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Abstract

Thermal instability of magnetoconvection in a horizontal bidispersive porous layer,

uniformly heated from below, is analyzed. To study the linear stability theory, we

perturbed the basic state with small-amplitude disturbances. Then, the governing di-

mensionless equations are solved using the normal modes. By employing the one-term

Galerkin weighted residuals method, the critical values of Rayleigh numbers for the

onset of stationary and oscillatory instability, have been determined. The effect of

Chandrasekhar number on the system was analyzed.

Keywords: Bidispersive Porous Media, Thermal convection, Magnetic field, Linear

stability analysis.

1. Introduction

Recently, many researchers are interested to study the convection bidispersive porous

media (BDPM). A BDPM is an extension of a regular porous medium[1]. In general,

a BDPM as a regular porous medium, where the solid phase is replaced by another

porous medium. BDPM is composed of clusters of large particles that are agglomera-

tions of small particles [1, 2]. In a BDPM, the voids between the clusters are known as

macropores and the voids within the clusters are known as micropores. In other word,

A BDPM is a porous medium in which fractures or tunnels have been introduced. In the

present model, the f-phase and p-phase are represented by ‘fracture phase’ and ‘porous

phase’ respectively.

Understanding convection in a BDPM is of considerable interest for geophysical

applications [3, 4]. A general model for the convection in BDPM has received from
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Nield & Kuznetsov [5] and Straughan [6]. In their analysis, they found that in a BDPM

the critical values of Rayleigh number are much larger than that in the regular porous

medium. Later, many research made an effort to investigate the convective instability

in a BDPM. Very recently, Falsaperla, P., Mulone, G., and Straughan B [7] have inves-

tigated the linear and non linear stability analyses of Bidispersive-inclined convection.

Gentile, M., and Straughan[8] have studied the problem of Bidispersive vertical con-

vection. Straughan B. [9, 10] has investigated the double diffusive convection in a

BDPM. Capone F, De Luca R, and Gentile M [11] have showed that the linear instabil-

ity and nonlinear stability thresholds for a problem of thermal instability in a rotating

BDPM. Later, Capone F and De Luca R [12] extended their work by considering inertia

term and they showed that the effect of the Vadasz number can give rise to oscillatory

motion at the loss of stability of thermal conduction solution.

In this paper, we reconsider the problem studied in [13], on taking into account the

effect of an external magnetic field. The plan of the paper is as follows. Section 2

is devoted to the introduction of the mathematical problem. In Section 2, the govern-

ing dimensionless equations are solved using the normal modes to perform the linear

stability analysis. The critical values of Rayleigh number at the onset of stationary

and oscillatory convection, is determined by employing one-term Galerkin weighted

residuals method. The paper ends with a Discussion and Conclusion section, which

containing a table to show some examples in which stationary or oscillatory instability

sets in and the figures showing the behavior of critical Rayleigh numbers and critical

wave numbers for the steady and oscillatory instability versus Chandrasekhar number.

2. Mathematical formulation

Let us consider a horizontal BDPM of depth d. T 0
LC, T 0

UC with TL > TU > 0

are the fixed temperatures at z = 0 and at z = d respectively. V fi , V pi and T are the

velocity of the fluid in the macro pores, the velocity of the fluid in the micro pores and

the temperature. A constant magnetic field H = (0, 0, H0) is applied. The governing
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equations are

∇ · Vf = 0,∇ · Vp = 0,∇ ·H = 0, (1)

− µ

κf
Vf − δ

(
Vf − Vp

)
−∇P f + ρ0gβT êz +

µm
ρ0

(∇×H)×H = 0, (2)

− µ

κp
Vp − δ

(
Vp − Vf

)
−∇P p + ρ0gβT êz +

µm
ρ0

(∇×H)×H = 0, (3)

σ
∂T

∂t
+
(
Vf + Vp

)
· ∇T = α∇2T, (4)

∂H

∂t
+
(
Vf + Vp

)
· ∇H −H · ∇

(
Vf + Vp

)
= η∇2H. (5)

Subject to the boundary conditions

Vf · êz = Vp · êz = 0, H = H0 on z = 0, d. (6)

T (x, y, 0, t) = 1, T (x, y, d, t) = 0. (7)

Here, êz = (0, 0, 1), ca, κf , κp, µ, δ, g, β, σ, α, µm are acceleration coefficient,

permeability in the macro pores, permeability in the micro pores, dynamic viscosity,

an interaction coefficient, gravity, coefficient of thermal expansion of the fluid, heat

capacity ratio, thermal conductivity and magnetic permeability. In addition, ρ0 is a

reference density,∇P f ,∇P p are the reduced pressures in the macro and micro pores,

H0 is the external magnetic field and km is the thermal conductivity. We introduce

dimensionless quantities such that

x = x∗d, y = y∗d, z = z∗d,

Vf =
α

d
Vf∗, Vp =

α

d
Vp∗, t =

σd2

α
t∗,

T = ∆TT ∗, H = H0H
∗
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The non-dimensional equations (after omitting the asterisks) governing the system are

∇ · Vf = 0,∇ · Vp = 0,∇ ·H = 0, (8)

− Vf − γ
(
Vf − Vp

)
−∇P f +RaT êz +QPm (∇×H)×H = 0, (9)

− κrVp − γ
(
Vp − Vf

)
−∇P p +RaT êz +QPm (∇×H)×H = 0, (10)

∂T

∂t
+
(
Vf + Vp

)
· ∇T = ∇2T, (11)

1

σ

∂H

∂t
+
(
Vf + Vp

)
· ∇H −H · ∇

(
Vf + Vp

)
= Pm∇2H, (12)

Vf · êz = Vp · êz = 0, H = êz on z = 0, 1, (13)

T (x, y, 0, t) = 1, T (x, y, 1, t) = 0. (14)

Where

Ra =
ρ0∆Tgβdκf

µα
, κr =

κf
κp
, γ =

δκf
µ
,

Q =
µmH

2
0κf

ρ0µη
, Pm =

η

α
.

Here Ra is the Rayleigh number, Q is the Chandrasekhar number, and Pm is the

Magnetic Prandtl number.

2.1. Basic State

The basic stationary flow of Eqs. (8)-(12) is given by,

Vfb = 0, Vpb = 0, Tb = 1− z, Hb = êz, (15)

where the subscript b indicates for basic state. Let us introduce the perturbation of the

basic state in the form of

Vf = Vfb + εVf
′
, Vp = Vpb + εVp

′
, P f = P fb + P f

′
, P b = P pb + P p

′
,

T = Tb + εT ′, H = Hb + εH ′. (16)
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where ε << 1. By substituting Eq. (16) into Eqs. (8)-(14) and by neglecting terms

O(ε2) or higher, we obtain

∇ · Vf
′

= 0,∇ · Vp
′

= 0,∇ ·H ′ = 0, (17)

− Vf
′
− γ

(
Vf

′
− Vp

′
)
−∇P f

′
+RaT ′êz +QPm (∇×H)× êz = 0, (18)

− κrVp
′
− γ

(
Vp

′
− Vf

′
)
−∇P p

′
+RaT ′êz +QPm (∇×H)× êz = 0, (19)

∂T ′

∂t
−
(
W f ′

+W p′
)

= ∇2T ′, (20)

1

σ

∂H ′

∂t
=

∂

∂z

(
Vf

′
+ Vp

′
)

+ Pm∇2H ′. (21)

W f ′
= W p′ = T ′ =

∂H ′z
∂z

= 0 on z = 0, 1. (22)

By taking the third component of double curl of Eqs. (18) and (19) and third component

of Eq. (21), one obtains

∇ · Vf
′

= 0,∇ · Vp
′

= 0,∇ ·H ′ = 0, (23)

∇2W f ′
+ γ

(
∇2W f ′

−∇2W p′
)
−Ra∇2

hT
′ −QPm ∂

∂z
∇2H ′z = 0, (24)

κr∇2W p′ + γ
(
∇2W p′ −∇2W f ′

)
−Ra∇2

hT
′ −QPm ∂

∂z
∇2H ′z = 0, (25)

∂T ′

∂t
−
(
W f ′

+W p′
)

= ∇2T ′, (26)

1

σ

∂H ′z
∂t

=
∂

∂z

(
W f ′

+W p′
)

+ Pm∇2H ′z, (27)

W f ′
= W p′ = T ′ =

∂H ′z
∂z

= 0 on z = 0, 1, (28)

where ∇2
h = ∂2

∂x2 + ∂2

∂y2 and∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

3. Linear Stability Analysis

Let us introduce the normal modes by writing the perturbations in the form of

(
W f ′

,W p′ , T ′, H ′z

)
=
(
wf (z), wp(z), θ(z), h(z)

)
ei(lx+my−ωt). (29)
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Substituting the above normal mode solution into the Eqs. (23)-(28),

(1 + γ)
(
D2 − q2

)
wf − γ

(
D2 − q2

)
wp +Raq2θ −QPmD

(
D2 − q2

)
h = 0,

(30)

(κr + γ)
(
D2 − q2

)
wp − γ

(
D2 − q2

)
wf +Raq2θ −QPmD

(
D2 − q2

)
h = 0,

(31)(
D2 − q2 + iω

)
θ +

(
wf + wp

)
= 0, (32)

Pm
(
D2 − q2

)
h+

1

σ
iωh+D

(
wf + wp

)
= 0, (33)

wf = wp = θ = Dh = 0 on z = 0, 1, (34)

where D = d
dz and q2 = l2 + m2. We assume the solution to wf , wp, θ and h in the

form 
wf (z)

wp(z)

θ(z)

h(z)

 =


wf0 sinnπz

wp0 sinnπz

θ0 sinnπz

h0 cosnπz

 , (35)

which satisfy the boundary conditions (34). On substituting Eq. (35) with n = 1 into

Eqs. (30)-(33), one obtains
−δ2 (1 + γ) γδ2 Raq2 −QPmπδ2

γδ2 −δ2 (κr + γ) Raq2 −QPmπδ2

1 1
(
−δ2 + iω

)
0

π π 0
(
−Pmδ2 + iω

σ

)




wf0

wp0

θ0

h0

 =


0

0

0

0

 ,

(36)

where δ2 = π2 + q2. For the nontrivial solution of the above matrix Eq. (36) the

determinant of above matrix is zero, from which one can get the expression of the

Rayleigh numbers Rasc and Raoc respectively for the stationary and also oscillatory
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modes of convection in the form:

Rasc =
δ4sc (γ + κr + γκr)

q2sc (1 + κr + 4γ)
+
Qπ2δ2

q2sc
, Raoc =

I1 + ω2I2
q2ocχ2 (ω2 + Pm2δ4ocσ

2)
, (37)

where I1 = Pm2δ6oc(χ2π
2Q+ χ1δ

2
oc)σ

2, I2 = δ2oc(χ1δ
2
oc + χ2π

2PmQσ),

ω2 = Pmδ2σ(Pmδ2σ + χ2

χ1
π2Q(−1 + Pmσ)), χ1 = κr + γ + γκr and χ2 =

1 + κr + 4γ.

and the subscripts sc and oc denote stationary and oscillatory convections.

In the absence of magnetic field, above stationary Rayleigh number reduces to

Rasc =
δ4 (γ + κr + γκr)

q2 (1 + κr + 4γ)
, (38)

which is well agree with Eq. (31) in Gentile and Straughan [13].

4. Discussion and Conclusions

The numerical results and conclusions are presented in this section. Many theo-

retical and experimental studies have made an effort to model the convective insta-

bility problem that arises in the study of geophysical fluid dynamics. In the present

analysis, a mathematical model of magnetoconvection in a bidispersive porous layer

has been modeled to investigate the linear stability analysis. To the best of author’s

knowledge, this is the first study in the hydrodynamic stability. Darcy’s law and the

Oberbeck-Boussinesq approximation are adopted for modeling the buoyant flow. The

one-term Galerkin weighted residuals method, has been employed to determine the

critical Rayleigh numbers for the onset of stationary and oscillatory instability.

In the present analysis, we fix σ = 1 and γ = 1. In Table 1, some values of

the physical parameters have been fixed, in order to show some examples in which

stationary or oscillatory instability sets in. For example, when Q = 5, the onset of

convection is more likely to be via oscillatory convection when Pm < 0.82, whereas

the stationary convection dominates when Pm ≥ 0.82. Furthermore, one can observe

from this Table that Pm does not show any effect on Racsc, since Rasc is independent

of Pm.
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Q Pm Stationary Oscillatory Instability
qcsc Racsc qcoc Racoc

5 0.4 6.82311 75.9007 4.58621 27.3207 Oscillatory
5 0.6 6.82311 75.9007 5.12303 43.5326 Oscillatory
5 0.81 6.82311 75.9007 5.65649 75.6315 Oscillatory
5 0.82 6.82311 75.9007 5.66515 76.4059 Stationary
5 1.2 6.82311 75.9007 5.91785 105.693 Stationary
5 1.4 6.82311 75.9007 6.01025 121.032 Stationary

10 0.4 8.06812 133.973 5.98167 69.5537 Oscillatory
10 0.6 8.06812 133.973 6.37327 97.2322 Oscillatory
10 0.81 8.06812 133.973 6.69704 132.775 Oscillatory
10 0.82 8.06812 133.973 6.70692 134.136 Stationary
10 1.2 8.06812 133.973 6.9666 178.9 Stationary
10 1.4 8.06812 133.973 7.07978 205.931 Stationary

Table 1: Onset of stationary and oscillatory instability for the fixed values of κr = 0.1.
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Figure 1: Variation of critical Rayleigh number with Q at the onset of (a) stationary convection and (b)
oscillatory convection.
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Figure 2: Variation of critical wave number withQ at the onset of (a) stationary convection and (b) oscillatory
convection.

The effect of the Chandrasekhar number, Q, for the onset of steady and oscillatory

convection, has been examined. In Fig. 1, the effect of the Chandrasekhar number, Q,

on the onset of instability, is showed. The curves displayed are included in the range

1 ≤ Q ≤ 20. Fig. 1 depicts an increasing trend of critical Rayleigh number at the

onset of steady and oscillatory instability versus Q, and also a increasing function of

κr. In other words, an increase in the value of Q makes the system stable.

Fig. 2 gives a variation of critical wave number (corresponding to critical Rayleigh

number from Fig. 1) at the onset of steady and oscillatory convection versus Q for

different values of κr. Fig. 2 depicts an increasing trend of critical wave number

versus Q, and a decreasing function of κr.

The principal results found from the linear stability analysis can be summarized as

follows:

• The eigenvalue problem for linear stability analysis is solved analytically by us-

ing normal mode technique.

• The critical Rayleigh number corresponding wave number are analyzed for the

different values of other physical parameters at the onset of stationary and oscil-
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latory convection.

• The Chandrasekhar number has a stabilizing effect on the stationary and oscilla-

tory convection.

• κr has a stabilizing effect on the stationary and oscillatory convection.

• The critical wave number is an increasing function of Q and a decreasing func-

tion of κr at the onset of stationary and oscillatory convection.
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