-history characteristics such as the number of generations per year or 373 

the overwintering phase. These developmental constraints are therefore hard to modify 374 

without major evolutionary changes (Teder 2020), limiting the effects of temperature on 375 

the seasonal abundance and occurrence of dung beetle species. Finally, many factors 376 

contribute to shaping the geographical distribution of dung beetle species, including 377 

dispersal limitations (Lobo et al. 2006), historical events (Hortal et al. 2011), or the 378 

response to other environmental variables such as precipitation, soil, habitat, or trophic 379 

preferences (Hanski et al. 1991, Hortal et al. 2001, Lobo & Martín-Piera 2002). It is 380 

important to note that we have not quantified the effects of these variables explicitly, so 381 

their inclusion could further weaken the pure effect of temperature.  382 

Regardless of alternative factors, it seems evident that dung beetles have 383 

mechanisms to withstand marked temperature variations, especially those associated with 384 
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diel and seasonal rhythms. Given the nature of our data and analyses, these mechanisms 385 

can be operating either at the population level, at the individual level, or both. At the 386 

population level, a large phenotypic variability linked to a high genetic diversity can 387 

produce the apparently labile thermal responses. As individuals are sorted in time and/or 388 

space according to their environmental adaptations, population(s) formed by individuals 389 

with different thermal preferences would show a certain level of thermal independency. 390 

This mechanism seems more plausible to explain results in the geographical datasets, 391 

where river basins can act as dispersal barriers, limiting gene flow and enhancing local 392 

adaptation to different temperature regimens (Lenormand 2002). However, it seems less 393 

likely that this phenotypic variability alone is responsible for the responses to diel and 394 

seasonal temperature variations, where a high gene flow is expected between the 395 

populations that are active at different elevations or days. Physiologically plastic responses 396 

allowing individuals to be active at different temperatures seem a more plausible 397 

mechanism in this case (Crispo 2008). In any case, these two potential mechanisms 398 

(population phenotypic variability and individual plasticity) are in agreement with the 399 

observed lack of phylogenetic signal on species responses to temperature across scales, 400 

which indeed suggests a lack of thermal niche conservatism (Gilbert & Miles 2019). The 401 

relative contribution of these mechanisms remains elusive, calling for further studies 402 

directed to unravel the detailed mechanisms behind the diverse responses to temperature 403 

we found.  404 

Be that as it may, the effects of temperature were significant and not negligible, 405 

being larger for species distribution than for seasonal activity, and even smaller for diel 406 

activity. The increasing importance towards larger scales may be related to the fact that the 407 

effects of temperature on the studied biological aspects are nested. That is, the occurrence 408 

in a given location would entail that a species holds the adaptations required to maintain a 409 

stable population there, which include physiological and/or behavioural adaptations to cope 410 

with the seasonal temperature variations that occur in that locality. In the same way, a 411 

population with adults active during a given period of the year should present adaptations 412 

to handle the daily temperature variations happening during the days when adults are 413 

active. Hence, the hierarchically cumulative effects of temperature across these biological 414 

scales may explain why temperature becomes more important for geographic distributions 415 

than for temporal activities. Ascertaining the plausibility of this idea requires further 416 

investigation of intraspecific responses to daily temperature variations across seasons and 417 
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seasonal temperature responses throughout different populations placed across the species’ 418 

geographic distribution.  419 

Perhaps the most interesting of our results is the lack of congruence in the realized 420 

thermal niches across the studied biological aspects. This means that, for instance, species 421 

occurring in colder regions do not appear in colder months nor at colder hours of the day 422 

in other regions. This somehow counterintuitive result could be related to the uneven 423 

relevance of the alternative variables for the different biological aspects, which facilitates 424 

the decoupling of the thermal responses. It is likely that the processes involved in adult 425 

movements, life-history cycles, and population maintenance are differently regulated by 426 

temperature, despite of their nested nature. In other words, our results suggest that species 427 

have multidimensional thermal niches, where each critical biological aspect responds to 428 

temperature along a different dimension. Therefore, rather than exerting a universal effect, 429 

temperature plays multiple roles in a species' biology. This lack of congruence, together 430 

with the low independent effects of temperature found, indicates that estimates of thermal 431 

niches will be, in general, inaccurate and context-dependent. This calls from being 432 

particularly cautious when using responses measured at different scales as proxies for 433 

future responses to climate change. Overall, our results show the difficulties in estimating 434 

general thermal niches of species, challenging forecasts of species future dynamics under 435 

climate warming based on unidimensional thermal niches (Gvoždik, 2018).  436 

The partial control of temperature on the activity and distribution of dung beetles 437 

may be both a blessing and a curse regarding the effects of climate warming. On the one 438 

hand, the apparent thermal lability suggests that temperature increases should not strongly 439 

modify neither diel and seasonal activities nor the geographic distribution of dung beetles, 440 

likely preventing mismatches with interacting species and the subsequent food chain 441 

perturbations. This assumption would contradict the results of studies suggesting moderate 442 

or even large effects of climate change on dung beetle distributions (Dortel et al. 2013, 443 

Menéndez et al. 2013, Holley & Andrew 2019). On the other hand, the diel, seasonal, or 444 

geographical adjustments are among the fastest responses to climate warming (Levy et al. 445 

2019, Duchenne et al. 2020). However, our results suggest that the response towards 446 

temperature variations is relatively independent at each spatiotemporal context. This entails 447 

that adjustments to temperature requirements may not be coordinated across key biological 448 

aspects. Hence, adjustments to fulfil the temperature requirements for one biological aspect 449 

may result in detrimental effects on other aspects, thereby reducing individual and 450 

population performance as, e.g., seasonal adjustments may expose individuals to 451 
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inadequate temperatures during diel activity. In the worst-case scenario, the incapacity of 452 

species to adjust their temperature requirements by modifying diel, seasonal, and 453 

geographical patterns at convenience can increase the likelihood of local extinctions when 454 

the individuals are exposed to critical temperatures in their daily or yearly periods of 455 

activity. Paradoxically, the partially weak effects of temperature we found may have 456 

serious consequences for climate warming if temperature regulates important aspects of 457 

species’ biology in divergent ways (Tsai et al. 2020). 458 

Overall, our results show that temperature may be less important than other factors 459 

in determining dung beetle activity and distribution. Further, the incongruences in thermal 460 

niches estimated from the geographic distribution and seasonal and diel activities show the 461 

complex effects of temperature on key species aspects, pointing to a truly multidimensional 462 

nature of thermal niches. Together with the partially weak control of temperature on species 463 

activity and distribution, these incongruences may difficult fast responses to climate 464 

warming, potentially exposing individuals to critical, or at least inadequate, temperatures 465 

and reducing individual and population’s fitness. 466 

 467 
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Table 1. AICc values for the models of each species in each dataset. In all cases, we 

conducted a complete model (Full) including temperature and the corresponding contrast 

variables, a model only including temperature (Temp), a model only including contrast 

variables (Cont), and a null model were no predictor variable was included (Null). 

Contrast variables were minutes from dawn and its quadratic term for the diel data set; 

date sine and cosine and their quadratic terms for the seasonal dataset; and temperature 

availability for the geographic data set. The best models in terms of AICc and the 

equivalent ones (ΔAICc < 2) are highlighted in bold.  

 

 

 

  Diel Seasonal Geographic 

Subfamily Species Full Temp Cont Null Full Temp Cont Null Full Temp Cont Null 

Aphodiinae Acrossus depressus (Kugelann, 1792) 176.53 245.53 187.59 264.43 120.25 126.26 120.67 149.35 172.98 173.17

9 

209.50 209.95 

Aphodiinae Agrilinus constans (Duftschmid, 1805) 140.21 197.94 145.50 214.29 200.92 210.56 206.92 216.62 211.85 218.76 269.52 289.54 

Aphodiinae Aphodius fimetarius (Linnaeus, 1758) 116.91 162.51 121.10 177.61 201.68 199.58 217.13 214.00 380.68 404.55 419.41 455.12 

Aphodiinae Aphodius foetidus (Herbst, 1783) 42.72 56.56 44.51 64.09 138.39 133.18 146.06 144.19 634.53 679.39 753.81 861.04 

Aphodiinae Colobopterus erraticus (Linnaeus, 1758) 128.81 150.10 136.82 164.96 208.49 251.21 217.59 272.82 343.34 366.05 372.06 410.67 

Aphodiinae Esymus pusillus (Herbst, 1789) 175.62 227.70 171.67 241.45 151.68 163.52 217.18 191.76 147.93 153.05 177.47 180.48 

Aphodiinae Melinopterus sphacelatus (Panzer, 1798) 471.34 534.10 493.63 577.91 307.12 322.42 321.94 343.35 289.63 304.26 354.89 390.33 

Aphodiinae Teuchestes fossor (Linnaeus, 1758) 194.71 256.95 208.75 280.58 89.06 98.58 96.18 116.19 258.00 268.42 304.76 318.01 

Aphodiinae Trichonotulus scrofa (Fabricius, 1787) 144.87 185.24 160.35 207.64 204.82 226.12 216.37 261.94 182.51 186.38 221.98 242.86 

Aphodiinae Volinus sticticus (Panzer, 1798) 305.09 342.35 310.59 371.12 116.05 407.35 121.57 122.05 133.88 132.11 167.53 169.92 

Scarabaeinae Euoniticellus fulvus (Goeze, 1777) 39.24 59.86 49.17 67.31 446.74 473.23 454.04 519.71 285.43 306.31 306.07 352.08 

Scarabaeinae Onthophagus fracticornis (Preyssler, 1790) 255.26 325.6 266.11 350.04 188.32 184.52 200.87 201.75 274.14 279.86 317.51 329.60 

Scarabaeinae Onthophagus lemur (Fabricius, 1781) 117.11 153.81 124.15 170.30 200.57 158.52 205.75 174.36 231.64 238.74 290.70 313.01 

Scarabaeinae Onthophagus opacicollis Reitter, 1892 71.03 80.84 76.13 90.69 343.31 355.11 350.70 356.49 207.58 215.60 218.29 251.59 

Scarabaeinae Onthophagus similis (Scriba, 1790) 256.91 342.23 260.48 359.42 612.48 617.79 646.30 658.81 312.48 328.99 363.43 400.08 

Scarabaeinae Onthophagus vacca (Linnaeus, 1767) 248.03 300.37 248.30 318.63 285.06 296.59 299.48 318.99 315.14 337.44 352.21 409.05 
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Table 2. Spearman’s ρ correlation coefficients and P-values between the considered 

thermal niche attributes measured by the three studied datasets are detailed.. DD: Diel 

dataset. SD: Seasonal dataset. GD: Geographical dataset. * Results based on Mantel 

test.  

 

  DD vs SD DD vs GD SD vs GD 

 ρ P ρ P ρ P 

Breadth -0.074 0.788 -0.385 0.141 0.100 0.713 

Optimum -0.262 0.326 -0.179 0.505 0.394 0.132 

Thermal lability -0.261 0.347 -0.339 0.216 0.132 0.625 

Total pseudo R2  0.029 0.914 -0.016 0.953 -0.200 0.456 

Partial pseudo R2 -0.561 0.024 -0.440 0.088 0.053 0.848 

Niche dissimilarity * 0.260 0.056 0.242 0.051 0.120 0.153 
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Table 3. Phylogenetic signal in thermal niches attributes for the three studied datasets 

(i.e., geographical, seasonal and diel). Significant variables are highlighted in bold. * 

Results based on Mantel test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Dataset K P λ P ρ P 

 Geographical 0.480 0.150 0 1 - - 

Breadth  Seasonal 0.285 0.798 0 1 - - 

 Diel 0.998 0.001 1.096 0.002 - - 

 Geographical 0.292 0.811 0.002 0.990 - - 

Optimum Seasonal 0.477 0.188 0.361 0.160 - - 

 Diel 0.292 0.710 0 1 - - 

 Geographical 0.475 0.171 0 1 - - 

Thermal lability Seasonal 0.295 0.900 0 1 - - 

 Diel 0.467 0.228 0.007 0.970 - - 

 Geographical 0.287 0.857 0 1 - - 

Total pseudo R2  Seasonal 0.324 0.710 0 1 - - 

 Diel 0.313 0.726 0 1 - - 

 Geographical 0.367 0.476 0 1 - - 

Partial pseudo R2 Seasonal 0.388 0.398 0 1 - - 

 Diel 0.425 0.350 0 1 - - 

 Geographical - - - - -0.100 0.089 

Niche dissimilarity * Seasonal - - - - 0.200 0.980 

 Diel - - - - -0.080 0.139 
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Figure 1. a) The areas of study for the geographical, seasonal and diel datasets (from left 

to right). Red squares show the position of the following down-scaled study site. b) 

Temperature variations in study sites. Lines correspond with predictions of general 

additive models (GAM) of: (i) temperature availability (measured as the number of 10 

km2 grid cells whose temperature fell within predefined temperature bins) as function of 

temperature for the geographic dataset (left); (ii) temperature as a function of days from 

New Year and minutes form dawn for the seasonal and diel datasets respectively. 

Analyses were computed independently for each basin, for each elevational site and for 

each day. GAMs explained an average of 0.90 of deviance across all analyses (median = 

0.92, ranging from 0.79 to 0.97).  
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Figure 2. Thermal niche attributes and overlap measure. x and y represent thermal 

response curves of two species or of a single species in two different study units (i.e., 

days, elevation or river basins). From this curve we obtained the optimum temperature 

and the niche amplitude. Further, we used the overlap between them (a) and the two 

independent areas (b and c) to calculate the Simpson’s dissimilarity index, as a measure 

of the congruence between the responses to temperature of the same species at different 

scales, and of different species within the same scale.  
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Figure 3. Partial regression results. The deviance explained by temperature alone, the 

contrast variables alone, and the overlap between them is shown. The contrast variables 

were minutes from dawn and its quadratic term for the diel data set (a); date sine and 

cosine and their quadratic terms for the seasonal data set (b), and temperature availability 

for the geographic data set (c).  
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Supporting information 

Appendix S1. Extended data origin 

We use data on 16 Iberian dung beetle species of the family Scarabaeidae (ten from 

Aphodiinae and six from Scarabaeinae subfamilies). These species were selected because 

they occurred in at least 10% of the samples of the three datasets considered (see below). 

All considered species (Table 1) are of small body size, with body weights far smaller 

than 1.9 g (0.2 g at most), the threshold from which endothermy is thought to appear in 

this group of beetles (Verdú et al. 2006). Temperature–distribution associations for all 

these species were examined along: (i) five geographical areas of similar extent but 

different temperature regimes within the Iberian Peninsula (geographical dataset or GD); 

(ii) six sites placed across a steep elevational range in Central Iberia, and sampled during 

the same dates but differing in their environmental temperatures (seasonal dataset or SD); 

and (iii) three consecutive days with similar daily variations but different weather 

conditions in a single locality near the centre of the same elevational range (diel dataset 

or DD). 

 

Geographical Dataset. The GD is divided in five study areas, corresponding to the major 

river basins of the Iberian Peninsula (Ebro, Duero, Tajo, Guadiana and Guadalquivir; 

limits extracted from HydroBASINS data available at www.hydrosheds.org, Lehner & 

Grill 2013, Fig. 1a). These natural areas were used since their borders correspond with 

marked geographical accidents, which are expected to act as dispersal barriers. 

Furthermore, they are relatively similar in extent (areas ranging from 5.6 x 104 to 9.7 x 

104 km2) and almost follow a latitudinal gradient, showing contrasting environmental 

temperatures (Fig. 1b). In each of these basins, we collected all georeferenced occurrences 

of the selected species from GBIF (www.gbif.org, accessed May 2020) and additional 

published sources (Hortal & Lobo 2011). As this kind of data is biased due to historically 

uneven sampling effort (Lobo et al. 2018), the occurrences were pooled within UTM grid 

cells of 10 x 10 km spatial resolution. This grain was selected because it corresponds to 

the effective resolution of most of the occurrence information in the dataset, and it is 

appropriate to avoid the effects of oversampled localities while retaining a reasonable 

climatic detail. The frequency of each species' occurrence data in temperature bins of 1ºC 

(ranging from -3 to 20ºC, n=24) was calculated for each river basin (24 x 5 = 120), and 

these figures were used as dependent variables in the subsequent regression analyses. 

 

http://www.hydrosheds.org/
http://www.gbif.org/
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Seasonal dataset. Six sites along an elevational gradient located in the Sierra de 

Guadarrama (Central Spain) (Fig. 1a, Espinoza 2016) were used to explore the effect of 

temperature variations in SD. Elevations range from 755 to 1900 m a.s.l., separating sites 

approximately 200 m a.s.l.. Each survey site was sampled approximately every three 

weeks, totalling fourteen times from May 2012 to June 2013. We choose this elevation 

gradient because these sites show considerable variations in temperature during the whole 

period of the surveys (Fig. 1b). The sampling protocol in each periodical sample consisted 

of five pitfall-traps baited with fresh cattle dung and separated around 30 m from each 

other. Traps were placed in open habitats to avoid potential habitat and shadow effects 

and were active during 48 h. The individuals of these traps were pooled together, 

obtaining an estimation of each species' abundance per elevation site and date (6 x 14 = 

84), which were used as response variables in subsequent statistical analyses. 

  

Diel Dataset. Temperature effects on diel activity were assessed using dung beetle data 

from a grassland located next to El Ventorrillo MNCN field station, placed in the Sierra 

de Guadarrama at an approximate elevation of 1500 m a.s.l. (Fig. 1a). This locality was 

chosen as it shows a high diversity of dung beetles (between 30 and 40 species belonging 

to the considered subfamilies; Cuesta & Lobo 2019). We sampled three consecutive days 

(April 28th–30th 2015) that showed contrasting temperatures, with around 8 ºC of 

difference between the mean temperatures of the coldest and the hottest days (Fig. 1b). 

Each day, ten pitfall traps baited with fresh cattle dung were distributed around a 

circumference of approximately 50 m. of radius (i.e., traps were at least 30 m apart from 

each other). Since we intended to measure the flight activity during short periods, the bait 

was introduced into a nylon stocking piece to avoid the stagnancy of beetle individuals 

within the dung bait along different sampling events. We checked all traps every 30 min. 

from dawn to dusk (approximately from 7:30 am to 7:00 pm, n=23), collecting all 

individuals to subsequently identify them in the laboratory. Traps were also checked 

during the night to discard nocturnal activity. Individuals from the ten traps were pooled 

together, obtaining an estimation of the abundance of active individuals from each species 

each 30 min (23 x 3 = 69), which were further used as dependent variables. 

 

Temperature measures and alternative correlates 

Temperature measures were obtained from different standardized methods for each one 

of the different spatio-temporal scales considered, but trying to maintain a considerable 
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degree of congruence among them. For the Geographical Dataset, we obtained mean 

annual temperatures at a 30 sec resolution from the WorldClim database (see 

www.worldclim.org, Hijmans et al. 2005). We preferred mean annual temperatures over 

monthly average figures since the precise seasonal activity over the complete study area 

was unknown for most of the species. Nevertheless, spring and autumn temperatures (the 

seasons when phenological peaks occur for most species) were positively correlated with 

mean annual temperatures (Pearson’s r = 0.99 and 0.97, respectively), so we assume that 

mean annual temperature is a reasonable proxy for both of them.  

For the Seasonal Dataset, we set up a temperature data logger in each of the 

elevational points during the whole period of the study. This device was placed in the 

shadow at one meter from the ground to escape from extreme temperatures due to 

insolation, mimicking the meteorological stations on which WorldClim data are based on. 

Temperature was recorded each 10 min. and we used the mean daily temperature when 

pitfall-traps were active.  

In the case of the Diel Dataset, temperature measurements were taken using five 

data loggers placed in the study site just in the centre of the circumference formed by the 

traps. Data loggers were placed to recover temperature measurements from the different 

microclimatic conditions available for dung beetles: two at one meter over the ground, in 

the sun and shadow; another two directly on the ground, also both in the sun and shadow; 

and one buried at 10 cm depth. Preliminary results showed that the mean temperatures 

from the data logger placed on the ground in the sun were those that best correlated with 

the species' diel activity, so we used these measurements in subsequent analyses. 

Temperature was recorded each minute, and average temperatures during the 30 min 

before traps were checked were used as predictors. 

As previously stated, the effects of temperature measurements might be 

overestimated due to its collinearity with other factors with which it shares spatial (in the 

case of GD) or temporal structure (in the case of SD and DD). We quantified this potential 

overestimation effect by using different “contrast variables”, alternative predictors which 

are often partly correlated with temperature but are either measures or proxies of other 

potential causal factors for dung beetle spatial and temporal responses. These alternative 

predictors were temperature availability and survey effort in the case of GD, day of the 

year for SD, and hour of the day in the case of DD. The effect of temperature on the 

frequency of occurrence (GD) or abundance (SD and DD) that is independent of these 

contrast variables was assessed as the “pure” effect of temperature variations that is 

http://www.worldclim.org/
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independent of the range of temperatures available (GD), the period of the year (SD), and 

the hour of the day (DD) (see analytical methods below).  

Temperature availability for each basin is the relative frequency of 10 x 10 km 

UTM cells in each 1ºC temperature bin. This variable aims to represent the thermal 

spectrum available in each basin. Hence, a high explanatory capacity of this variable on 

the frequency of occurrence of a species would imply that the apparent thermal preference 

of this species can be simply because its spatial pattern of occurrence mimics the 

distribution of temperatures in the analyzed basin. Further, the typical correlation between 

the observed pattern of occurrence of a species and the spatial distribution of survey effort 

can also generate spurious correlations between species' frequency and temperature in 

each basin. This potential source of error was considered here by calculating the relative 

frequency for each 1ºC temperature bin of all dung beetle records included in the formerly 

mentioned databases and pooled within the 10 x 10 km UTM cells. Nevertheless, we 

found that this estimation of survey effort and temperature availability were highly and 

positively correlated in all basins (Pearson’s r ranging from 0.97 to 0.99), since the most 

frequent temperatures have been also surveyed more often, which implies that the surveys 

are randomly allocated within the available temperatures. Consequently, we discarded 

using survey bias as contrast variable, considering that the effect of temperature 

availability also includes differences in survey effort. In the case of SD data, the day of 

the year was obtained by first ordering the available dates from the day corresponding to 

the summer solstice (June 21th = 0 or 360), to subsequently convert these figures into 

radians and obtaining two circular variables by calculating their cosine and sine values. 

Thus, the summer-winter oscillation is represented by the cosine of the date and oscillates 

from 1 to -1, whereas the spring-autumn transition is represented by the sine of the date 

scale 1 to -1. Finally, the hour of the day (DD data) is simply codified as the number of 

minutes from dawn.  

  

Appendix S2. Extended phylogenetic reconstruction 

Genomic DNA was extracted from each individual using the BIOSPRINT 15 DNA Kit 

(Qiagen), following standard manufacturer’s protocols for blood, and resuspended in 100 

μl of buffer AE.  We used COI Sca F, COI Sca R, COII am Sca and COII B 605 Sea 

(Villalba et al. 2002) and the universal 28S a y 28S 5b primers to amplify fragments of 

the mitochondrial cytochrome oxidase I (COI), the cytochrome oxidase II (COII) and the 

28S genes. Amplifications for all gene fragments were performed in a 50 μl reaction 
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containing 39.7 μl of H2O, 5 μl of 10x PCR buffer, 1 μl of dNTP mix (10 mM), 0.5 μl of 

each primer (10 μM), 0.3 μl of AmpliTaq® DNA polymerase (Applied Biosystems) and 

3 μl of DNA template. Thermocycling conditions consisted of an initial denaturing step 

at 94 °C for 4 min, followed by two cycles: (i) a precycle of 5 amplification cycles of 94 

°C for 45 sec, 40 °C for 1 min and 72 °C for 1 min, and (ii) a cycle of 35 amplification 

cycles of 94 °C for 45 sec, 44 °C for 1 min and 72 °C for 1 min, followed by a final 

elongation step at 72 °C for 10 min and a rapid thermal ramp down to 4 °C. For all 

reactions, the presence of amplicons of the expected sizes was checked by electrophoresis 

on a 0.8 % agarose gel. PCR products were purified with the ethanol-precipitation method 

(Sambrook et al., 1989). Sequencing was performed by Secugen S.L. (Madrid, Spain), 

using BigDye® and the automated ABI PRISM 3730xl DNA Analyzer. Sequence 

chromatograms were read and contigs assembled using Sequencher version 4.7 (Gene 

Codes Corporation, Ann Arbor, MI). All new sequences were deposited in GenBank (see 

accession numbers in Table S1).  

 

Sequences were aligned in CLUSTALW and MUSCLE, followed by visual 

inspection using BioEdit (Hall, 1999). Prior to phylogenetic analysis, jModeltest 2.1.1 

(Darriba et al., 2012) was used to choose the best-fit model of nucleotide substitution for 

each of the four genes, and for combined matrices under the corrected Akaike information 

criterion (AICc). For the COI and COII, HKY was obtained, while Jukes Cantor for 28S. 

Phylogenetic analyses were performed in a Bayesian framework using BEAST v 2.4 

(Drummond and Rambaut, 2007). We established 3 calibrations points based on Ahrens 

et. al (2014), setting uniform priors with lower and upper boundaries. The calibrations 

represent the basal split of the following taxa: Aphodiinae (58.7 – 55.8 Million years ago), 

Aphodius (37.2 – 33.9 Mya) and Scarabaeinae (92 – 83.5 Mya). For the age of the rest of 

the nodes, we set a LogNormal relaxed molecular clock for each gene and let the software 

estimate the rate from the priors. The MCMC chain ran for 100.000.000 steps, sampled 

every 10.000 steps. Posterior distribution of all the parameters were checked using Tracer, 

as well as all ESS values being above 200. We built the tree using Tree Annotator, using 

the Maximum Clade Credibility implemented method after discarding the first 25% 

samples as a burn-in. 
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Species 28 COI COII 

Aphodius constans  - AY039372 AY039372 

Aphodius depressus ABXXXX ABXXXX ABXXXX 

Aphodius erraticus ABXXXX ABXXXX ABXXXX 

Aphodius fimetarius ABXXXX ABXXXX ABXXXX 

Aphodius foetidus - ABXXXX ABXXXX 

Aphodius fossor ABXXXX ABXXXX ABXXXX 

Aphodius pusillus ABXXXX ABXXXX ABXXXX 

Aphodius scrofa ABXXXX ABXXXX ABXXXX 

Aphodius sphacelatus ABXXXX ABXXXX ABXXXX 

Aphodius sticticus - ABXXXX - 

Euoniticellus fulvus ABXXXX ABXXXX ABXXXX 

Geotrupes stercorarius (OUT) KP419463 AY039377 AY039377 

Onthophagus fracticornis ABXXXX - - 

Onthophagus grossepunctatus ABXXXX AY039347 AY039347 

Onthophagus lemur ABXXXX AY039353 AY039353 

Onthophagus opacicollis - ABXXXX ABXXXX 

Onthophagus ovatus ABXXXX AY039351 AY039351 

Onthophagus similis ABXXXX ABXXXX ABXXXX 

Ontophagus vacca ABXXXX AY039359 AY039359 

Taurocerastes patagonicus (OUT) KP419662 GU984611 GU984611 

  

Table S1. GenBank accession numbers of the used sequences. Outgroup species are 

indicated.  
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Fig. S1. Bayesian phylogenetic hypothesis for the studied species. Posterior probabilities 

are provided. Blue bars represent the 95% credible interval around node ages.   
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