References
1. D’Alton ME, Bonanno CA, Berkowitz RL, et al. Putting the ”M” back in
maternal-fetal medicine. Am J Obstet Gynecol.2013;208(6):442-448.
2. van Roosmalen J, Zwart J. Severe acute maternal morbidity in
high-income countries. Best Pract Res Clin Obstet Gynaecol.2009;23(3):297-304.
3. Aoyama K, Pinto R, Ray JG, et al. Association of Maternal Age With
Severe Maternal Morbidity and Mortality in Canada. JAMA Netw
Open. 2019;2(8):e199875.
4. Lindquist A, Knight M, Kurinczuk JJ. Variation in severe maternal
morbidity according to socioeconomic position: a UK national
case-control study. BMJ Open. 2013;3(6).
5. Bateman BT, Mhyre JM, Hernandez-Diaz S, et al. Development of a
comorbidity index for use in obstetric patients. Obstet Gynecol.2013;122(5):957-965.
6. Metcalfe A, Lix LM, Johnson J-A, Currie G, Lyon AW, Bernier F, et al.
Validation of an obstetric comorbidity index in an external population.British Journal of Obstetrics & Gynaecology. 2015;122:1748-1755.
7. Malhame I, Danilack VA, Raker CA, et al. Cardiovascular severe
maternal morbidity in pregnant and postpartum women: development and
internal validation of risk prediction models. BJOG. 2020.
8. Aoyama K, D’Souza R, Pinto R, et al. Risk prediction models for
maternal mortality: A systematic review and meta-analysis. PLoS
One. 2018;13(12):e0208563.
9. Ray JG, Park AL, Dzakpasu S, et al. Prevalence of Severe Maternal
Morbidity and Factors Associated With Maternal Mortality in Ontario,
Canada. JAMA Netw Open. 2018;1(7):e184571.
10. Menard MK. Toward Achieving Risk-Appropriate Maternity Care:
Maternal Morbidity Prediction. Obstet Gynecol.2019;134(2):213-215.
11. Macones GA. Understanding and reducing serious maternal morbidity: a
step in the right direction. Obstet Gynecol. 2013;122(5):945-946.
12. Dayan N, Joseph KS, Fell DB, et al. Infertility treatment and risk
of severe maternal morbidity: a propensity score-matched cohort study.CMAJ. 2019;191(5):E118-E127.
13. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting
of a multivariable prediction model for individual prognosis or
diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.
14. BORN Ontario. Legacy Data Elements.
https://www.bornontario.ca/en/data/legacy-data-elements.aspx.
Published 2019. Accessed 13 September, 2019.
15. Dunn S, Lanes A, Sprague AE, et al. Data accuracy in the Ontario
birth Registry: a chart re-abstraction study. BMC Health Serv
Res. 2019;19(1):1001.
16. Dunn S, Bottomley J, Ali A, Walker M. 2008 Niday Perinatal Database
quality audit: report of a quality assurance project. Chronic Dis
Inj Can. 2011;32(1):32-42.
17. Joseph KS, Liu S, Rouleau J, Kirby RS, Kramer MS, Sauve R, et al.
Severe Maternal Morbidity in Canada, 2003 to 2007: Surveillance Using
Routine Hospitalization Data and ICD-10CA Codes. Journal of
Obstetrics & Gynaecology Canada: JOGC. 2010;32(9):837-846.
18. Main EK, Abreo A, McNulty J, et al. Measuring severe maternal
morbidity: validation of potential measures. Am J Obstet Gynecol.2016;214(5):643 e641-643 e610.
19. Roberts CL, Cameron CA, Bell JC, Algert CS, Morris JM. Measuring
maternal morbidity in routinely collected health data: development and
validation of a maternal morbidity outcome indicator. Med Care.2008;46(8):786-794.
20. Grigoriadis S, Wilton AS, Kurdyak PA, et al. Perinatal suicide in
Ontario, Canada: a 15-year population-based study. CMAJ.2017;189(34):E1085-E1092.
21. Ray JG, Zipursky J, Park AL. Injury-related maternal mortality.Am J Obstet Gynecol. 2018;219(3):307-308.
22. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RLMultivariate data analysis. Upper Saddle River, NJ: Pearson
Prentice Hall; 2006.
23. Steyerberg EW. Clinical prediction models: A practical approach to
development, validation, and updating. In: Links S, ed. New York,
NY2009.
24. Austin PC. Using the standardized difference to compare the
prevalence of a binary variable between two groups in observational
research. Communications in Statistics - Simulation and
Computation. 2009;38.
25. Hanley JA, McNeil BJ The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology.1982;143(1):29.
26. Steyerberg EW. Mathematics and Statistics. Clinical prediction
models: A practical approach to development, validation, and updating.New York, NY: Springer; 2009.
27. Steyerberg EW, Harrell FE, Jr., Borsboom GJ, Eijkemans MJ, Vergouwe
Y, Habbema JD. Internal validation of predictive models: efficiency of
some procedures for logistic regression analysis. J Clin
Epidemiol. 2001;54(8):774-781.
28. Harrell FE, Jr., Lee KL, Mark DB. Multivariable prognostic models:
issues in developing models, evaluating assumptions and adequacy, and
measuring and reducing errors. Stat Med. 1996;15(4):361-387.
29. Steyerberg EW, Vickerrs AJ, Cook NR, Gerds T, Gonen M, Obuchowski N,
et al. Assessing the performance of prediction models: a framework for
some traditional and novel measures. Epidemiology.2010;21:128-138.
30. Deeks JJ, Altman DG Diagnostic tests 4: Likelihood ratios. .British Medical Journal. 2004;329.
31. McGee S. Simplfying Likelihood Ratios. J Gen Intern Med.2002;17(8):647-650.
32. Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing
risks model in early screening for preeclampsia by biophysical and
biochemical markers. Fetal Diagn Ther. 2013;33(1):8-15.
33. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration
of Clinical Prediction Models: Users’ Guides to the Medical Literature.JAMA. 2017;318(14):1377-1384.
34. Romero-Brufau S, Huddleston JM, Escobar GJ, Liebow M. Why the
C-statistic is not informative to evaluate early warning scores and what
metrics to use. Critical care (London, England). 2015;19:285.
35. Davidson AJ, Park AL, Ray JG. Navigating severe maternal morbidity
using big data: Green, yellow, and red flags for researchers.Obstet Med. 2019;12(3):105-106.