References
Baumann, M. J., Murphy, L., Lei, N., Krogh, K. B., Borch, K., & Westh,
P. (2011). Advantages of isothermal titration calorimetry for xylanase
kinetics in comparison to chemical-reducing-end assays. Anal
Biochem, 410 (1), 19-26. doi:10.1016/j.ab.2010.11.001
Biely, P., Singh, S., & Puchart, V. (2016). Towards enzymatic breakdown
of complex plant xylan structures: State of the art. Biotechnol
Adv, 34 (7), 1260-1274. doi:10.1016/j.biotechadv.2016.09.001
Broeker, J., Mechelke, M., Baudrexl, M., Mennerich, D., Hornburg, D.,
Mann, M., . . . Zverlov, V. V. (2018). The hemicellulose-degrading
enzyme system of the thermophilic bacterium Clostridium stercorarium:
comparative characterisation and addition of new hemicellulolytic
glycoside hydrolases. Biotechnol Biofuels, 11 , 229.
doi:10.1186/s13068-018-1228-3
Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap,
P. L., & Srivastava, A. K. (2016). Bacterial xylanases: biology to
biotechnology. 3 Biotech, 6 (2), 150.
doi:10.1007/s13205-016-0457-z
Chu, Y., Tu, T., Penttinen, L., Xue, X., Wang, X., Yi, Z., . . . Su, X.
(2017). Insights into the roles of non-catalytic residues in the active
site of a GH10 xylanase with activity on cellulose. J Biol Chem,
292 (47), 19315-19327. doi:10.1074/jbc.M117.807768
Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase
families and extremophilic xylanases. FEMS Microbiology Reviews,
29 (1), 3-23. doi:10.1016/j.femsre.2004.06.005
Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck,
F., . . . Derewenda, Z. S. (1994). Crystal structure, at 2.6-A
resolution, of the Streptomyces lividans xylanase A, a member of the F
family of beta-1,4-D-glycanases. J Biol Chem, 269 (33),
20811-20814.
Dhiman, S. S., Garg, G., Sharma, J., Kalia, V. C., Kang, Y. C., & Lee,
J. K. (2014). Reduction in acute ecotoxicity of paper mill effluent by
sequential application of xylanase and laccase. PLoS One, 9 (7),
e102581. doi:10.1371/journal.pone.0102581
Dodd, D., & Cann, I. K. (2009). Enzymatic deconstruction of xylan for
biofuel production. Glob Change Biol Bioenergy, 1 (1), 2-17.
doi:10.1111/j.1757-1707.2009.01004.x
Dornez, E., Verjans, P., Arnaut, F., Delcour, J. A., & Courtin, C. M.
(2011). Use of psychrophilic xylanases provides insight into the
xylanase functionality in bread making. J Agric Food Chem,
59 (17), 9553-9562. doi:10.1021/jf201752g
Ducros, V., Charnock, S. J., Derewenda, U., Derewenda, Z. S., Dauter,
Z., Dupont, C., . . . Davies, G. J. (2000a). Substrate specificity in
glycoside hydrolase family 10. Structural and kinetic analysis of the
Streptomyces lividans xylanase 10A. J Biol Chem, 275 (30),
23020-23026. doi:10.1074/jbc.275.30.23020
Ducros, V., Charnock, S. J., Derewenda, U., Derewenda, Z. S., Dauter,
Z., Dupont, C., . . . Davies, G. J. (2000b). Substrate specificity in
glycoside hydrolase family 10. Structural and kinetic analysis of the
Streptomyces lividans xylanase 10A. J Biol Chem, 275 (30),
23020-23026. doi:10.1074/jbc.275.30.23020
Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features
and development of Coot. Acta Crystallogr D Biol Crystallogr,
66 (Pt 4), 486-501. doi:10.1107/S0907444910007493
Fredriksen, L., Stokke, R., Jensen, M. S., Westereng, B., Jameson, J.
K., Steen, I. H., & Eijsink, V. G. H. (2019). Discovery of a
Thermostable GH10 Xylanase with Broad Substrate Specificity from the
Arctic Mid-Ocean Ridge Vent System. Appl Environ Microbiol,
85 (6), e02970-02918. doi:10.1128/aem.02970-18
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J.
J., Mainz,, D. T., R., . . . Perry, J. K., Shaw, D. E., Francis, P., &
Shenkin, P. S. . (2004). Glide: a new approach for rapid, accurate
docking and scoring. 1. Method and assessment of docking accuracy.Journal of medicinal chemistry, 47 (7), 1739-1749.
doi:10.1021/jm0306430
Gloster, T. M., Williams, S. J., Roberts, S., Tarling, C. A., Wicki, J.,
Withers, S. G., & Davies, G. J. (2004). Atomic resolution analyses of
the binding of xylobiose-derived deoxynojirimycin and isofagomine to
xylanase Xyn10A. Chem Commun (Camb) (16), 1794-1795.
doi:10.1039/b405152a
Han, X., Gao, J., Shang, N., Huang, C. H., Ko, T. P., Chen, C. C., . . .
Ma, Y. (2013). Structural and functional analyses of catalytic domain of
GH10 xylanase from Thermoanaerobacterium saccharolyticum JW/SL-YS485.Proteins, 81 (7), 1256-1265. doi:10.1002/prot.24286
Ihsanawati, Kumasaka, T., Kaneko, T., Morokuma, C., Yatsunami, R., Sato,
T., . . . Tanaka, N. (2005). Structural basis of the substrate subsite
and the highly thermal stability of xylanase 10B from Thermotoga
maritima MSB8. Proteins, 61 (4), 999-1009. doi:10.1002/prot.20700
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a
sustainable platform for the production of bio-based chemicals and
polymers. Polymer Chemistry, 6 (25), 4497-4559.
doi:10.1039/c5py00263j
Ito, T., Sato, A., Takahashi, I., Ito, T., Takano, K., Noge, K., . . .
Hashizume, K. (2019). Identification of enzymes from genus Trichoderma
that can accelerate formation of ferulic acid and ethyl ferulate in
collaboration with rice koji enzyme in sake mash. Journal of
Bioscience and Bioengineering, 128 (2), 177-182.
doi:10.1016/j.jbiosc.2019.01.014
Keegstra, K. (2010). Plant cell walls. Plant Physiol, 154 (2),
483-486. doi:10.1104/pp.110.161240
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M.
J. (2015). The Phyre2 web portal for protein modeling, prediction and
analysis. Nat Protoc, 10 (6), 845-858. doi:10.1038/nprot.2015.053
Kumar, V., Marin-Navarro, J., & Shukla, P. (2016). Thermostable
microbial xylanases for pulp and paper industries: trends, applications
and further perspectives. World J Microbiol Biotechnol, 32 (2),
34. doi:10.1007/s11274-015-2005-0
Laemmli, U. K. (1970). Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature, 227 (5259),
680-685. doi:10.1038/227680a0
Li, R., Tian, J. Z., Wang, M. R., Zhu, L. N., & Sun, J. S. (2017).
EsGLUT4 and CHHBP are involved in the regulation of glucose homeostasis
in the crustacean Eriocheir sinensis. Biol Open, 6 (9), 1279-1289.
doi:10.1242/bio.027532
Lisov, A. V., Belova, O. V., Lisova, Z. A., Vinokurova, N. G., Nagel, A.
S., Andreeva-Kovalevskaya, Z. I., . . . Leontievsky, A. A. (2017).
Xylanases of Cellulomonas flavigena: expression, biochemical
characterization, and biotechnological potential. AMB Express,
7 (1), 5. doi:10.1186/s13568-016-0308-7
Liu, J., Zhang, C., & Xu, D. (2012). QM/MM study of catalytic mechanism
of Xylanase Cex from Cellulomonas fimi. J Mol Graph Model, 37 ,
67-76. doi:10.1016/j.jmgm.2012.04.005
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., &
Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in
2013. Nucleic Acids Res, 42 (Database issue), D490-D495.
doi:10.1093/nar/gkt1178
Long, L., Tian, D., Zhai, R., Li, X., Zhang, Y., Hu, J., . . . Saddler,
J. (2018). Thermostable xylanase-aided two-stage hydrolysis approach
enhances sugar release of pretreated lignocellulosic biomass.Bioresour Technol, 257 , 334-338.
doi:10.1016/j.biortech.2018.02.104
Mahanta, P., Bhardwaj, A., Kumar, K., Reddy, V. S., & Ramakumar, S.
(2015). Structural insights into N-terminal to C-terminal interactions
and implications for thermostability of a (β/α)8-triosephosphate
isomerase barrel enzyme. Febs j, 282 (18), 3543-3555.
doi:10.1111/febs.13355
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D.,
Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software.J Appl Crystallogr, 40 (Pt 4), 658-674.
doi:10.1107/S0021889807021206
Niesen, F. H., Berglund, H., & Vedadi, M. (2007). The use of
differential scanning fluorimetry to detect ligand interactions that
promote protein stability. Nat Protoc, 2 (9), 2212-2221.
doi:10.1038/nprot.2007.321
Otwinowski, Z., & Minor, W. (1997). Processing of X-ray diffraction
data collected in oscillation mode. Methods in enzymology, 276 ,
307–326.
Petersen, R. L. (2017). Strategies Using Bio-Layer Interferometry
Biosensor Technology for Vaccine Research and Development.Biosensors (Basel), 7 (4). doi:10.3390/bios7040049
Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W.
(2013). Protein and ligand preparation: parameters, protocols, and
influence on virtual screening enrichments. Journal of
computer-aided molecular design, 27 (3), 221-234.
doi:10.1007/s10822-013-9644-8)
Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An
overview of second generation biofuel technologies. Bioresour
Technol, 101 (6), 1570-1580. doi:10.1016/j.biortech.2009.11.046
Song, L., Tsang, A., & Sylvestre, M. (2015). Engineering a thermostable
fungal GH10 xylanase, importance of N-terminal amino acids.Biotechnol Bioeng, 112 (6), 1081-1091. doi:10.1002/bit.25533
V Ducros, S J Charnock, U Derewenda, Z S Derewenda, Z Dauter, C Dupont,
. . . Davies., G. J. (2000). Substrate Specificity in Glycoside
Hydrolase Family 10. Structural and Kinetic Analysis of the Streptomyces
Lividans Xylanase 10A. Journal of Biological Chemistry, 275 (30),
23020-23026. doi:10.1074/jbc.275.30.23020
Victor, D. G., & Leape, J. P. (2015). Global climate agreement: After
the talks. Nature, 527 (7579), 439-441. doi:10.1038/527439a
Wang, K., Cao, R., Wang, M., Lin, Q., Zhan, R., Xu, H., & Wang, S.
(2019). A novel thermostable GH10 xylanase with activities on a wide
variety of cellulosic substrates from a xylanolytic Bacillus strain
exhibiting significant synergy with commercial Celluclast 1.5 L in
pretreated corn stover hydrolysis. Biotechnol Biofuels, 12 , 48.
doi:10.1186/s13068-019-1389-8
Withers, S., Dombroski, D., Berven, L., Kilburn, D., Miller, R., Warren,
R., & Gilkes, N. (1986). Direct 1H N.M.R. determination of the
stereochemical course of hydrolyses catalysed by glucanase components of
the cellulase complex. Biochemical and biophysical research
communications, 139 , 487-494. doi:10.1016/S0006-291X(86)80017-1
Xiaoyun Su, Yejun Han, Dylan Dodd, Young Hwan Moon, Shosuke Yoshida,
Roderick I Mackie, & Cann, I. K. O. ( 2013). Reconstitution of a
Thermostable Xylan-Degrading Enzyme Mixture from the Bacterium
Caldicellulosiruptor bescii. Appl Environ Microbiol, 79 (5),
1481-1490. doi:10.1128/AEM.03265-12
You, S., Xie, C., Ma, R., Huang, H. Q., Herman, R. A., Su, X. Y., . . .
Luo, H. Y. (2019). Improvement in catalytic activity and thermostability
of a GH10 xylanase and its synergistic degradation of biomass with
cellulase. Biotechnol Biofuels, 12 , 278.
doi:10.1186/s13068-019-1620-7
Zhang, Y., An, J., Yang, G., Zhang, X., Xie, Y., Chen, L., & Feng, Y.
(2016). Structure features of GH10 xylanase from Caldicellulosiruptor
bescii: implication for its thermophilic adaption and substrate binding
preference. Acta Biochim Biophys Sin (Shanghai), 48 (10), 948-957.
doi:10.1093/abbs/gmw086
Zheng, F., Huang, J., Liu, X., Hu, H., Long, L., Chen, K., & Ding, S.
(2016). N- and C-terminal truncations of a GH10 xylanase significantly
increase its activity and thermostability but decrease its SDS
resistance. Appl Microbiol Biotechnol, 100 (8), 3555-3565.
doi:10.1007/s00253-015-7176-y
Zhou, J., Wu, Q., Zhang, R., Mo, M., Tang, X., Li, J., . . . Huang, Z.
(2014a). A thermo-halo-tolerant and proteinase-resistant endoxylanase
from Bacillus sp. HJ14. Folia Microbiol (Praha), 59 (5), 423-431.
doi:10.1007/s12223-014-0316-4
Zhou, J., Wu, Q., Zhang, R., Mo, M., Tang, X., Li, J., . . . Huang, Z.
(2014b). A thermo-halo-tolerant and proteinase-resistant endoxylanase
from Bacillus sp. HJ14. Folia Microbiol (Praha), 59 (5), 423-431.
doi:10.1007/s12223-014-0316-4