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1 Introduction and set up the problem

Fractional differential equations have excited, in recent years, a considerable interest both in
mathematics and in applications. They were used in modeling of many physical and chemical
processes and engineering (see, e.g., [1]-[6]). In [7]-[9] demonstrate a number of interesting features
of the fractional diffusion equations, which represent a peculiar union of properties typical for
second order parabolic differential equations.

The direct problems for fractional diffusion equations such as an initial or boundary value
problems have been studied extensively in [1]-[4] and references therein. In contrast of direct
problem, the mathematical analysis of inverse problem for the fractional diffusion equation is
not satisfactorily investigated. The first mathematical results for the inverse problem of finding
diffusion coefficient for a fractional differential equation are obtained in [5].

Inverse problems for classical differential equations of heat conduction have been studied
quite widely. In literature are most often found the linear inverse source and nonlinear inverse
coefficient problems with different type of over determination conditions (see, for example [12]-
[16] and references there). In these works authors discussed the unique solvability and stability
estimates of solution as well a numerical approach for solving such problems. The works [17]-[20]
deal with a memory recovery problems from parabolic integro-differential equations of the second
order with integral term of convolution type.

The main results of this paper are local existence, global uniqueness and the stability estimate
in inverse problem of determining time-dependent reaction coefficient in the time-fractional
diffusive equation by a single observation at the point y = 0 of the diffusion process.

Consider the following time-fractional diffusion equation:(
CDαt u

)
(x̄, t)−4x̄u+ q(x, t)u(x̄, t) = f(x̄, t), x̄ = (x, y), (x̄, t) ∈ R2 × {t > 0} (1)

at condition
u
∣∣∣
t=0

= ϕ(x̄), x̄ ∈ R2, (2)

where CDαt , 0 < α < 1, is a regularized fractional derivative (the Gerasimov-Caputo derivative),
that is (

CDαt u
)

(x̄, t) =
1

Γ(1− α)

t∫
0

uτ (x̄, τ)dτ

(t− τ)α
,

and f(x̄, t), ϕ(x̄) are given smooth functions.
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Inverse problem. Find the function q(x, t), x ∈ R, t > 0 in (1), if the solution to Cauchy
problem (1), (2) satisfies

u
∣∣∣
y=0

= g(x, t), x ∈ R, t > 0, (3)

where g(x, t) is given.
We call a function u(x̄, t) a classical solution to Cauchy problem (1) and (2), if:
(i) u(x̄, t) is twice continuously differentiable in x̄ for each t > 0;
(ii) for each x̄ ∈ R2 the Caputo derivative CDαt u(x̄, t) is continuous in t on [0, T ];
(iii) u(x̄, t) satisfies (1) and (2).
Let u(x̄, t) be a classical solution to Cauchy problem (1),(2) and f, ϕ, g be enough smooth

functions. We carry out the next converting of the inverse problem (1)-(3). Denote for this
purpose the second derivative of u(x̄, t) with respect to y, by v(x̄, t), i.e. v(x̄, t) := uyy(x̄, t).
Differentiating (1) and (2) twice in y, we get(

CDαt v
)

(x̄, t)−4x̄v + q(x, t)v(x̄, t) = fyy(x̄, t), t > 0, x̄ ∈ R2, (4)

v
∣∣∣
t=0

= ϕyy(x̄), x̄ ∈ R2, (5)

To obtain an additional condition for the function v(x̄, t), we note that the second term of
Laplacian in (1) is v(x̄, t). Setting y = 0 in (1) and using equalities (2) and (3), we obtain

v
∣∣∣
y=0

=
(
CDαt g

)
(x, t)− gxx(x, t) + q(x, t)g(x, t)− f(x, 0, t), t > 0, x ∈ R. (6)

When the matching condition ϕ(x, 0) = g(x, 0) is fulfilled, it is easy to derive from (4)-(6)
the equations (1)-(3).

For the given functions q(x, t), f(x, y, t), ϕ(x, y) and a number α ∈ (0, 1), the problem of
determining the solution to Cauchy problem (4) and (5) we call as the direct problem.

By ΠT := {(x̄, t) : x̄ ∈ R2, 0 < t ≤ T} we denote a strip with the thickness T , where T > 0
is any fixed number.

Let Cα,m(ΠT ) be the class of the m times continuously differentiable, bounded with all
derivatives of order up to m with respect to x̄ ∈ R2 variable and its fractional derivative CDαt is
continuous in t on [0, T ] functions.

Everywhere in this paper we will denote by H l(Rn) locally Hölder continuous functions with
exponent l ∈ (0, 1). The norms in H l(Rn) are determined in [21, pp. 15-20].

By C(H l(Rn), [0, T ]) we denote the class of continuous with respect to t variable on the
segment [0, T ] with values in H l(Rn) functions. For a fixed t, the norm of the function φ(x, t) in
H l(Rn) will be denoted by |φ|l(t). The norm of a function φ(x, t) in C(H l(Rn), [0, T ]) is defined
by the equality

‖φ‖l := max
t∈[0,T ]

∣∣|φ|l(t)∣∣.
2 Investigation of direct problem (4), (5)

In the paper [9] it was found the representation of the solution in terms of the fundamental
solution to the following Cauchy problem

CDαt u−Bu(x, t) = F (x, t), x ∈ Rn, t ∈ (0, T ],

u
∣∣∣
t=0

= u0(x), x ∈ Rn,
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where

B :=

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

bj(x)
∂

∂xj
+ c(x)

is a uniformly second order elliptic differential operator with bounded continuous realvalued
coefficients. In the case B ≡ 4, where4 is n−dimensional laplacian, for any bounded continuous
function u0(x) (locally Hölder continuous, if n > 1) and any bounded continuous with respect
to the both variables x, t and locally Hölder continuous in x function F (x, t), it has the form

u(x, t) =

∫
Rn
Z(x− ξ, t)u0(ξ)dξ +

∫ t

0

∫
Rn
Y (x− ξ, t− τ)f(ξ, τ)dξdτ, (7)

with
Z(x, t) = π−n/2|x|−nH2,0

1,2

[1

4
t−α|x|2

∣∣∣(1,α)

(n/2,1),(1,1)

]
,

Y (x, t) = π−n/2|x|−ntα−1H2,0
1,2

[1

4
t−α|x|2

∣∣∣(α,α)

(n/2,1),(1,1)

]
,

where H is Fox’s H−function (see, [10, pp. 2-6]). Actually, Y (x, t) is the Riemann-Liouville
derivative of Z(x, t) with respect to t of the order 1 − α (for x 6= 0, Z(x, t) → 0 as t → 0, so
that the Riemann-Liouville derivative coincides in this case with Grasimov-Caputo derivative,
i.e. Y (x, t) =

(
CD1−α

t Z
)

(x, t)) [9].
In (4), introducing the notation fyy(x, y, t) − q(x, t)v(x, y, t) =: F (x, y, t) and applying the

formula (7) to direct problem (4), (5) for n = 2, we obtain the integral equation for determining
v(x̄, t):

v(x̄, t) = v0(x̄, t)−
∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)q(ξ1, τ)v(ξ̄, τ)dξ̄dτ, (8)

where

v0(x̄, t) :=

∫
R2

Z(x̄− ξ̄, t)ϕξ2ξ2(ξ̄)dξ̄ +

∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)fξ2ξ2(ξ̄, τ)dξ̄dτ. (9)

It is hold the following assertion:
Lemma 2.1. If q(x, t) ∈ C(Hα(R), [0, T ]), f(x̄, t) ∈ C(Hα+2(R2), [0, T ]), ϕ(x̄) ∈ Hα+2(R2),

then there exists a unique solution of the integral equation (8) v(x̄, t) ∈ Cα,2(ΠT ), where α ∈
(0, 1).

Proof. For proof we use the method of successive approximations and consider the sequence
of functions defined recursively by the formulas:

vn(x̄, t) = −
∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)q(ξ1, τ)vn−1(ξ̄, τ)dξ̄dτ, n = 1, 2, ..., (10)

where v0(x̄, t) is determined by the equality (9). Further we use the following estimates [9] (for
n = 2): ∣∣Dm

x̄ Z(x̄, t)
∣∣ ≤ Ct−α(2+m)

2 e−µmt
− α

2−α |x̄|
2

2−α
,∣∣Dm

x̄ Y (x̄, t)
∣∣ ≤ Ct−α(2+m)

2
−1+αe−µmt

− α
2−α |x̄|

2
2−α

, (11)∣∣CDαt Z(x̄, t)
∣∣ ≤ Ct−2αe−µmt

− α
2−α |x̄|

2
2−α

,
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for |x̄|2 ≥ tα, |m| ≤ 3; where µ0 := (2 − α)αα/(2−α), and as µm it can be taken any positive
number less than µ0;

|Z(x̄, t)| ≤ Ct−α
[
1 +

∣∣ ln (t−α|x̄|2)∣∣], (12)

|Dm
x Z(x̄, t)| ≤ Ct−α|x̄|−|m|, |m| ≤ 3, (13)∣∣CDαt Z(x̄, t)

∣∣ ≤ Ct−α[1 +
∣∣ ln (t−α|x̄|2)∣∣], (14)

|Y (x̄, t)| ≤ Ct−1, (15)

|Dx̄Y (x̄, t)| ≤ Ct−
α
2
−1, (16)

|Dm
x̄ Y (x̄, t)| ≤ Ct−α−1

[
1 +

∣∣ ln (t−α|x̄|2)∣∣], |m| = 2, (17)

|Dm
x̄ Y (x̄, t)| ≤ Ct−α−1|x̄|−1

[
1 +

∣∣ ln (t−α|x̄|2)∣∣], |m| = 3, (18)

for tα ≥ |x̄|2, (x̄, t) ∈ ΠT . In (11)-(18) the letter C denotes various positive constants. We also
note that it follows from the construction of the function Z(x̄, t):∫

R2

Z(ξ̄, t)dξ̄ = 1, (19)

and it is true the equality [9] ∫
R2

Y (ξ̄, t)dξ̄ = C0t
1−α, t ∈ (0, T ], (20)

where C0 depends only on α.
Set q0 := ‖q‖α, ϕ0 := |ϕ|α+2 and f0 := ‖f‖α+2. Using (10), (19) and (20) we estimate the

modulus of vn(x̄, t) in the domain ΠT as

|v0(x̄, t)| ≤ ϕ0 + C0f0
Tα

α
=: λ0,

|v1(x̄, t)| ≤ C0q0λ0

∫ t

0
(t− τ)α−1dτ = C0q0λ0

tα

α
= λ0

C0q0Γ(α)

Γ(1 + α)
tα,

|v2(x̄, t)| ≤ λ0(C0q0Γ(α))2 1

Γ(1 + α)

1

Γ(α)

∫ t

0

ταdτ

(t− τ)1−α = λ0

(
C0q0Γ(α)

)2
Γ(1 + α)

Iα0+t
α,

where Iα0+t
α is the Riemann-Liouville fractional integral of the power function tα and Γ(·) is the

Euler’s gamma function. It is not difficult note (see, [11, p. 15]) that the formula

Iα0+t
nα =

Γ(1 + nα)

Γ(1 + (n+ 1)α)
t(1+n)α, n = 0, 1, 2, ...

is valid. In accordance with this formula we continue to estimate v2(x̄, t):

|v2(x̄, t)| ≤ λ0

(
C0q0Γ(α)

)2
Γ(1 + α)

Iα0+t
α = λ0

(
C0q0Γ(α)

)2
Γ(1 + 2α)

t2α,

For arbitrary n = 0, 1, 2, ... we have

|vn(x̄, t)| ≤ λ0

(
C0q0Γ(α)

)n
Γ(1 + nα)

tnα.
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It follows from the above estimates that the series

v(x̄, t) =
∞∑
n=0

vn(x̄, t)

converges uniformly in ΠT , since it can be majorized in ΠT by the convergent numerical series

λ0

∞∑
n=0

(
C0q0Γ(α)Tα

)n
Γ(1 + nα)

.

This means the following estimate for the solution of the integral equation (8) takes place:

|v(x̄, t)| ≤ λ0

∞∑
n=0

(
C0q0Γ(α)Tα

)n
Γ(1 + nα)

= λ0Eα
(
C0q0Γ(α)Tα

)
, (x̄, t) ∈ ΠT , (21)

where Eα(·) is the Mittag-Leffler function of a nonnegative real argument (see, [11, pp. 40-45]).
Note that v0(x̄, t) is the solution to the problem (4), (5) for q(x, t) ≡ 0. Under the assumptions

of Lemma 2.1 it is true inclusion v0(x̄, t) ∈ Cα,2(ΠT ). Indeed, in accordance with the estimates
(11)-(18), the first derivatives in x of function v0, given by formula (9), can be calculated by
differentiating the sub-sign of the integral. Calculating the second derivatives by definition and
using the locally Hölder continuous in x, ϕyy, fyy, as well as estimates of the third derivatives
of Z, Y from (11)-(18) with respect to x, we have that v0 has continuous derivatives up to the
second order, inclusive [9]. The third estimates of (11), (14) and Y (x̄, t) =

(
CD1−α

t Z(x̄, t)
)
(x̄, t)

implies the continuity of CDαt v0 in t on [0, T ].
From (10) it follows vn(x̄, t) ∈ Cα,2(ΠT ) for all n = 1, 2, . . . . Then, according to the general

theory of functional series, this implies that the same property will be possessed the function
v(x̄, t). The function thus constructed is a classical solution to the problem (4), (5).

Let us derive an estimate for the norm of the difference between the solution of the original
integral equation (8) and the solution of this equation with perturbed functions q̃, f̃yy and ϕ̃yy.
Let ṽ(x̄, t) be a solution of the integral equation (8) corresponding to the functions q̃, f̃yy and
ϕ̃yy, i.e., determining v(x̄, t):

ṽ(x̄, t) = ṽ0(x̄, t)−
∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)q̃(ξ1, τ)ṽ(ξ̄, τ)dξ̄dτ, (22)

where

ṽ0(x̄, t) :=

∫
R2

Z(x̄− ξ̄, t)ϕ̃ξ2ξ2(ξ̄)dξ̄ +

∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)f̃ξ2ξ2(ξ̄, τ)dξ̄dτ. (23)

Composing the difference v − ṽ with the help of the equations (8) and (22), for it we obtain
the integral equation

v(x̄, t)− ṽ(x̄, t) = v0(x̄, t)− ṽ0(x̄, t)−

−
∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)
(
q(ξ1, τ)− q̃(ξ1, τ)

)
v(ξ̄, τ)dξ̄dτ−

−
∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)q̃(ξ1, τ)
(
v(ξ̄, τ)− ṽ(ξ̄, τ)

)
dξ̄dτ, (24)

from which, is derived the following linear integral inequality in |v(x̄, t)− ṽ(x̄, t)|:∣∣v(x̄, t)− ṽ(x̄, t)
∣∣ ≤ ∣∣v0(x̄, t)− ṽ0(x̄, t)

∣∣+ λ0C0
Tα

α
Eα
(
C0q0Γ(α)Tα

)
‖q − q̃‖α+
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+q̃0

∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)
∣∣v(ξ̄, τ)− ṽ(ξ̄, τ)

∣∣dξ̄dτ, (25)

where q̃0 := ‖q̃‖α It follows from the equalities (9) and (23) the estimate∣∣v0(x̄, t)− ṽ0(x̄, t)
∣∣ ≤ ‖ϕyy − ϕ̃yy‖α + C0

Tα

α
‖fyy − f̃yy‖α.

Let σ = σ(α, T, q0, q̃0, ϕ0, f0) = max
{

1, q̃0, C0
Tα

α , λ0C0
Tα

α Eα
(
C0q0Γ(α)Tα

)}
. Applying the successive

approximation method to inequality (25) with the help of the scheme∣∣v(x̄, t)− ṽ(x̄, t)
∣∣
0
≤ σ

(
‖ϕyy − ϕ̃yy‖α + ‖fyy − f̃yy‖α + ‖q − q̃‖α

)
,

∣∣v(x̄, t)− ṽ(x̄, t)
∣∣
n
≤ q̃0

∫ t

0

∫
R2

Y (x̄− ξ̄, t− τ)
∣∣v(ξ̄, τ)− ṽ(ξ̄, τ)

∣∣
n−1

dξ̄dτ, n = 1, 2, ...,

we arrive at the estimate∣∣v(x̄, t)− ṽ(x̄, t)
∣∣ ≤ σλ0Eα

(
C0q0Γ(α)Tα

)(
‖ϕyy − ϕ̃yy‖α + ‖fyy − f̃yy‖α + ‖q − q̃‖α

)
, (26)

which will be used in the next section of the paper. Indeed the expression (26) is the stability
estimate for the solution to the Cauchy problem (4) and (5). The uniqueness for this solution
follows from (26).

3 Investigation of the inverse problem (4)-(6)

Setting in (8) x = 0 and using additional condition (6), after simple converting, we get the
following integral equation for determining q(x, t):

q(x, t) = q0(x, t)− 1

g(x, t)

∫ t

0

∫
R2

Y (x− ξ1, ξ2, t− τ)q(ξ1, τ)v(ξ1, ξ2, τ)dξ1dξ2dτ, (27)

where

q0(x, t) :=
1

g(x, t)

[
f(x, 0, t) + gxx(x, t)−

(
CDαt g

)
(x, t)+

+

∫ t

0

∫
R2

Z(x− ξ1, ξ2, t)ϕξ2ξ2(ξ1, 0)dξ1dξ2+

+

∫ t

0

∫
R2

Y (x− ξ1, ξ2, t− τ)fξ2ξ2(ξ1, ξ2, τ)dξ1dξ2dτ

]
.

We introduce an operator A defining it by the right hand side of (27)

A[q](x, t) = q0(x, t)− 1

g(x, t)

∫ t

0

∫
R2

Y (x− ξ1, ξ2, t− τ)q(ξ1, τ)v(ξ1, ξ2, τ)dξ1dξ2dτ.

Then the equation (27) is written in a more convenient form as

q(x, t) = A[q](x, t). (28)

Let q00 := ‖q0‖α. Fix a number ρ > 0 and consider the ball

Bα
T (q0, ρ) :=

{
q(x, t) : q(x, t) ∈ C

(
Hα(R), [0, T ]

)
, ‖q − q0‖α ≤ ρ

}
, α ∈ (0, 1).
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Theorem 3.1. If f(x̄, t) ∈ C
(
Hα+2(R2), [0, T ]

)
, ϕ(x̄) ∈ Hα+2(R2), g(x, t) ∈ C1(Hα(R), [0, T ]),

‖g(x, t)‖α ≥ g0 > 0, g(0, 0) = ϕ(0, 0), then there exists a number T ∗ ∈ (0, T ), such that there
exists a unique solution q(x, t) ∈ C

(
Hα(R), [0, T ∗]

)
of the inverse problem (1)-(3).

Let us first prove that for an enough small T > 0 the operator A maps the ball Bα
T (q0, ρ)

into itself; i.e., the condition q(x, t) ∈ Bα
T (q0, ρ) implies that A[q](x, t) ∈ Bα

T (q0, ρ). Indeed, for
any function q(x, t) in C

(
Hα(R), [0, T ]

)
be continuous, implies that function A[q](x, t) calculated

using formula (28) will be continuous. Moreover, estimating the norm of the differences, we find
that

‖A[q]− q0‖α ≤
C0q0λ0

αg0
TαEα

(
C0q0Γ(α)Tα

)
.

Here we have used the estimate (21). Note that the function occurring on the right-hand side in
this inequality is monotone increasing with T , and the fact that the function q(x, t) belongs to
the ball Bα

T (q0, ρ) implies the inequality

‖q‖α ≤ ρ+ q00. (29)

Therefore, we only strengthen the inequality if we replace ‖q‖α in this inequality with the
expression ρ+ q00. Performing these replacements, we obtain the estimate

‖A[q]− q0‖α ≤
C0λ0(ρ+ q00)

αg0
TαEα

(
(ρ+ q00)C0Γ(α)Tα

)
.

Let T1 be a positive root of the equation

r(T1) =
C0λ0(ρ+ q00)

αg0
TαEα

(
(ρ+ q00)C0Γ(α)Tα

)
= ρ.

Then for T ∈ [0, T1] we have A[q](x, t) ∈ Bα
T (q0, ρ).

Now consider two functions q(x, t) and q̃(x, t) belonging to the ball Bα
T (q0, ρ) and estimate

the distance between their images A[q](x, t) and A[q̃](x, t) in the space C
(
Hα(R), [0, T ]

)
. The

function ṽ(x̄, t) corresponding to q̃(x, t) satisfies the integral equation (22) with the functions
∂2
yϕ = ∂2

y ϕ̃ and ∂2
yf = ∂2

y f̃ . Composing the difference A[q](x, t) − A[q̃](x, t) with the help of
equations (8), (22) and then estimating its norm, we obtain

‖A[q](x, t)−A[q̃](x, t)‖α ≤ C0T
α

αg0

[
‖v‖‖q − q̃‖α + ‖q‖α‖v − ṽ‖

]
.

Using inequality (21) and the estimate (26) with ∂2
yϕ = ∂2

y ϕ̃ and ∂2
yf = ∂2

y f̃ , we continue the
previous inequality in the following form:

‖A[q](x, t)−A[q̃](x, t)‖α ≤ C0T
α

αg0
λ0Eα

(
C0q0Γ(α)Tα

)(
1 + σq̃0

)
‖q − q̃‖α. (30)

The functions q(x, t) and q̃(x, t) belong to the ball Bα
T (q0, ρ), and hence for each of these

functions one has inequality (29). Note that the function on the right-hand side in inequality
(30) at the factor ‖q − q̃‖α is monotone increasing with ‖q‖α, ‖q̃‖α and T .

Consequently, replacing ‖q‖α and ‖q̃‖α in inequality (30)(including in σ) with ρ + q00 will
only strengthen the inequality. Thus, we have

‖A[q](x, t)−A[q̃](x, t)‖α ≤ C0T
α

αg0
λ0Eα

(
(ρ+ q00)C0Γ(α)Tα

)(
1 + σ(ρ+ q00)

)
‖q − q̃‖α.
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Let T2 be a positive root of the equation

r2(T ) =
C0T

α

αg0
λ0Eα

(
(ρ+ q00)C0Γ(α)Tα

)(
1 + σ(ρ+ q00)

)
= 1.

Then for T ∈ [0, T2] we have that the distance between the functions A[q](x, t) and A[q̃](x, t)
in the function space C

(
Hα(R), [0, T ]

)
is not greater than the distance between the functions

q(x, t) and q̃(x, t) multiplied by r2(T ) < 1. Consequently, if we choose T ∗ = min(T1, T2), then
the operator A is a contraction in the ball Bα

T (q0, ρ). However, in accordance with the Banach
theorem, the operator A has a unique fixed point in the ball Bα

T (q0, ρ); i.e., there exists a unique
solution of the equation (28). Theorem 3.1 is proven.

Let T be a positive fixed number. Consider the set Ω(γ0) (γ0 > 0 is some fixed number)
of the given functions (f, ϕ, g) for which all conditions from Theorem 3.1 are fulfilled and so
that max

{
‖f‖α+2, ‖ϕ‖α+2, ‖g‖α

}
≤ γ0. By Q(γ1) we denote the class of functions q(x, t) ∈

C
(
Hα(R), [0, T ]

)
, satisfying the inequality ‖q‖α ≤ γ1 with some fixed positive number γ0.

Theorem 3.2. Let (f, ϕ, g) ∈ Ω(γ0), (f̃ , ϕ̃, g̃) ∈ Ω(γ0) and (q, q̃) ∈ Q(γ1). Then for the
solution of the inverse problem (1)-(3) the following stability estimate is valid:

‖q − q̃‖α ≤ c
(
‖f − f̃‖α+2 + ‖ϕ− ϕ̃‖α+2 + ‖g − g̃‖α

)
, (31)

where the constant c depends only on T, α, γ0, γ1.
To prove this theorem, using (27) we write down the equations for q̃(x, t) and compose the

difference q(x, t)− q̃(x, t). Then, after evaluating this expression and using estimates (21), (26),
we obtain

|q − q̃|α(t) ≤ c0

(
‖f − f̃‖α+2 + ‖ϕ− ϕ̃‖α+2 + ‖g − g̃‖α

)
+

+c1

∫ t

0
|q − q̃|α(τ)dτ, t ∈ [0, T ], (32)

where c0 and c1 depend on the same constants as c. From (32) using Gronwall’s inequality, we
get the estimate

|q − q̃|α(t) ≤ c0 exp
(
c1t
)(
‖f − f̃‖α+2 + ‖ϕ− ϕ̃‖α+2 + ‖g − g̃‖α

)
, t ∈ [0, T ].

This inequality implies the estimate (31), if we set c = c0 exp
(
c1t
)
.

From Theorem 3.2 readily follows the following uniqueness theorem for any T > 0:
Theorem 3.3. Let the functions q, f, ϕ, g and q̃, f̃ , ϕ̃, g̃ have the same meaning as in

Theorem 3.2. Moreover, if q = q̃, f = f̃ , ϕ = ϕ̃, g = g̃ for (x, t) ∈ ΠT , then q(x, t) = q(x, t), t ∈
ΠT .
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