References
1. Rycerz P, Olver A, Kadiric A. Propagation of surface initiated rolling contact fatigue cracks in bearing steel. Int J Fatigue.2017;97:29-38.
2. Curd ME, Burnett TL, Fellowes JW, Donoghue J, Withers PJ. The heterogenous distribution of white etching matter (WEM) around subsurface cracks in bearing steels. Acta Mater.2019;174:300-309.
3. Lundberg G, Palmgren A. Dynamic capacity of rolling bearings. J applied Mech trans asme. 1947.
4. Sadeghi F, Jalalahmadi B, Slack T, Raje N, Arakere NK. A Review of Rolling Contact Fatigue. J Tribol-Trans ASME. 2009;131(4):041403.
5. Warhadpande A, Sadeghi F, Evans RD. Microstructural Alterations in Bearing Steels under Rolling Contact Fatigue Part 1—Historical Overview. Tribol Trans. 2013;56(3):349-358.
6. Arakere NK. Gigacycle rolling contact fatigue of bearing steels: A review. Int J Fatigue. 2016;93:238-249.
7. Harris TA, Kotzalas MN. Advanced concepts of bearing technology: Rolling bearing analysis, CRC Press; 2006.
8. Shanyavskiy, A. A. Mechanisms and modeling of subsurface fatigue cracking in metals. Eng Fract Mech.. 2013;110:350-363.
9. Xia Z, Kujawski D, Ellyin F. Effect of mean stress and ratcheting strain on fatigue life of steel. Int J Fatigue.2015;18(5):335-341.
10. Pandkar AS, Arakere N, Subhash G. Ratcheting-based microstructure-sensitive modeling of the cyclic hardening response of case-hardened bearing steels subject to Rolling Contact Fatigue.Int J Fatigue. 2015;73:119-131.
11. Arakere NK, Subhash G. Work hardening response of M50-NiL case hardened bearing steel during shakedown in rolling contact fatigue.Mater Sci Technol. 2012;28(1):34-38.
12. Trojahn W, Valentin P. Bearing steel quality and bearing performance. Mater Sci Technol. 2013;28(1):55-57.
13. Šmeļova V, Schwedt A, Wang L, Holweger W, Mayer J. Electron microscopy investigations of microstructural alterations due to classical Rolling Contact Fatigue (RCF) in martensitic AISI 52100 bearing steel. Int J Fatigue. 2017;98:142-154.
14. Chakraborty J, Bhattacharjee D, Manna I. Development of ultrafine bainite+martensite duplex microstructure in SAE 52100 bearing steel by prior cold deformation. Scripta Mater. 2009;61(6):604-607.
15. Lobodyuk VA, Meshkov YY, Pereloma EV. On Tetragonality of the Martensite Crystal Lattice in Steels. Metall Mater Trans A.2018;50(1):97-103.
16. Decaudin B, Djega-Mariadassou C, Cizeron G. Structural study of M50 steel carbides. J Alloy Compd. 1995;226(1-2):208-212.
17. Bhadeshia H. Steels for bearings. Prog Mater Sci.2012;57(2):268-435.
18. Lian JL, Zheng LJ, Wang FF, Zhang H. Evolution of carbides on surface of carburized M50NiL bearing steel. J Iron Steel Res Int.2018;25(11):1198-1211.
19. Wang KM, Jing HH, Xu LY, Han YD, Zhao LZ Hu WY, et al. Carbide effects on tensile deformation behavior of [001] symmetric tilt grain boundaries in bcc Fe. Modell Simul Mater Sci Eng..2020;28(3):035006.
20. Liang LW, Wang YJ, Chen Y, Wang HY, Dai LH. Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings.Acta Mater. 2020;186:267-277.
21. Luu HT, Gunkelmann N. Pressure-induced phase transformations in Fe-C: Molecular dynamics approach. Comput Mater Sci.2019;162:295-303.
22. Ghaffarian H, Taheri AK, Ryu S, Kang K. Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation. Curr Appl Phys.2016;16(9):1015-1025.
23. Ghaffarian H, Taheri AK, Kang K, Ryu S. Molecular Dynamics Simulation Study on the Effect of the Loading Direction on the Deformation Mechanism of Pearlite. Multiscale Sci Eng.2019;1(1):47-55.
24. Guziewski M, Coleman SP, Weinberger CR. Atomistic investigation into the mechanical properties of the ferrite-cementite interface: The Bagaryatskii orientation. Acta Mater. 2017;144.
25. Pandkar AS, Arakere N, Subhash G. Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue. Int J Fatigue.2014;63(1):191-202.
26. Briscoe BJ. Contact mechanics. Tribol Int.1985;19(2):109-110.
27. Moghaddam SM, Sadeghi F, Paulson K, Weinzapfel N, Correns M, Bakolas V, et al. Effect of non-metallic inclusions on butterfly wing initiation, crack formation, and spall geometry in bearing steels.Int J Fatigue. 2015;80:203-215.
28. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys. 1995;117(1):1-19.
29. Kim J, Kang K, Ryu S. Characterization of the misfit dislocations at the ferrite/cementite interface in pearlitic steel: An atomistic simulation study. Int J Plast. 2016:302-312.
30. Bhadeshia H. Solution to the Bagaryatskii and Isaichev ferrite–cementite orientation relationship problem. Mater Sci Technol. 2018;34(14):1666-1668.
31. Liyanage LSI, Kim SG, Houze J, et al. Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method. Phys Rev B. 2014.
32. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52(2):255-268.
33. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695.
34. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys.1981;52(12):7182-7190.
35. Heyes DM. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. Phys Rev B: Condens Matter. 1994;49(2):755.
36. Beyerlein IJ, Demkowicz MJ, Misra A, Uberuaga BP. Defect-interface interactions. Prog Mater Sci. 2015;74:125-210.
37. Stukowski, Alexander. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng. 2010;18(1):2154-2162.
38. Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng. 2012;20(8):085007.
39. Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem.1987;91(19):4950-4963.
40. Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci.1994;2(2):279-286.
41. Yuan XY, Yu WW, Fu SC, Yu DJ,Chen X. Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel. Mater Sci Eng A. 2016; 677:193-202.
42. Kang GZ, Dong YW, Liu YJ, Wang H, Cheng XJ. Uniaxial ratchetting of 20 carbon steel: Macroscopic and microscopic experimental observations.Mater Sci Eng A. 2011;528(16-17):5610-5620.
43. Kuhlmann-Wilsdorf D, Laird C. Dislocation behavior in fatigue.Mater Sci Eng. 1977;27(2):137-156.
44. Guziewski M, Coleman SP, Weinberger CR. Atomistic investigation into interfacial effects on the plastic response and deformation mechanisms of the pearlitic microstructure. Acta Mater. 2019;180:287-300.
45. Fan YH, Wang WY, Hao ZP, Zhan CY. Work hardening mechanism based on molecular dynamics simulation in cutting Ni–Fe–Cr series of Ni-based alloy. J Alloy Compd. 2020;819.
46. Matthews JW, Blakeslee AE. Defects in Epitaxial Multilayers. I. Misfit Dislocations. J Cryst Growth. 1974;27:118-125.
47. Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng. 2010;119(8):2131-2145.
48. Zhang YQ, Jiang SY, Zhu XM, Zhao YN. Mechanisms of crack propagation in nanoscale single crystal, bicrystal and tricrystal nickels based on molecular dynamics simulation. Results Phys. 2017;7:1722-1733.
49. Liang LW, Xiang L, Wang YJ, Chen Y, Wang HY, Dai LH. Ratchetting in cold-drawn pearlitic steel wires. Metall Mater Trans A.2019;50(10):4561-4568.
50. Shibanuma K, Aihara S, Ohtsuka S. Observation and Quantification of Crack Nucleation in Ferrite-Cementite Steel. ISIJ Int . 2013;99(9):582-591.