References
Baumann, M. J., Murphy, L., Lei, N., Krogh, K. B., Borch, K., & Westh, P. (2011). Advantages of isothermal titration calorimetry for xylanase kinetics in comparison to chemical-reducing-end assays. Anal Biochem, 410 (1), 19-26. doi:10.1016/j.ab.2010.11.001
Biely, P., Singh, S., & Puchart, V. (2016). Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv, 34 (7), 1260-1274. doi:10.1016/j.biotechadv.2016.09.001
Broeker, J., Mechelke, M., Baudrexl, M., Mennerich, D., Hornburg, D., Mann, M., . . . Zverlov, V. V. (2018). The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. Biotechnol Biofuels, 11 , 229. doi:10.1186/s13068-018-1228-3
Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P. L., & Srivastava, A. K. (2016). Bacterial xylanases: biology to biotechnology. 3 Biotech, 6 (2), 150. doi:10.1007/s13205-016-0457-z
Chu, Y., Tu, T., Penttinen, L., Xue, X., Wang, X., Yi, Z., . . . Su, X. (2017). Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. J Biol Chem, 292 (47), 19315-19327. doi:10.1074/jbc.M117.807768
Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29 (1), 3-23. doi:10.1016/j.femsre.2004.06.005
Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., . . . Derewenda, Z. S. (1994). Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J Biol Chem, 269 (33), 20811-20814.
Dhiman, S. S., Garg, G., Sharma, J., Kalia, V. C., Kang, Y. C., & Lee, J. K. (2014). Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase. PLoS One, 9 (7), e102581. doi:10.1371/journal.pone.0102581
Dodd, D., & Cann, I. K. (2009). Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy, 1 (1), 2-17. doi:10.1111/j.1757-1707.2009.01004.x
Dornez, E., Verjans, P., Arnaut, F., Delcour, J. A., & Courtin, C. M. (2011). Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agric Food Chem, 59 (17), 9553-9562. doi:10.1021/jf201752g
Ducros, V., Charnock, S. J., Derewenda, U., Derewenda, Z. S., Dauter, Z., Dupont, C., . . . Davies, G. J. (2000a). Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J Biol Chem, 275 (30), 23020-23026. doi:10.1074/jbc.275.30.23020
Ducros, V., Charnock, S. J., Derewenda, U., Derewenda, Z. S., Dauter, Z., Dupont, C., . . . Davies, G. J. (2000b). Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J Biol Chem, 275 (30), 23020-23026. doi:10.1074/jbc.275.30.23020
Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 66 (Pt 4), 486-501. doi:10.1107/S0907444910007493
Fredriksen, L., Stokke, R., Jensen, M. S., Westereng, B., Jameson, J. K., Steen, I. H., & Eijsink, V. G. H. (2019). Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Appl Environ Microbiol, 85 (6), e02970-02918. doi:10.1128/aem.02970-18
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz,, D. T., R., . . . Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. . (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.Journal of medicinal chemistry, 47 (7), 1739-1749. doi:10.1021/jm0306430
Gloster, T. M., Williams, S. J., Roberts, S., Tarling, C. A., Wicki, J., Withers, S. G., & Davies, G. J. (2004). Atomic resolution analyses of the binding of xylobiose-derived deoxynojirimycin and isofagomine to xylanase Xyn10A. Chem Commun (Camb) (16), 1794-1795. doi:10.1039/b405152a
Han, X., Gao, J., Shang, N., Huang, C. H., Ko, T. P., Chen, C. C., . . . Ma, Y. (2013). Structural and functional analyses of catalytic domain of GH10 xylanase from Thermoanaerobacterium saccharolyticum JW/SL-YS485.Proteins, 81 (7), 1256-1265. doi:10.1002/prot.24286
Ihsanawati, Kumasaka, T., Kaneko, T., Morokuma, C., Yatsunami, R., Sato, T., . . . Tanaka, N. (2005). Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins, 61 (4), 999-1009. doi:10.1002/prot.20700
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6 (25), 4497-4559. doi:10.1039/c5py00263j
Ito, T., Sato, A., Takahashi, I., Ito, T., Takano, K., Noge, K., . . . Hashizume, K. (2019). Identification of enzymes from genus Trichoderma that can accelerate formation of ferulic acid and ethyl ferulate in collaboration with rice koji enzyme in sake mash. Journal of Bioscience and Bioengineering, 128 (2), 177-182. doi:10.1016/j.jbiosc.2019.01.014
Keegstra, K. (2010). Plant cell walls. Plant Physiol, 154 (2), 483-486. doi:10.1104/pp.110.161240
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc, 10 (6), 845-858. doi:10.1038/nprot.2015.053
Kumar, V., Marin-Navarro, J., & Shukla, P. (2016). Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol, 32 (2), 34. doi:10.1007/s11274-015-2005-0
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680-685. doi:10.1038/227680a0
Li, R., Tian, J. Z., Wang, M. R., Zhu, L. N., & Sun, J. S. (2017). EsGLUT4 and CHHBP are involved in the regulation of glucose homeostasis in the crustacean Eriocheir sinensis. Biol Open, 6 (9), 1279-1289. doi:10.1242/bio.027532
Lisov, A. V., Belova, O. V., Lisova, Z. A., Vinokurova, N. G., Nagel, A. S., Andreeva-Kovalevskaya, Z. I., . . . Leontievsky, A. A. (2017). Xylanases of Cellulomonas flavigena: expression, biochemical characterization, and biotechnological potential. AMB Express, 7 (1), 5. doi:10.1186/s13568-016-0308-7
Liu, J., Zhang, C., & Xu, D. (2012). QM/MM study of catalytic mechanism of Xylanase Cex from Cellulomonas fimi. J Mol Graph Model, 37 , 67-76. doi:10.1016/j.jmgm.2012.04.005
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res, 42 (Database issue), D490-D495. doi:10.1093/nar/gkt1178
Long, L., Tian, D., Zhai, R., Li, X., Zhang, Y., Hu, J., . . . Saddler, J. (2018). Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass.Bioresour Technol, 257 , 334-338. doi:10.1016/j.biortech.2018.02.104
Mahanta, P., Bhardwaj, A., Kumar, K., Reddy, V. S., & Ramakumar, S. (2015). Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme. Febs j, 282 (18), 3543-3555. doi:10.1111/febs.13355
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software.J Appl Crystallogr, 40 (Pt 4), 658-674. doi:10.1107/S0021889807021206
Niesen, F. H., Berglund, H., & Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc, 2 (9), 2212-2221. doi:10.1038/nprot.2007.321
Otwinowski, Z., & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology, 276 , 307–326.
Petersen, R. L. (2017). Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development.Biosensors (Basel), 7 (4). doi:10.3390/bios7040049
Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of computer-aided molecular design, 27 (3), 221-234. doi:10.1007/s10822-013-9644-8)
Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresour Technol, 101 (6), 1570-1580. doi:10.1016/j.biortech.2009.11.046
Song, L., Tsang, A., & Sylvestre, M. (2015). Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.Biotechnol Bioeng, 112 (6), 1081-1091. doi:10.1002/bit.25533
V Ducros, S J Charnock, U Derewenda, Z S Derewenda, Z Dauter, C Dupont, . . . Davies., G. J. (2000). Substrate Specificity in Glycoside Hydrolase Family 10. Structural and Kinetic Analysis of the Streptomyces Lividans Xylanase 10A. Journal of Biological Chemistry, 275 (30), 23020-23026. doi:10.1074/jbc.275.30.23020
Victor, D. G., & Leape, J. P. (2015). Global climate agreement: After the talks. Nature, 527 (7579), 439-441. doi:10.1038/527439a
Wang, K., Cao, R., Wang, M., Lin, Q., Zhan, R., Xu, H., & Wang, S. (2019). A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pretreated corn stover hydrolysis. Biotechnol Biofuels, 12 , 48. doi:10.1186/s13068-019-1389-8
Withers, S., Dombroski, D., Berven, L., Kilburn, D., Miller, R., Warren, R., & Gilkes, N. (1986). Direct 1H N.M.R. determination of the stereochemical course of hydrolyses catalysed by glucanase components of the cellulase complex. Biochemical and biophysical research communications, 139 , 487-494. doi:10.1016/S0006-291X(86)80017-1
Xiaoyun Su, Yejun Han, Dylan Dodd, Young Hwan Moon, Shosuke Yoshida, Roderick I Mackie, & Cann, I. K. O. ( 2013). Reconstitution of a Thermostable Xylan-Degrading Enzyme Mixture from the Bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol, 79 (5), 1481-1490. doi:10.1128/AEM.03265-12
You, S., Xie, C., Ma, R., Huang, H. Q., Herman, R. A., Su, X. Y., . . . Luo, H. Y. (2019). Improvement in catalytic activity and thermostability of a GH10 xylanase and its synergistic degradation of biomass with cellulase. Biotechnol Biofuels, 12 , 278. doi:10.1186/s13068-019-1620-7
Zhang, Y., An, J., Yang, G., Zhang, X., Xie, Y., Chen, L., & Feng, Y. (2016). Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Acta Biochim Biophys Sin (Shanghai), 48 (10), 948-957. doi:10.1093/abbs/gmw086
Zheng, F., Huang, J., Liu, X., Hu, H., Long, L., Chen, K., & Ding, S. (2016). N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance. Appl Microbiol Biotechnol, 100 (8), 3555-3565. doi:10.1007/s00253-015-7176-y
Zhou, J., Wu, Q., Zhang, R., Mo, M., Tang, X., Li, J., . . . Huang, Z. (2014a). A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha), 59 (5), 423-431. doi:10.1007/s12223-014-0316-4
Zhou, J., Wu, Q., Zhang, R., Mo, M., Tang, X., Li, J., . . . Huang, Z. (2014b). A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha), 59 (5), 423-431. doi:10.1007/s12223-014-0316-4